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Abstract: In the realm of predictive toxicology for small molecules, the applicability domain of QSAR
models is often limited by the coverage of the chemical space in the training set. Consequently,
classical models fail to provide reliable predictions for wide classes of molecules. However, the
emergence of innovative data collection methods such as intensive hackathons have promise to
quickly expand the available chemical space for model construction. Combined with algorithmic
refinement methods, these tools can address the challenges of toxicity prediction, enhancing both the
robustness and applicability of the corresponding models. This study aimed to investigate the roles
of gradient boosting and strategic data aggregation in enhancing the predictivity ability of models
for the toxicity of small organic molecules. We focused on evaluating the impact of incorporating
fragment features and expanding the chemical space, facilitated by a comprehensive dataset procured
in an open hackathon. We used gradient boosting techniques, accounting for critical features such as
the structural fragments or functional groups often associated with manifestations of toxicity.

Keywords: hackathon; cheminformatics; neural networks; deep learning; toxicity; machine learning;
gradient boosting

1. Introduction

Drug discovery, a sophisticated and arduous process, is driven by the promise of
finding novel therapeutic agents that can effectively combat disease without compromising
patients’ safety [1–5]. However, the journey from the initial identification of the compound
to the successful launch of a safe drug is riddled with challenges [6–8]. A pivotal aspect of
this journey is predicting and understanding a drug’s toxicity profile. Efficient prediction
of toxicity endpoints can substantially streamline the drug development process, ensuring
that potentially harmful agents are identified and eliminated early in the research [7,9–16].
Ensuring the availability of top-notch reference data is crucial for advancing, authenticating,
and applying both in vitro and in silico methods that aim to minimize and substitute the
use of animals in evaluations of toxicity [17–20].

However, the task is made more formidable by two pressing issues. First, there is
a stark lack of comprehensive and reliable toxicity data for many chemical compounds.
Given the multitude of chemicals used in industries, only a fraction (less than 0.1%) has
been thoroughly tested for their toxic effects [21–24]. This scarcity of data limits our
understanding and poses potential unseen risks. Second, the available toxicity data often
exhibit significant variance, which can be attributed to factors such as differences in the
experimental conditions, biological models used, and inter-species variability [25–27].
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This inconsistency further complicates the prediction process and stresses the need for
standardized testing procedures.

The landscape of drug discovery has undergone significant evolution over the years,
with the advent of computational techniques playing a pivotal role. Cheminformatics has
been at the forefront of this transformation [28–30]. With the increasing complexity of
the challenges faced, cheminformatics hackathons have surged in prominence, serving as
crucibles for innovative algorithmic and data-driven approaches. Notably, these events
have often transcended the traditional definitions of hackathons, with many of them not
even explicitly termed as such. A comprehensive overview of the activities undertaken in
this domain over the past decade is provided in Table 1.

Broadly, these events can be classified into two categories. The primary category
encompasses activities where the participants engage in project-driven endeavors without
the expectation of a substantial financial recompense. The overarching objective here is
to foster a symbiotic exchange of knowledge between the participants and organizers.
Those involved predominantly accrue benefits in terms of establishing professional con-
nections, acquiring novel skill sets, and gaining hands-on experience in groundbreaking
projects. The outcomes from such endeavors often manifest as scholarly publications,
enhancements to existing software tools, or the inception of novel ideas with the poten-
tial to evolve into standalone projects. This confluence of conferences, workshops, and
open-source project development has led to the emergence of such unique platforms.
Noteworthy events falling within this category include the RDKit UGM [31], D3R Grand
Challenge [32], MATDAT18 [33], Drugathon [34], and CATMOS [35].

The secondary category includes contests that offer financial incentives to the top per-
formers. These events are delineated by well-defined and mutually agreed-upon evaluation
metrics, ensuring clarity in the adjudication process. Predominantly, such competitions are
geared towards the deployment of machine learning techniques, given the amenability of
these methodologies to rigorous and formalized evaluations. A standard paradigm in these
events is assessing the proficiency of the participants’ models based on a specified metric
or set of metrics, which quantitatively gauge the predictive or analytical power of the
model in question. One of the most renowned platforms hosting such competitions is Kag-
gle [36], which has garnered worldwide recognition for facilitating a diverse array of data
science contests. Within the realm of cheminformatics, competitions such as Nomad2018
Predicting Transparent Conductor [37], Novozymes Enzyme Stability Prediction [38], Pre-
dicting Molecular Properties [39], and Bristol–Myers Squibb—Molecular Translation [40]
underscore the increasing intersection of machine learning and chemistry.

In this article, we aimed to detail the methodology used in organizing the hackathon
and to elucidate the outcomes that were subsequently achieved. In April 2023, the Syntelly
team hosted a meticulously designed three-day hackathon open for participation by dedi-
cated teams, which addressed the prediction of toxicity endpoints [41]. The participants
were tasked with utilizing open-source data for curating a dataset and building a machine
learning model that could accurately predict the toxicity endpoints of small molecule
compounds. Syntelly’s hackathon was more than a mere competition; it was a strategic
endeavor to confront the persistent issue of data scarcity in the domain. By incorporating
both the tasks of data curation and model building into the hackathon, Syntelly aimed
to highlight the symbiotic relationship between comprehensive data collection and the
refinement of machine learning models in the field.

