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Abstract: In the context of peptide drug development, glycosylation plays a pivotal role. Accordingly,
L-type peptides were synthesized predicated upon the PD-1/PD-L1 blocker DPPA-1. Subsequent
glycosylation resulted in the production of two distinct glycopeptides, D-glu-LPPA-1 and D-gal-
LPPA-1, by using D-glucose (D-glu) and D-galactose (D-gal), respectively, during glycosylation. Both
glycopeptides significantly inhibited the interaction between PD-1 and PD-L1, and the measured half
maximal inhibitory concentrations (IC50s) were 75.5 µM and 101.9 µM for D-glu-LPPA-1 and D-gal-
LPPA-1, respectively. Furthermore, D-gal-LPPA-1 displayed a pronounced ability to restore T-cell
functionality. In an MC38 tumor-bearing mouse model, D-gal-LPPA-1 demonstrated a significant
inhibitory effect. Notably, D-gal-LPPA-1 substantially augmented the abundance and functionality of
CD8+ T cells in the tumor microenvironment. Additionally, in the lymph nodes and spleens, D-gal-
LPPA-1 significantly increased the proportion of CD8+ T cells secreting interferon-gamma (IFN-γ).
These strong findings position D-gal-LPPA-1 as a potent enhancer of the antitumor immune response
in MC38 tumor-bearing mice, underscoring its potential as a formidable PD-1/PD-L1 blocking agent.

Keywords: cancer immunotherapy; immune checkpoint; PD-1/PD-L1; peptide; glycosylation

1. Introduction

Glycosylation is a posttranslational modification within the proteomic landscape of
living organisms and constitutes a foundational aspect of biological processes [1,2]. Ap-
proximately half of the identified proteins are characterized as glycoproteins, revealing a
spectrum of types, properties, and functions [3,4]. This diversity is underscored by the piv-
otal roles played by glycoproteins in an array of physiological and pathological phenomena,
including cell adhesion and recognition, tissue differentiation and development, immune
regulation, tumor metastasis, inflammation, and pathogen infection [1,5]. The intricate
sugar side chains of glycoproteins can modulate the conformation and physicochemical
properties of proteins, thereby exerting profound influences on their biological activities [6].
The consequential importance of these activities has garnered substantial interest in the
exploration of glycoproteins.
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However, the inherent microheterogeneity of glycoproteins is characterized by the
presence of various glycosylation products within a given protein sequence. However,
because of their limited abundance in living organisms, isolating individual glycoproteins
for detailed structural characterization and activity studies is a formidable challenge [7]. In
contrast, glycopeptides, while exhibiting less structural complexity and lower molecular
weights than glycoproteins, effectively preserve the crucial carbohydrate–peptide linkage
region of glycoprotein cores [8,9]. Serving as invaluable models for the investigation of gly-
coproteins, glycopeptides also play pivotal roles in diverse physiological and pathological
functions within animals and plants, thereby elevating their prominence as a focal point
in peptide drug development research [10–12]. Beyond their utility as research models,
glycosylated peptides offer a compelling solution to the inherent weaknesses plaguing
conventional peptides, such as their proclivity toward poor chemical and physical stability.
These glycosylated counterparts effectively address concerns associated with the abbre-
viated half-life, instability, and susceptibility to degradation within the body, commonly
observed in ordinary peptides [13].

PD-1, a cell surface receptor expressed widely on immune cells such as, B cells, T cells,
regulatory T cells (Tregs), dendritic cells (DCs), natural killer cells (NKs), and macrophages
plays a crucial role in immune regulation [14–17]. Functioning as an intrinsic negative
regulator, PD-1 is involved in dampening antigen-specific T-cell responses, particularly
in conditions such as viral infections and cancer [18]. The primary ligand of PD-1 is
PD-L1, which is expressed on various immune-activating tissues or cells, such as bone
marrow-derived mast cells, dendritic cells, mesenchymal stem cells (MSCs), monocytes,
T lymphocytes, B lymphocytes, and various immune-privileged organs under normal
physiological circumstances [17,19]. Studies have revealed that PD-L1 upregulation on
tumor cells induces the expression of interferon-gamma (IFN-γ) [20]. The overexpression
of PD-L1 on tumor cells strategically aids in evading immune cell surveillance. The binding
of PD-L1 to the PD-1 receptor results in the inactivation of tumor-infiltrating lymphocytes
(TILs), leading to subsequent apoptosis of tumor-specific T cells [21]. Moreover, PD-L1
could be a selective therapeutic target for cancer treatment because of the low expression of
PD-L1 in normal human tissues.

