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Abstract: The detection of volatile amines is necessary due to the serious toxicity hazards they pose
to human skin, respiratory systems, and nervous systems. However, traditional amines detection
methods require bulky equipment, high costs, and complex measurements. Herein, we report a new
simple, rapid, convenient, and visual method for the detection of volatile amines based on the gas–
solid reactions of tetrachloro-p-benzoquinone (TCBQ) and volatile amines. The gas–solid reactions of
TCBQ with a variety of volatile amines showed a visually distinct color in a time-dependent manner.
Moreover, TCBQ can be easily fabricated into simple and flexible rapid test strips for detecting
and distinguishing n-propylamine from other volatile amines, including ethylamine, n-butyamine,
n-pentamine, n-butyamine and dimethylamine, in less than 3 s without any equipment assistance.
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1. Introduction

Organic amines are important intermediates in the chemical, pharmaceutical, and
food industries [1–5]. It is also considered one of the sources of grievous social and
health problems due to the fact that organic amines have acute or delayed toxicities to
human skin, respiratory systems, nervous systems, urinary systems, and hematopoietic
systems [6,7]. In recent years, with the increasing demand for the environment and food
safety, various methods such as gas chromatography [8–10], electrochemistry [11], optical
spectrometries [12–15], and fluorescent methods [16–22] for the detection of amines have
been developed. However, all of the above methods have the drawbacks of bulky equip-
ment size, high costs, and complexity in measurement. In addition, the determination and
discrimination of aliphatic amines still remain a challenge. Therefore, it is very urgent but
important to develop a simple, rapid, convenient, and visual method for the detection of
aliphatic amines.

Tetrachloro-p-benzoquinone (TCBQ) is a perhalogenated quinone compound that
can act as a mild oxidant and has been widely used in the fields of pharmaceuticals, the
chemical industry, and pesticides. In addition, the nucleophilic substitution of TCBQ by
nucleophilic substances, such as aromatic and aliphatic amines or proteins, has also been
widely studied [23–27]. Primary and secondary aliphatic amines are known to form the
disubstituted products of TCBQ, and the color of the reaction solution changes from yellow
to reddish brown. However, most of the reactions between aliphatic amines and TCBQ are
carried out in the solution station, and the gas–solid reaction between volatile amines and
TCBQ has rarely been reported. Gas–solid reactions have the advantage of a faster reaction
speed, and the reaction can occur in a shorter time. Moreover, the reaction can occur at
room temperature, thus saving the energy consumption of the reaction. We suspected that
TCBQ could be used as the sensor for the simple, rapid, convenient, and visual method
for the detection of volatile amines if volatile amines and TCBQ can react in the gas–solid
station and result in clear color changes.
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Herein, we report a simple, rapid, convenient, and visual approach for the detection
of volatile amines based on the gas–solid reaction between volatile amines and TCBQ
(Figure 1). The gas–solid reaction between volatile amines and TCBQ was first verified
by powder X-ray diffraction and single crystal X-ray analysis, as well as the color change.
Notably, gas sensors based on the TCBQ showed an excellent volatile amine sensing
performance with the response rate in the order of n-propylamine > dimethylamine > n-
butylamine > ethylamine > n-amylamine > n-hexylamine. Moreover, a test strip based
on TCBQ was prepared, and n-propylamine could be distinguished from ethylamine, n-
butyamine, n-pentamine, n-butyamine, and dimethylamine in less than 3 s without any
equipment assistance. Our research provides a new strategy for the rapid, convenient, and
visual detection of volatile amines.

Molecules 2024, 29, x FOR PEER REVIEW 2 of 7 
 

 

visual method for the detection of volatile amines if volatile amines and TCBQ can react 
in the gas–solid station and result in clear color changes. 

Herein, we report a simple, rapid, convenient, and visual approach for the detection 
of volatile amines based on the gas–solid reaction between volatile amines and TCBQ (Fig-
ure 1). The gas–solid reaction between volatile amines and TCBQ was first verified by 
powder X-ray diffraction and single crystal X-ray analysis, as well as the color change. 
Notably, gas sensors based on the TCBQ showed an excellent volatile amine sensing per-
formance with the response rate in the order of n-propylamine > dimethylamine > n-bu-
tylamine > ethylamine > n-amylamine > n-hexylamine. Moreover, a test strip based on 
TCBQ was prepared, and n-propylamine could be distinguished from ethylamine, n-bu-
tyamine, n-pentamine, n-butyamine, and dimethylamine in less than 3 s without any 
equipment assistance. Our research provides a new strategy for the rapid, convenient, and 
visual detection of volatile amines. 

 
Figure 1. Chemical structures of TCBQ and amines. 