A notable aspect of the hackathon was the criteria set used for evaluation. In formulat-
ing the assessment benchmarks, Syntelly adopted a hybrid approach. While the evaluation
primarily focused on quantitative metrics to gauge the efficacy and accuracy of the predic-
tive models, it also encompassed non-quantitative assessment categories. These included
factors such as the relevance of the dataset, the coherence and clarity in the presentation of
results, and the overall interpretability of the proposed models. The evaluation strategy
adopted by Syntelly was multifaceted, placing emphasis on both technical expertise and
the coherent conveyance of the results and methodologies. Through this approach, there
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was a notable improvement in the model’s metrics for established endpoints. Additionally,
the initiative led to the compilation of a database encompassing diverse toxicity data, show-
casing the potential of short-term dedicated collaborative efforts in addressing challenges
within cheminformatics.

Table 1. A compilation of events within the past decade that align with the definition of a hackathon
in the realm of cheminformatics.

Event Topic Year

RDKit UGM [31]

An annual symposium centered around the RDKit cheminformatics library, wherein attendees
engaged with presentations, facilitated dialogues, exchanged insights, and familiarized

themselves with recent advancements in cheminformatics algorithms, pipelines, and databases.
The concluding day was structured as a hackathon, focusing on resolving practical challenges

pertinent to RDKit and KNIME.

2012–2023

D3R Grand Challenge [32]

This endeavor was designed to hone computational methodologies for estimating
ligand–protein interaction energies and predicting their binding conformations. Notably, the
challenge garnered support from multiple leading pharmaceutical entities, contributing data

pertaining to the docking structures.

2015–2018

MATDAT18 [33]
During the hackathon, contributions spanned the development of machine learning models for

material classification and crafting structure–performance correlations, complemented by
advancements in computational strategies in the domain of force fields and descriptors.

2018

Nomad2018 Predicting
Transparent Conductor [37]

This initiative sought to devise a strategy for the systematic engineering of highly efficient
conductors based on metal sesquioxides. Participants were tasked with predicting both the

band gap and atomic formation energy for conductors consisting of the combination of
aluminum, gallium, and indium.

2018

Predicting Molecular
Properties [39]

Participants were tasked with leveraging nuclear magnetic resonance data to craft an
algorithm proficient in forecasting the spin–spin interaction constants between paired atoms. 2019

Bristol-Myers
Squibb—Molecular

Translation [40]

The focal point of this competition was the optical recognition of chemical structures,
subsequently transcribed to InChI format. The synthetic datasets provided encompassed

distorted images of chemical compounds.
2021

CATMOS [35]
An international coalition was commissioned to predict five distinct endpoints: EPA and GHS
categorizations, dichotomous toxicological outcomes, and pinpoint estimations of LD50 for

acute oral toxicity in rodents.
2021

Drugathon [34]

In this engagement, attendees were encouraged to showcase their prowess in molecular
modeling and drug discovery paradigms. Submissions entailed proposals for putatively active
chemical entities. Following a rigorous selection process by the orchestrating entity, BioSolveIT,
the most promising submissions were synthesized to validate their biological activity. Upon
successful validation, BioSolveIT extended co-authorship opportunities for a publication in a

reputable, peer-reviewed journal.

2022–2023

Novozymes Enzyme Stability
Prediction [38]

The challenge mandated the creation of a machine learning model adept at predicting an
enzyme’s thermostability, inclusive of its single-amino acid variants. The metric of thermal

stability was equated to the enzyme’s melting point.
2022–2023

2. Results

It was expected that the participants’ solutions would not be completely comprehensive.
In the rigorous environment of academic studies, these solutions often lack an intricate com-
parison of diverse algorithms involving metrics cited in the existing literature and subsequent
empirical data, a practice common in exhaustive scientific writings. However, the outcomes
derived are akin to those outlined in brief reports or flash presentations from conferences.

The first place was taken by the MML team (Nick Kutuzov and Sergey Novikov
from the Moscow Institute of Physics and Technology), who proposed a solution based on
Catboost [42]. Using a combination of Daylight fingerprints, MACCS keys, and several
standard molecular descriptors, it was possible to improve models predicting the lethal
dose in mice and rats at different doses (Table 2). Daylight fingerprints were generated in 8,
128, and 256 bits with path lengths of 3 and 7, after which, the bits were combined. Among
the standard descriptors, the number of atoms of the first 50 elements, the TPSA, the molar
mass, and the number of heteroatoms and valence electrons were used. The comparison
was carried out with the metrics of the multitask model of a fully connected neural network,
the architecture of which was considered in an earlier publication by Sosnin et al. [43],
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and the metrics with five-fold cross-validation were presented on Syntelly’s website [44].
The MML team claimed that they were not able to achieve high-quality using language
models or graph featurizers in combination with gradient boosting or neural networks,
which Catboost produces with fingerprints and molecular descriptors.