Despite the success of monoclonal antibodies targeting the PD-1/PD-L1 signaling
pathway, exemplified by FDA-approved drugs such as nivolumab, pembrolizumab, and
tislelizumab [22], certain limitations persist, such as high immunogenicity, high production
costs, and restricted tumor tissue penetration. In addressing these challenges, an increasing
number of researchers are investigating the role of peptide drugs in the PD-1/PD-L1
signaling pathway [23–26]. Peptide drugs possess distinct advantages over antibody drugs,
such as the feasibility of oral administration, reduced manufacturing costs, and improved
penetration into tumor tissues [27,28]. An illustrative example is DPPA-1, a peptide drug
designed to selectively target PD-L1, disrupting the interaction between PD-1 and PD-L1.
In a CT26 xenograft mouse model, DPPA-1 demonstrated significant efficacy in inhibiting
tumor growth [29]. Another noteworthy contender macrocyclic peptide BMS-986189,
developed by Bristol Myers Squibb (Tokyo, Japan) is currently undergoing clinical trials [30].
This peptide further underscores the promising potential of PD-1/PD-L1-targeted peptide
drugs in the realm of antitumor therapy.

Peptide drugs play an important role in the development of PD-1/PD-L1 inhibitors.
Therefore, this study focused on DPPA-1. An analogous L-type peptide, denoted LPPA-1,
was subjected to glycosylations using D-glucose (D-glu) and D-galactose (D-gal), yielding
two glycopeptides, namely, D-glu-LPPA-1 and D-gal-LPPA-1. Subsequent functional inves-
tigations were carried out to assess the potential therapeutic effects of these compounds.

2. Results and Discussion

2.1. The Ability of D-glu-LPPA-1 and D-gal-LPPA-1 to Block PD-1/PD-L1 Interaction

The interaction between PD-1 and PD-L1 plays a pivotal role in suppressing T-cell
function [31], and disrupting this interaction has emerged as a viable therapeutic strategy
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in cancer treatment. Thus, we investigated the inhibitory potential of D-glu-LPPA-1 and
D-gal-LPPA-1 on the PD-1/PD-L1 interaction. To conduct the experiment, CHO-K1-hPD-1
cells were harvested at a density of 3 × 105 cells per sample. Peptides were solubilized to a
concentration of 200 µM and serially diluted before coincubation with 50 ng of the hPD-L1
protein for 30 min. The protein–peptide mixture was introduced into CHO-K1-hPD-1 cells,
which were then coincubated for an additional 30 min. The anti-Fc PE antibody was then
added and incubated for 30 min. Flow cytometry was used to evaluate the efficacy of the
peptides in blocking the hPD-1/hPD-L1 interaction. The results from the blocking assay
revealed that both D-glu-LPPA-1 and D-gal-LPPA-1 effectively impeded the binding of PD-1
to PD-L1, with calculated IC50 values of 75 µM (D-glu-LPPA-1) and 101 µM (D-gal-LPPA-1)
(Figure 1).
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Figure 1. The ability of D-glu-LPPA-1 and D-gal-LPPA-1 to block the PD-1/PD-L1 interaction.
(A) Flow cytometry results and the dose-dependent curve of D-glu-LPPA-1 in blocking the PD-1/PD-
L1 interaction determined by flow cytometry from 200 µM to 1.6 µM. (B) Flow cytometry results
and the dose-dependent curve of D-gal-LPPA-1 in blocking the PD-1/PD-L1 interaction determined
by flow cytometry from 200 µM to 1.6 µM. The data are shown as the means ± SEMs from three
independent biological triplicates.