2. Results and Discussion 
Initially, we tested the possibility of a gas–solid reaction between volatile amines and 

TCBQ. As shown in Figure 2b, after an open vial (4 mL) containing 25 mg of TCBQ was 
placed into a sealed vial (20 mL) containing 1 mL of n-propylamine, the color of TCBQ 
changed from yellow to brown within 30 s, indicating that a reaction between TCBQ and 
n-propylamine occurred. The 1H NMR spectrum of the formed brown solid showed the 
signals of 2,5-dichloro-3,6-bis(propylamino)cyclohexa-2,5-diene-1,4-dione, indicating that 
the nucleophilic substitution of the gas–solid reaction of n-propylamine with TCBQ suc-
cessfully occurred (Figure S3). The resulting product was brown, probably due to the 
push–pull interaction between the electron-donating groups of amine and electron-with-
drawing groups of carbonyls. Luckily, a single red-brown crystal suitable for X-ray anal-
ysis was obtained by the slow evaporation of the formed brown solid solution in dichloro-
methane (CCDC: 2345116), providing unambiguous evidence for the formation of 2,5-di-
chloro-3,6-bis(propylamino)cyclohexa-2,5-diene-1,4-dione (Figure 3b). In addition, the 
powder X-ray diffraction (PXRD) patterns of TCBQ after exposure to n-propylamine 
showed different sharp peaks with TCBQ (Figure 3f). All the above results indicate that 
TCBQ can form disubstituted products when exposed to n-propylamine vapor (Figure 
2a). Similar to the case of n-propylamine vapor, we found that TCBQ could also form di-
substituted products with ethylamine, n-butylamine, n-amylamine, n-hexylamine, and di-
methylamine vapor, respectively. Interestingly, the various disubstituted products of 
TCBQ obtained by exposing TCBQ to different vapor amines were visually distinct in 
color in a time-dependent manner. As shown in Figure 2c, the color of TCBQ turned 
brown the fastest with n-propylamine vapor (within 30 s), and overall colorizing rates 
were in the order of n-propylamine > dimethylamine > n-butylamine > ethylamine > n-
amylamine > n-hexylamine. The color of TCBQ changed to black after exposure to dime-
thylamine vapor for 360 s (Figure S13a), while amine vapor changed the color of TCBQ to 
brown within 8–120 min (Figure S13b). 

Figure 1. Chemical structures of TCBQ and amines.

2. Results and Discussion

Initially, we tested the possibility of a gas–solid reaction between volatile amines and
TCBQ. As shown in Figure 2b, after an open vial (4 mL) containing 25 mg of TCBQ was
placed into a sealed vial (20 mL) containing 1 mL of n-propylamine, the color of TCBQ
changed from yellow to brown within 30 s, indicating that a reaction between TCBQ and
n-propylamine occurred. The 1H NMR spectrum of the formed brown solid showed the
signals of 2,5-dichloro-3,6-bis(propylamino)cyclohexa-2,5-diene-1,4-dione, indicating that
the nucleophilic substitution of the gas–solid reaction of n-propylamine with TCBQ success-
fully occurred (Figure S3). The resulting product was brown, probably due to the push–pull
interaction between the electron-donating groups of amine and electron-withdrawing
groups of carbonyls. Luckily, a single red-brown crystal suitable for X-ray analysis was
obtained by the slow evaporation of the formed brown solid solution in dichloromethane
(CCDC: 2345116), providing unambiguous evidence for the formation of 2,5-dichloro-3,6-
bis(propylamino)cyclohexa-2,5-diene-1,4-dione (Figure 3b). In addition, the powder X-ray
diffraction (PXRD) patterns of TCBQ after exposure to n-propylamine showed different
sharp peaks with TCBQ (Figure 3f). All the above results indicate that TCBQ can form
disubstituted products when exposed to n-propylamine vapor (Figure 2a). Similar to the
case of n-propylamine vapor, we found that TCBQ could also form disubstituted products
with ethylamine, n-butylamine, n-amylamine, n-hexylamine, and dimethylamine vapor, re-
spectively. Interestingly, the various disubstituted products of TCBQ obtained by exposing
TCBQ to different vapor amines were visually distinct in color in a time-dependent manner.
As shown in Figure 2c, the color of TCBQ turned brown the fastest with n-propylamine
vapor (within 30 s), and overall colorizing rates were in the order of n-propylamine >
dimethylamine > n-butylamine > ethylamine > n-amylamine > n-hexylamine. The color
of TCBQ changed to black after exposure to dimethylamine vapor for 360 s (Figure S13a),
while amine vapor changed the color of TCBQ to brown within 8–120 min (Figure S13b).