Table 2. Comparison of the toxicity parameter metrics for the MML model for five-fold cross-
validation within a regression problem.

Toxicity Endpoint
Regression Task

RMSEMML RMSEbenchmark

Mouse oral LD50 0.43 0.49

Rat oral LD50 0.47 0.68

Mouse intraperitoneal LD50 0.45 0.54

Rat intraperitoneal LD50 0.58 0.64

Mouse intravenous LD50 0.46 0.52

Rat intravenous LD50 0.59 0.63

The Billy QSAR team (Ruslan Lukin and Boris Pyakilla from Innopolis University) took
second place and presented results based on the Tox21 dataset. The team used Catboost
based only on RDKit descriptors and MACCS keys. It has been shown that using such a
simple model can be superior to language models [45] for the classification problem using
the Tox21 dataset (Table 3). The Billy QSAR team also tried using graph neural networks,
in particular ALIGNN [46]; however, CatBoost showed the best results.

Table 3. ROC AUC values for five-fold cross-validation for the Billy QSAR and SOTA language
models [45].

Toxicity Endpoint Billy QSAR Smi2Vec-LSTM Smi2Vec-BiGRU TranGRU

NR.AhR 1 0.904 0.678 0.879 0.833

NR.AR 1 0.771 0.691 0.714 0.824

NR.AR.LBD 1 0.747 0.748 0.824 0.847

NR.Aromatase 0.802 0.496 0.699 0.784

NR.ER 1 0.787 0.623 0.736 0.691

NR.ER.LBD 1 0.763 0.531 0.868 0.843

NR.PPAR.gamma 1 0.767 0.566 0.749 0.838

SR.ARE 1 0.795 0.641 0.761 0.701

SR.ATAD5 1 0.806 0.5 0.763 0.727

SR.HSE 1 0.796 0.612 0.785 0.736

SR.MMP 1 0.951 0.743 0.86 0.816

SR.p53 0.818 0.518 0.732 0.81
1 NR.AhR—aryl hydrocarbon receptor; NR.AR—androgen receptor; NR.AR.LBD—androgen receptor
ligand-binding domain; NR.ER—estrogen receptor; NR.ER.LBD—estrogen receptor ligand-binding domain;
NR.PPAR.gamma—peroxisome proliferator-activated receptor gamma; SR.ARE—antioxidant responsive element;
SR.ATAD5—ATPase family AAA domain containing 5 gene; SR.HSE—stress response heat shock sequence;
SR.MMP—stress response mitochondrial membrane potential.

The evaluation of the performance of the fingerprint-based CatBoost and fragment-
based XGBoost [47] algorithms was conducted by using RMSE metrics for regression tasks
and ROC AUC for classification tasks. An examination of these metrics revealed a notable
enhancement in performance compared with models previously published in academic
literature and those available on the TOXRIC website [48]. An observable improvement
was also documented in the metrics of existing models hosted on our Syntelly website
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(Table 4). An in-depth analysis of six datasets, each exceeding 10,000 samples, indicated a
trend of improvement in the metrics or a marginal decline, with the exception being the
mouse subcutaneous LD50 target. Notably, the voluminous nature of the datasets used for
model development surpassed the sizes of the datasets customarily used, underscoring the
extensive exploration of the chemical space. In the context of datasets ranging from 1000
to 10,000 samples, the XGBoost Fragments model outperformed renowned models in the
majority of instances. For datasets comprising up to 1000 samples, victories were observed
for both the CatBoost FP model and the XGBoost Fragments model in several instances.
It is noteworthy that XGBoost Fragments emerged as the superior model in 55% (16/29) of
the evaluated cases.

Table 4. RMSE values for five-fold cross-validation for all targets from the hackathon with our models
using gradient boosting and model metrics from the literature.