2.2. Molecular Docking Studies of D-glu-LPPA-1 and D-gal-LPPA-1 to PD-1/PD-L1

In order to intuitively analyze the binding mode of the designed glycopeptides to
PD-1/PD-L1, we selected D-glu-LPPA-1 and D-gal-LPPA-1 as model compounds (Figure 1).
The results indicate that D-glu-LPPA-1 can interact with Asp26, Leu27, Asp122, Tyr123,
Lys124, and Arg125, among which Asp122, Tyr123, Lys124, and Arg125 are crucial binding
sites of PD-L1 protein with PD-1 protein (Figure 2A). D-gal-LPPA-1 can interact with Gln66,
Tyr123, Arg113, and Asp61, among which Glu58, Gln66, and Tyr123 are crucial binding
sites of PD-L1 protein with PD-1 protein. Through molecular docking, we can intuitively
observe that the D-glu structure in D-glu-LPPA-1 can form hydrogen bonds with Asp122,
while the D-gal structure in D-gal-LPPA-1 can interact via hydrogen bonding with Gln66.
Therefore, we further demonstrate that D-glu-LPPA-1 and D-gal-LPPA-1 have the ability to
block the binding of PD-L1 protein and PD-1 protein (Figure 2B).

2.3. D-gal-LPPA-1 Enhanced IL-2 Secretion in a Jurkat Cell Coculture Assay

We further investigated whether the peptides D-glu-LPPA-1 and D-gal-LPPA-1 could
enhance the function of T cells. The peptides were cocultured with Jurkat (PHA and PMA
prestimulated) and CHO-K1-hPD-L1 cells, and OPBP-1 was used as a positive control. At
a concentration of 100 µM, the peptide D-gal-LPPA-1 stimulated the secretion of IL-2 by
CD45+ Jurkat T cells, which was greater than that stimulated by OPBP-1 (Figure 3).
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Figure 3. Flow cytometry and pooled data on IL-2 secretion in coculture experiments of Jurkat cells
stimulated with PHA or PMA and CHO-K1-hPD-L1 cells. (A) Representative flow cytometry of IL-2
secretion by Jurkat cells. (B) Statistical diagram of IL-2 secretion by Jurkat cells. The bars in the graph
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2.4. D-gal-LPPA-1 Exhibited High Binding Affinity for PD-L1

Subsequently, microscale thermophoresis (MST) experiments were conducted to assess
the affinity of D-gal-LPPA-1 for the PD-L1 protein. The MST results demonstrated that the
dissociation constant (KD) values of D-gal-LPPA-1 for mouse PD-L1 (mPD-L1) proteins and
human PD-L1 (hPD-L1) proteins were 0.0149 µM and 0.0470 µM, respectively (Figure 4).
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Figure 4. Dose-dependent binding curve of D-gal-LPPA-1 with PD-L1 determined by MST. Similar
results were observed in triplicate. (A) The concentration-response curve of D-gal-LPPA-1 with
hPD-L1. (B) The concentration-response curve of D-gal-LPPA-1 with mPD-L1. The data are presented
as the means ± SEMs. The bars indicate the standard error of the mean of triplicate samples.

2.5. D-gal-LPPA-1 Significantly Inhibited MC38 Tumor Growth In Vivo

An MC38 tumor-bearing mouse model was used to explore the antitumor effects of
the peptide D-gal-LPPA-1. The results demonstrated that intraperitoneal injection of the
peptide at doses of 1 mg/kg and 3 mg/kg significantly inhibited tumor volume and tumor
weight compared to those in the control group, with the 3 mg/kg dose exhibiting a more
potent antitumor effect. Additionally, no significant changes in body weight were observed
during the administration of the peptide (Figure 5).
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The peptide D-gal-LPPA-1 (1 mg/kg), D-gal-LPPA-1 (3 mg/kg), or negative control normal saline
(NS) was intraperitoneally injected into mice once daily for two weeks. (A) The tumor growth curves
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of MC38 tumors after tumor cell inoculation. (B) MC38 tumor weights. (C) Photos of tumors removed
from MC38 tumor-bearing mice after D-gal-LPPA-1 treatment. (D) Body weight of the mice. Inter-
group differences were statistically analyzed using the unpaired Student’s t-test. Data are presented
as means ± SEM. Statistical significance was considered when the p-value was less than 0.05, denoted
as * for p < 0.05, ** for p < 0.01, and *** for p < 0.001.