The 1H NMR spectral of the formed color was solid, showing the signals of corre-
sponding disubstituted products of TCBQ with tested amine vapor and providing further
evidence for the gas–solid reaction between TCBQ and amine vapor (Figures S1–S12). In
addition, we also obtained the single crystals of the corresponding disubstituted products
of TCBQ with ethylamine, n-butylamine, n-amylamine, and n-hexylamine, respectively. As
shown in Figure 3, all of these crystals belong to the same triclinic crystal system and P-1
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space groups, except for the disubstituted products of TCBQ by n-butylamine, which has
the monoclinic crystal system and P21/n space groups. Moreover, N-H···O hydrogen bond-
ing interactions with distances of 2.131–2.258 Å were observed in these crystals, resulting in
the formation of a liner supramolecular array architecture of corresponding disubstituted
products of TCBQ in the solid states. The powder X-ray diffraction (PXRD) patterns of
TCBQ after exposure to the amine vapor showed different sharp peaks with TCBQ, further
supporting the formation of new compounds (Figure 3f).
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Figure 3. Crystal structures of disubstituted products of TCBQ with ethylamine (a), n-propylamine
(b), n-butylamine (c), n-amylamine (d), and n-hexylamine (e), respectively (CCDC: 2345116–2345119,
2345128); (f) PXRD patterns of TCBQ after exposure to the amine vapor. Green color represents
chlorine atoms. White color represents hydrogen atoms. Gray color represents carbon atoms. Red
color represents oxygen atoms. Blue color represents nitrogen atoms. The pink dotted line represents
hydrogen bond interactions.

Given the fact that TCBQ is time-dependent on the color change when exposed to
different types of amine vapor, we wondered whether this feature could be exploited to
distinguish different amines. Considering the feasibility of its practical application as well
as portability, we then prepared TCBQ-based rapid test papers. TBCQ solution was first
obtained by dissolving 100 mg of TBCQ in 10 mL of CH2Cl2, which was then dropped
on the filter paper and dried at room temperature for 2 h. After the prepared test paper
was exposed to different types of saturated amine vapor for 3 s, the color change was
recorded. As shown in Figure 4, the significant color change can be visualized by the naked
eye when the test paper was exposed to n-propylamine vapor, while other amine vapors
showed no or little color change, suggesting that TCBQ possesses practical applications in
detecting and distinguishing n-propylamine from ethylamine, n-butyamine, n-pentamine,
n-butyamine, and dimethylamine in less than 3 s. To the best of our knowledge, this is
the first TCBQ-loaded test strip not only for detection but also for the identification of
n-propylamine from other amines, which presents promising practical applications for
simplicity, ease, and speed of detection.
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3. Materials and Methods
General Considerations

Commercial reagents were used without further purification. 1H NMR, 13C NMR
spectra were recorded on a Bruker DMX400 NMR spectrometer (Billerica, MA, USA).

Powder X-ray diffraction (PXRD) data were collected on a Rigaku Ultimate-IV X-
ray diffractometer (Akishima, Japan) operating at 40 kV/30 mA using the Cu Kα line
(λ = 1.5418 Å). Data were measured over the range of 5–45◦ in 5◦/min steps over 8 min.

Vapochromic experiments. An open 4 mL vial containing 25 mg of TCBQ was placed
in a sealed 20 mL vial containing 1 mL of each vapor amine. TCBQ powders were exposed
under saturated vapor pressure in the closed vessel at room temperature. Clear color
changes were observed over time.

Preparation of test papers. TCBQ (100 mg) was dissolved in 10 mL of CH2Cl2, and
then 1 mL of the prepared solution was slowly dropped onto the filter paper with the size
of 1 cm × 3 cm, repeating the above procedure three times before drying the test papers at
room temperature for 2 h.

4. Conclusions

In summary, we demonstrate that the gas–solid reaction that occurs between volatile
amines and TCBQ can cause significant color changes. Interestingly, the various disubsti-
tuted products of TCBQ obtained by its exposure to different vapor amines were visually
distinct in color in a time-dependent manner, and overall colorizing rates were in the
order of n-propylamine > dimethylamine > n-butylamine > ethylamine > n-amylamine
> n-hexylamine. Moreover, TCBQ can be easily fabricated into simple and flexible rapid
test strips for detecting and distinguishing n-propylamine from ethylamine, n-butyamine,
n-pentamine, n-butyamine, and dimethylamine in less than 3 s without any equipment
assistance. We believe that our results presented here shed light on the design of rapid,
convenient, and visual amine sensing materials.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules29081818/s1. 1H, 13C spectra of the disubstituted products of
TCBQ; Crystal data.

Author Contributions: Y.-X.S., Z.-J.Y. and W.-X.L. performed synthesis and discoloration studies.
X.-M.C. and M.-H.D. performed the 1H NMR spectroscopy experiments. L.-L.T. and F.Z. conceived
and supervised the project and wrote the manuscript. All authors have read and agreed to the
published version of the manuscript.
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