Target Name CatBoost Fingerprints XGBoost Fragments Benchmark * n Samples

Mouse intraperitoneal LD50 0.562 0.486 0.473 (TOXRIC) 91,162

Mouse oral LD50 0.543 0.445 0.445 (TOXRIC) 57,307

Mouse intravenous LD50 0.498 0.415 0.491 (TOXRIC) 41,630

Rat oral LD50 0.589 0.466 0.592 (Syntelly) 23,409

Mouse subcutaneous LD50 0.696 0.652 0.55 (Syntelly) 19,457

Rat intraperitoneal LD50 0.71 0.618 0.61 (Syntelly) 12,769

Rat intravenous LD50 0.894 0.853 0.644 (TOXRIC) 7461

Rat subcutaneous LD50 0.829 0.743 0.69 (Syntelly) 5376

Tetrahymena pyriformis IGC50 40 h 0.524 0.46 0.518 (TOXRIC) 3516

Mouse intraperitoneal LDLo 0.495 0.435 0.52 (Syntelly) 3500

Rabbit skin LD50 0.521 0.479 0.58 (Syntelly) 3429

Rabbit oral LD50 0.626 0.588 0.588 (Syntelly) 2969

Guinea pig oral LD50 0.703 0.659 0.69 (Syntelly) 1778

Fathead minnow LC50 96 h 0.78 0.72 0.864 (TOXRIC) 1739

Rat skin LD50 0.665 0.63 0.62 (Syntelly) 1673

Rabbit intravenous LD50 0.898 0.83 0.67 (Syntelly) 1604

Rat intraperitoneal LDLo 0.512 0.482 0.63 (Syntelly) 1568

Mouse intramuscular LD50 0.894 0.866 0.715 (TOXRIC) 1518

Rat oral LDLo 0.997 0.99 0.71 (Syntelly) 1464

Bioconcentration factor 0.699 0.626 0.71 (Syntelly) 1321

Dog intravenous LD50 0.995 0.927 0.838 (TOXRIC) 1215

Chicken oral LD50 0.906 0.941 0.916 (TOXRIC) 743

Quail oral LD50 0.816 0.852 0.817 (TOXRIC) 735

Dog intravenous LDLo 0.84 0.834 0.894 (TOXRIC) 703

Daphnia magna LC50 0.866 0.817 1.109 (TOXRIC) 699

Rabbit intravenous LDLo 0.783 0.749 1.031 (TOXRIC) 690

Guinea pig intraperitoneal LD50 0.745 0.786 0.818 (TOXRIC) 631

Cat intravenous LD50 0.877 0.851 0.836 (TOXRIC) 542

Mouse skin LD50 0.838 0.815 0.917 (TOXRIC) 426

* RMSE values were selected from the Syntelly [44] or TOXRIC [48] websites.

In the domain of classification tasks, an analysis of the XGBoost Fragments model
revealed a propensity for enhancement in the metrics in 64% of instances (Table 5). A com-
parative evaluation with the CardioTox model, characterized by its intricate architecture,
delineated a marginal differential in the performance metrics, highlighting a nuanced land-
scape of algorithmic efficiency. The applicative capacity of XGBoost Fragments extended
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to the Tox21 dataset, where an analysis indicated improvements in the metrics in 8 of the
12 cases when juxtaposed with the standard CatBoost FPs and the TranGRU language
model. An examination of specific targets, such as eye irritation and eye corrosion, hepato-
toxicity, the Ames test, carcinogenicity, and blood–brain barrier penetration, delineated an
observable trend of enhancement in the metrics associated with the application of gradient
boosting on fragments.

Table 5. ROC AUC values for five-fold cross-validation for all targets that were mentioned in the hackathon.

Target Name CatBoost Fingerprints XGBoost Fragments Benchmark 1 n Samples

Cardiotoxicity (hERG binary) 0.888 0.926 0.930 (CardioTox) 324,010

Ames test 0.845 0.894 0.88 (Syntelly) 14,168

SR-HSE 2 0.839 0.836 0.736 (TranGRU) 7281

NR-AR 2 0.724 0.797 0.824 (TranGRU) 7263

NR-AR-LBD 2 0.843 0.835 0.847 (TranGRU) 7133

NR-PPAR-gamma 2 0.727 0.809 0.838 (TranGRU) 6942

NR-aromatase 0.831 0.875 0.784 (TranGRU) 6929

NR-ER-LBD 2 0.858 0.878 0.843 (TranGRU) 6920

SR-ATAD5 2 0.75 0.862 0.727 (TranGRU) 6893

SR-ARE 2 0.825 0.845 0.701 (TranGRU) 6822

SR-p53 0.748 0.877 0.81 (TranGRU) 6749

NR-ER 2 0.852 0.866 0.691 (TranGRU) 6585

NR-AhR 2 0.816 0.871 0.833 (TranGRU) 6446

SR-MMP 2 0.853 0.896 0.816 (TranGRU) 6361

Eye irritation 0.977 0.98 0.966 (TOXRIC) 5040

Hepatotoxicity 0.785 0.811 0.741 (TOXRIC) 3413

Carcinogenicity 0.757 0.787 0.68 (TOXRIC) 2726

Eye corrosion 0.993 0.99 0.948 (TOXRIC) 2190

Blood–brain barrier penetration 0.925 0.936 0.919 (Wang et al.) 1961

Developmental toxicity 0.85 0.857 0.918 (TOXRIC) 640

DILI 2 0.874 0.901 0.691 (Lim et al.) 475

Reproductive toxicity 0.489 0.739 0.927 (TOXRIC) 146

1 ROC AUC values were selected from publications [45,49–51] or the Syntelly [44] or TOXRIC [48] websites.
2 SR-HSE—stress response heat shock sequence; NR-AR—androgen receptor; NR-AR-LBD—androgen receptor ligand-
binding domain; NR-PPAR-gamma—peroxisome proliferator-activated receptor gamma; NR-ER-LBD—estrogen
receptor ligand-binding domain; SR-ATAD5—ATPase family AAA domain containing 5 gene; SR-ARE—antioxidant
responsive element; NR-ER—estrogen receptor; NR-AhR—aryl hydrocarbon receptor; SR-MMP—stress response
mitochondrial membrane potential; DILI—drug-induced liver injury.