2.6. The Toxicity of D-gal-LPPA-1 In Vivo

Additionally, major organs were subjected to H&E staining. As shown in Figure 6,
after drug treatment, there was no apparent toxicity observed in the organs such as the
heart, liver, spleen, lung, or kidney, compared to that in the control group. These results
illustrate the safety of D-gal-LPPA-1 for cancer treatment.
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2.7. D-gal-LPPA-1 Significantly Enhances the Functionality of CD8+ T Cells

The in vitro experiments were also conducted to further analyze the antitumor mech-
anism of the peptide. The results revealed that D-gal-LPPA-1 significantly enhanced the
quantity of CD8+ T cells at the tumor site, as well as the proportion of CD8+ T cells se-
creting IFN-γ at the tumor site. Furthermore, D-gal-LPPA-1 significantly increased the
proportion of IFN-γ-secreting CD8+ T cells in the lymph nodes and spleen. These findings
suggested that D-gal-LPPA-1 effectively enhanced the antitumor immune response in MC38
tumor-bearing mice (Figure 7).
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Figure 7. D-gal-LPPA-1 significantly enhanced the functionality of CD8+ T cells in MC38 tumor-
bearing mice. (A) The proportion of CD8+ T cells that infiltrated the tumor. (B–D) The proportions
of IFNγ+CD8+ T cells detected by intracellular cytokine staining in cell suspensions from (B) tumor
tissues, (C) draining lymph nodes, and (D) spleens. (n = 5, mean ± SEM). n.s., not significant;
* p < 0.05; ** p < 0.01.

The D-glu-LPPA-1 and D-gal-LPPA-1 in this study exhibited robust inhibitory activity
against the interaction between PD-1 and PD-L1. In addition, D-gal-LPPA-1 significantly
improved the T-cell functionality and binding affinity. Through molecular docking, we can
intuitively observe that the D-glu structure in D-glu-LPPA-1 can form hydrogen bonds with
Asp122 of PD-1/PD-L1, while the D-gal structure in D-gal-LPPA-1 can interact via hydrogen
bonding with Gln66 of PD-1/PD-L1. Hence, the glycosylation of peptides through D-glu
and D-gal has emerged as a viable strategy for the development of PD-1/PD-L1 inhibitors.
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3. Materials and Methods
3.1. Solid-Phase Peptide Synthesis

The L-type peptide Asn-Tyr-Ser-Lys-Pro-Thr-Asp-Arg-Gln-Tyr-His-Phe (LPPA-1) was
synthesized by Fmoc solid-phase peptide synthesis. Subsequently, glycosylations were
independently performed to produce two glycopeptides: D-glu-LPPA-1, which was gly-
cosylated with D-glucose, and D-gal-LPPA-1, which was glycosylated with D-galactose.
Structural confirmation of the target compounds was performed through mass spectrometry
(MS). The two glycopeptides were synthesized in-BGI.

3.1.1. Preparation of Fmoc-Phe-CTC Resin
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3.1.5. Preparation of D-gal-Asn-Tyr-Ser-Lys-Pro-Thr-Asp-Arg-Gln-Tyr-His-Phe-CTC Resin

Following the methods described in Sections 3.1.1–3.1.3, sequentially couple Tyr, Gln,
Arg, Asp, Thr, Pro, Lys, Ser, Tyr, and D-gal-Asn onto the resin peptide chain to obtain
D-gal-Asn-Tyr-Ser-Lys-Pro-Thr-Asp-Arg-Gln-Tyr-His-Phe-CTC Resin.

3.1.6. Preparation of D-glu-Asn-Tyr-Ser-Lys-Pro-Thr-Asp-Arg-Gln-Tyr-His-Phe
(D-glu-LPPA-1, Figure 8A)

Add D-glu-Asn-Tyr-Ser-Lys-Pro-Thr-Asp-Arg-Gln-Tyr-His-Phe-CTC Resin to a mix-
ture of trifluoroacetic acid, triisopropylsilane, water, and dithiothreitol (in a volume ratio
of 90:5:2.5:2.5). Stir the reaction for 8 h, then add ether and continue stirring for 1 h. After
filtration, dissolve the peptide in a mixture of acetonitrile and water (in a volume ratio
of 1:1). Purify the peptide by reverse-phase high-performance liquid chromatography
(HPLC) to obtain D-glu-LPPA-1. The purity detected by HPLC is 98.29%. The results of
mass spectrometry (MS) are as follows: [M + 4H]4+: M = 430.5; [M + 3H]3+: M = 573.7;
[M + 2H]2+: M = 859.8.