3. Discussion

An examination of the machine learning algorithms used by participants revealed
a prevalence of gradient boosting approaches, namely CatBoost, XGBoost, and Light-
GBM [52]. Fully connected neural networks, graph convolutional networks, and AutoML
were also frequently utilized (Figure 1). Conversely, the application of more intricate
models, such as LSTM or SELFormer, yielded inconclusive results, as indicated by the
participants’ presentations. The hypothesis emerged that gradient boosting could poten-
tially serve as an optimal choice for baseline QSAR models, with standard deep learn-
ing approaches not consistently offering marked enhancements. This proposition was
corroborated by the performance of CatBoost users, who secured the first and second
places, outperforming teams utilizing graph convolutional networks and linguistic models.
Other researchers also confirmed the high efficiency of gradient boosting in comparison
with other algorithms when applied to problems in chemistry [53].
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Figure 1. Pie chart of the number of teams that used any machine learning algorithm. The percentages
on the slices show the overall preference of the teams for choosing an algorithm; the absolute number
of teams is indicated in parentheses.

The role of features in vectorizing molecules is critical in the context of QSAR model
construction. The evaluation of the participants’ feature selection processes unveiled a
varied utilization of four primary categories: descriptors, fingerprints, graph featurizers,
and text embeddings (Figures 2 and 3; Table S1 in the Supporting Information). Classic
features (descriptors/fingerprints) saw frequent application; however, a substantial number
of teams also used graph and text features. Morgan fingerprints and descriptors from the
RDKit library emerged as the predominant individual features. Additionally, the Mordred
1.2.0 package, offering a diverse array of features including topological, electrotopological,
and 3D descriptors, was used by five teams. The integration of graph featurizers and
text embeddings with gradient boosting algorithms was noted, though significant results
remained elusive.
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A review of the databases used by the hackathon’s participants highlighted a pro-
nounced use of TOXRIC, Tox21, PubChem, and academic publications, supplemented by
resources available on GitHub (Table 6, Figure 4). TOXRIC’s popularity can be attributed
to its user-friendly data download and manipulation capabilities, notwithstanding its
limitation of housing multiple datasets with restricted sample sizes. The frequent utiliza-
tion of academic publications underscores their primacy as sources of experimental data,
underscoring the hackathon’s effectiveness in addressing the challenges of data collection.
Conversely, the limited use of ChEMBL could potentially be ascribed to the complexities
associated with delineating the correlations between on-target biological activities and
toxicity parameters.
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EPA [58]

OCHEM [59]

TensorFlow [60]

Cactus NIH [61]

FDA [62]

PubChem [63]

Tox21 [64]

Carcinogenic Potency Database [65]

GitHub [66,67]

Publications [35,68–83]

USGS [84]

ChEMBL [85]

Kaggle [86]

PyTDC [87]

WeiLab MSU [88]

CompTox [89]

NLM NIH [90,91]

SIDER [92]

DrugBank [93]

NORMAN [94]

T3DB [95]



Molecules 2024, 29, 1826 9 of 17

Molecules 2024, 29, x FOR PEER REVIEW 9 of 18 
 

 

Cactus NIH [61] 
FDA [62] 

PubChem [63] 
Tox21 [64] 

Carcinogenic Potency Database [65] 
GitHub [66,67] 

Publications [35,68–83] 
USGS [84] 

ChEMBL [85] 
Kaggle [86] 
PyTDC [87] 

WeiLab MSU [88] 
CompTox [89] 
NLM NIH [90,91] 

SIDER [92] 
DrugBank [93] 
NORMAN [94] 

T3DB [95] 

 
Figure 4. Chart showing the number of teams that used specific sources. Those sources that were 
used by fewer than three teams were removed from the diagram. The percentages on the slices show 
the overall preference of the teams for choosing an algorithm; the absolute number of teams is indi-
cated in parentheses. 

In the context of the hackathon centered on predictive toxicology, the participants 
faced rigorous criteria, including extensive data collection, model training, and the effec-
tive communication of results. This intensive process saw 27 out of 80 teams successfully 
completing the challenge. Each contribution unveiled a comprehensive array of insights 
into predictive toxicology. Included were diverse sets of data and resources, strategies for 
data gathering, and applications of a variety of machine learning techniques. The results 
offered detailed analyses of the efficiency and limitations associated with diverse algo-
rithms applied to distinct targets, and illuminated the overarching strategies used by the 
participants to navigate the complexities of the assigned tasks. A close examination of the 
27 submissions revealed a noticeable diversity in the approaches. This highlighted the 
ability of this hybrid hackathon format to elicit a broad spectrum of solutions, a feature 
less observed in metric-focused platforms where evaluations, mainly anchored on metrics, 
often lead to markedly similar solutions. The resulting analysis underscored the diversity 
of insights and methodologies in predictive toxicology that have surfaced from this event. 

Figure 4. Chart showing the number of teams that used specific sources. Those sources that were
used by fewer than three teams were removed from the diagram. The percentages on the slices
show the overall preference of the teams for choosing an algorithm; the absolute number of teams is
indicated in parentheses.

In the context of the hackathon centered on predictive toxicology, the participants
faced rigorous criteria, including extensive data collection, model training, and the effective
communication of results. This intensive process saw 27 out of 80 teams successfully
completing the challenge. Each contribution unveiled a comprehensive array of insights
into predictive toxicology. Included were diverse sets of data and resources, strategies for
data gathering, and applications of a variety of machine learning techniques. The results
offered detailed analyses of the efficiency and limitations associated with diverse algo-
rithms applied to distinct targets, and illuminated the overarching strategies used by the
participants to navigate the complexities of the assigned tasks. A close examination of the
27 submissions revealed a noticeable diversity in the approaches. This highlighted the
ability of this hybrid hackathon format to elicit a broad spectrum of solutions, a feature
less observed in metric-focused platforms where evaluations, mainly anchored on metrics,
often lead to markedly similar solutions. The resulting analysis underscored the diversity
of insights and methodologies in predictive toxicology that have surfaced from this event.
These findings, subject to further exploration and validation, hold the potential to offer
pivotal insights that would be instrumental in propelling advancements in this field.

As we moved towards the concluding phase of our investigation, attention was
directed towards elucidating the statistical correlation between the model’s quality and the
volume of samples incorporated. Preliminary insights underscored the pivotal role of the
volume of the sample in fostering the development of robust models (Figure 5).

While acknowledging the integral role of the data’s quality and adept preprocess-
ing, emphasis was also placed on the potential role of expansive datasets in enhancing
predictive accuracy. Our observations underscored the potential trajectory towards en-
hanced predictive accuracy, seen at the threshold of 30,000 samples. This volume was
associated with a reduction in error margins, indicated by an RMSE approximating ~0.2,
a development that would constitute a significant milestone in the ongoing journey of
advancements in predictive toxicology. Our findings aimed to catalyze concerted efforts
towards the accumulation of expansive and qualitatively rich datasets, underscoring the
symbiotic relationship between the volume of data and the models’ accuracy in the context
of predictive toxicology.
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4. Materials and Methods
4.1. Organization of the Hackathon

The center for innovative technologies, Medtech.Moscow, supported the hackathon
with a prize fund amounting to approximately EUR 10,000. The event drew participation
from 80 teams spanning 47 distinct Russian regions. As expected, a significant portion
of participants came from the major cities of the Russian Federation: Moscow (40%) and
St. Petersburg (37%). The median age of the participants was 22.5 years, suggesting a
predominant representation from undergraduate and graduate student demographics.
Collectively, the participants were affiliated with 105 different universities. Teams were
restricted to a maximum of five members, with single-member teams being precluded,
primarily due to the multifaceted nature of the challenges. Constraints were also set to
manage the demands on the expert committee and to ensure adequate computational
resources for all teams.

Throughout the hackathon’s duration, daily question and answer sessions were fa-
cilitated to address any ambiguities in the problem statement. Moreover, there were two
designated timeframes for direct discussions with experts from the fields of cheminfor-
matics and data science. By the hackathon’s end, 27 teams had successfully uploaded the
solutions. The logistical aspects, inclusive of the question and answer sessions, expert
interactions, and evaluations of the solutions, were managed by Syntelly and Infochemistry
Scientific Center from ITMO University.

To support the computational needs, servers provided by Selectel Ltd. (St. Petersburg,
Russia) were utilized, operating on a ‘one team—one server’ model to pre-empt potential
technical challenges associated with singular computing clusters. The servers’ specifications
included an Intel Xeon Processor E5-2630 v4 2.20 GHz (Intel, Santa Clara, CA, USA),
an Nvidia Tesla T4 16 GB (Nvidia, Santa Clara, CA, USA), and 64 GB of RAM. Of the
participating teams, only 25 (31%) opted to use the servers provided.

Participants were required to submit their solutions as a zip archive containing:

1. A presentation detailing the solution.
2. A Python-based Jupyter notebook containing:

• A module taking a test .csv file of molecular SMILES as the input and producing
the corresponding predicted endpoints as the output.
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• A complete model training workflow including parameter selection, hyperpa-
rameter tuning, and definition of the architecture.

3. Training datasets with the molecular SMILES and the corresponding experimental
values, clearly delineating data sources.

4. Any supplementary files necessary for the model’s execution or evaluation purposes.

It was incumbent upon the participants to ensure that the Jupyter notebooks were
executable for any valid canonical SMILES generated by RDKit. Non-compliant solutions
were subject to penalties, including potential disqualification.

The evaluation metrics for the hackathon were custom-developed. Instead of adhering
to a singular metric-based evaluation, akin to platforms such as Kaggle, a broader evalua-
tion framework was implemented. The intention was to foster a spectrum of scientifically
rigorous solutions. Consequently, the event resembled more of a scientific competition
within a given domain rather than merely an algorithmic contest, providing the partici-
pants with a structured framework for creating quantitative structure–activity relationship
(QSAR) models.

4.2. Solution Evaluation Criteria

1. Dataset quality. Evaluations under this metric did not award additional points.
Rather, it eliminated suboptimal submissions. Solutions were penalized for inconsis-
tencies such as the use of synthetic data, attempts at fraud, discrepancies between
the source and the data utilized, inconsistencies in the dimensions of the data, the
presence of duplicate molecular entities, or a lack of source provision. This metric
sought to emphasize the importance of initial data processing; a foundational step
commonly practiced by researchers.

2. Model evaluation. Participants were prompted to utilize evaluation metrics either
from referenced publications or from the Syntelly models, available on the Syntelly
website in the statistics section. For quantitative assessment, any improvement had to
surpass a 5% mean value for regression (RMSE) or 3% for classification (ROC AUC)
during a five-fold cross-validation. Depending on improvements in the metrics, the
models’ multipliers were adjusted. For the metrics available in Syntelly, a comparison
with the average values of Syntelly’s benchmarks was required. For non-Syntelly
metrics, external benchmark citations were mandated. Notably, minor model improve-
ments deemed to be statistically insignificant were not considered valuable, leading
to the establishment of a minimal improvement threshold. If the model fulfilled the
condition for improving the quality of the metric, then the model’s multiplier equaled
(1 + M/100) for regression and equaled (1 + M/50) for classification, where M is the
percentage of improvement in the metric.

3. The assessment process for the models incorporated two primary factors: the extent of
the dataset and the uniqueness of the samples. For the dataset’s extent, a point-based
system was used, attributing 1, 0.75, and 0.5 points for the first, second, and third
positions, respectively. In instances of tied positions, the points were distributed
evenly among the tied participants. Zero points were assigned for datasets that were
not within the top three positions.

In assessing a sample’s uniqueness, the focus lay on the inclusion of unique molecular
structures absent in other participants’ submissions. Similar point allocations to the extent
of the dataset were used. This criterion ensured streamlined manual verification of the
solutions and incentivized participants to broaden the data pool, addressing the common
issue of data insufficiency in QSAR models.

4. Difficulty in obtaining data. The challenge associated with data acquisition was
acknowledged and quantitatively assessed. Points were allocated based on the com-
plexity of the data collection process. One point was assigned for scraping data
without an API from at least one source, downloading via API from three or more
sources, or manual searches of five or more sources. Downloading via API from at
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least one source or a manual search of at least three sources scored 0.5 points. A man-
ual search of one source scored 0.25 points. Collecting good data is an important task
as part of building a machine learning model, so we aimed to reward participants if
the participants spent a large amount of time collecting good data.

5. Number of sources of experimental data. In consideration of the significant variability
inherent in experimental toxicity data, models incorporating data from multiple
sources were favored. A source was defined as a database or an aggregation of
publications with over 1000 chemical structures. Points were allocated as per the
number of sources, with a model incorporating over five sources receiving 1 point,
four or five sources receiving 0.75 points, two or three sources receiving 0.5 points,
and one source receiving 0 points.

6. Number of predicted toxicity models. Models were evaluated on the basis of the
range of toxicity endpoints predicted. Each endpoint was scored individually, with
the total points computed cumulatively, incorporating the respective multipliers.

7. Quality of presentation of the solution. It was not enough to simply send files with
the models and the metrics’ results; an essential quality for a researcher is the accurate
presentation of their results. This was particularly important, considering the educa-
tional value of the project, as many of the participants were students and graduate
students. The ability to clearly and concisely present the results determines how valu-
able the participants’ contribution will be to the scientific community. At this point,
participants could receive additional points for the thoughtfulness of the solution and
a competent methodology for selecting parameters and hyperparameters of the model.
The Jupyter notebook should have had: (1) a selection of hyperparameters (more than
10 options were considered) or the number of layers of the neural network (more than
three options were considered); (2) a selection of neural network architectures or a
selection of machine learning models, additional comments describing each of the
blocks; (3) the ease of perception of the laptop and convenient launch. If the laptop
could not be started from start to finish, 0 points were given for the work. Each item
on the Jupyter notebook was worth 1 point (the maximum number of points for a
notebook was 3 points). The presentation had to include: (1) a detailed description of
the data collection process, selection of and/or the search for models and descriptors,
and the results obtained; (2) the provision of complete information about all models,
benchmarks used and the sources, (3) the clarity, adequacy, and consistency of the
information presented, free of factual errors. For the presence of factual errors, 0
points were given for the presentation. Each presentation point was worth 1 point
(the maximum number of points for a presentation was 3 points).

8. Diversity of the dataset. Models benefitting from a broad chemical space were
awarded a point, contingent on the demonstration of the dataset’s diversity, spanning
multiple chemical classes.

9. Uniqueness of the space of toxicity indicators. An additional dimension of the eval-
uation lay in the variation of predicted rates amongst the participants. A point was
awarded for the inclusion of unique toxicity endpoints that were absent in other
submissions and directly pertinent to molecular toxicity.

10. Interpretability of the model and descriptors used. The capacity for the models to elu-
cidate the toxic effects of molecules, offering insights into the underlying mechanisms,
was rewarded with an additional point, accentuating the importance of the model’s
interpretability in the context of scientific discovery.

The formula for calculating points was

Score =
a6

∑
n=1

A1n A2n A3n(a3n + a4n + a5n + a8n + a10n) + a7 + a′7 + a9

where Score is the overall score of the team, A1n is the quality coefficient of the dataset
used to build the model, A2n is the quality coefficient of the model, A3n is the coefficient
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accounting for the length of the dataset, a3n is the score for the uniqueness of the sample,
a4n is the score for the difficulty of obtaining data, a5n is the score for the number of sources,
a6 is the number of predicted indicators, a7 is the score for the Jupyter notebook, a′7 is
the score for the presentation, a8n is the score for the diversity of the dataset, a9 is the
score for the uniqueness of the space of the toxicity indicators, and a10n is the score for the
interpretability of the model and descriptors used. The score was calculated under the
condition that all the required files were downloaded and there was at least one value of
A1n ̸= 0. If at least one of the conditions was violated, then the work of the entire team was
assigned 0 points.

4.3. Model Preparation

Following the systematic examination of the participants’ solutions, with a spotlight
on those of the victors, we elected to prioritize the use of molecular fingerprints and
CatBoost with hyperparameter optimization (see S1 in the Supporting Information) via
Optuna, and molecular fragments and XGBoost optimized through Grid Search CV as
the principal machine learning algorithms. This selection was part of a strategic initiative
to develop a refined toxicity prediction model for integration into Syntelly. We used de-
scriptors based on molecular fragments as features with their own implementation, since
they are most similar to fingerprints but can be more customized for the toxicity task. It is
known that toxicity is often caused by the presence of some functional groups or fragments
which subsequently have a negative biological effect due to the metabolism of the frag-
ment or the interaction of the functional group with biomolecules (for example, proteins)
[96–98]. We collected all the datasets that were presented at the hackathon and aggregated
them. The primary aggregation of data for binary classification was carried out as follows:
(1) if the activities of molecules from different sources did not match, such samples were
excluded from the general database; (2) if the activities of a molecule from different sources
coincided, the duplicate record was deleted. The initial aggregation of data for a regression
problem was slightly different due to the fact that records for chemical compounds may be
duplicated in different databases, and when converting units (for example, between mg/kg
and mmol/kg), differences in the final values may occur. (1) All values for a structure for a
specific target for all sources were averaged. (2) Values for structure were first averaged
within data from one source, then averaged across sources. Finding duplicate SMILES was
first carried out by converting them into canonical form using the RDKit module, after
which, all compounds that did not contain a carbon atom or contain any element that
was not in the list of elements (N, I, As, O, B, Br, F, P, Se, S, C, Cl, and Si) were removed,
as they were considered outliers. Next, we filtered out rare fragments based on a (0,1)
matrix of the occurrence of a fragment in a molecule; those fragments in which the fre-
quency of fragment’s occurrence was less than 1% were removed. Next, with the remaining
fragments, a matrix of the quantitative occurrence of the fragment in the molecule was
constructed. Fragments with a total number of occurrences below 2.5% were discarded.
We also eliminated fragments that had a high Pearson correlation (r > 0.85) based on their
location in the structure. The final features in the form of the number of fragments present
in the molecule were used to build a machine learning model. We also selected additional
features from the following list from the RDKit library if the frequency of non-zero feature
values was greater than or equal to 2.5%: the occurrence of elements in the molecule, the
number of non-hydrogen atoms, the number of bonds of each type (single, double, triple,
and aromatic), the number of valence electrons, the number of rotational bonds, TPSA, logP,
LabuteASA, Kappa1, Kappa2, Kappa3, SlogPVSA, and SMRVSA EStateVSA (Table S2).

5. Conclusions

This study underscored the utilization of gradient boosting and data aggregation as
pivotal components in enhancing the efficiency of predictive models. The integration of an
expansive dataset, enriched by the contributions garnered during the hackathon, facilitates
a nuanced understanding of the intricate dynamics underpinning toxicological predictions.



Molecules 2024, 29, 1826 14 of 17

Structural fragments or functional groups, often implicated in manifestations of toxicity,
were emphasized as critical features that augment the predictive precision of models.

The hackathon served as an instrumental platform for the amalgamation of data,
yielding a diversified and voluminous dataset that enhanced the breadth of the chemical
space explored. Such expansiveness in data is imperative to circumvent the limitations
associated with narrowly defined applicability domains, addressing a prevailing challenge
where QSAR models could potentially be rendered ineffective due to constrained coverage
of chemical space. In this context, the hackathon emerged as an effective mechanism for
gathering data and solutions, contributing to the enhancement of the models’ robustness
and applicability in predictive toxicology.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/molecules29081826/s1. S1. Hyperparameter optimization.
Table S1. Division into groups of features that were used by participants during the hackathon. Table S2. Ab-
breviations for the molecular descriptors. References [99–102] are cited in the Supplementary Materials.
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