3.1.7. Preparation of D-gal-Asn-Tyr-Ser-Lys-Pro-Thr-Asp-Arg-Gln-Tyr-His-Phe
(D-gal-LPPA-1, Figure 8B)

Add D-gal-Asn-Tyr-Ser-Lys-Pro-Thr-Asp-Arg-Gln-Tyr-His-Phe-CTC Resin to a mix-
ture of trifluoroacetic acid, triisopropylsilane, water, and dithiothreitol (in a volume ratio
of 90:5:2.5:2.5). Stir the reaction for 8 h, then add ether and continue stirring for 1 h. After
filtration, dissolve the peptide in a mixture of acetonitrile and water (in a volume ratio
of 1:1). Purify the peptide by reverse-phase high-performance liquid chromatography
(HPLC) to obtain D-gal-LPPA-1. The purity detected by HPLC is 100%. The results of
mass spectrometry (MS) are as follows: [M + 4H]4+: M = 430.5; [M + 3H]3+: M = 573.6;
[M + 2H]2+: M = 859.7.
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(B) The structure of D-gal-LPPA-1.

3.2. Chemicals and Reagents

Dimethylsulfoxide (DMSO) was obtained from Sigma-Aldrich (St. Louis, MI, USA).
Dulbecco’s modified Eagle medium (DMEM), RPMI 1640 medium, fetal bovine serum
(FBS), and penicillin/streptomycin were purchased from Gibco (Grand Island, NY, USA).
An Enhanced Cell Counting Kit-8 (CCK-8), a Calcein/PI Live/Dead Viability Assay Kit,
Giemsa dye and Reactive Oxygen Species (ROS) Assay Kit were obtained from Beyotime
Biotechnology (Shanghai, China). An Annexin V-FITC/Propidium iodide (PI) staining kit
and Matrigel matrix were obtained from BD Biosciences (Franklin Lake, NJ, USA). All of
the other chemicals used were of analytical grade.
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3.3. Cell Culture

The mouse colon carcinoma cell line MC38, the Chinese hamster ovary cell line CHO-
K1-hPD-L1, the CHO-K1-mPD-L1 line, and the human T lymphocytic leukemia Jurkat
cell line were maintained in RMPI 1640 (Corning, NY, USA). All the cells were cultured
in medium supplemented with 10% FBS (Biological Industries, Cromwell, CT, USA) and
100 U/mL penicillin/streptomycin (Solarbio, Beijing, China) in an incubator with 5% CO2
at 37 ◦C.

We conducted experiments employing CHO-K1-hPD-L1 and CHO-K1-mPD-L1 cells
previously constructed in the laboratory. The flow cytometry results indicated high ex-
pression of PD-L1 in both CHO-K1-hPD-L1 and CHO-K1-mPD-L1 cells. Subsequently, we
employed flow cytometry to assess the expression of PD-L1 in MC38 cells. The results
revealed a high level of PD-L1 expression in MC38 cells. Also, the heightened PD-L1
expression in MC38 cells has been substantiated in multiple studies [32–34]. Notably, our
experimental paradigm involved the stimulation of Jurkat cells with PHA and PMA, a
methodology documented in the literature, known to elicit PD-1 overexpression within
Jurkat cells [35].

3.4. Peptide Blocking Assay

In the preliminary investigation, CHO-K1-hPD-1 cells were subjected to co-incubation
with varying quantities of hPD-L1-Fc, specifically 200 ng, 100 ng, 50 ng, 25 ng, and 12.5 ng.
Analysis of fluorescence intensities via flow cytometry revealed that the mean fluorescence
intensity (MFI) value associated with the binding of 50 ng of hPD-L1-Fc to CHO-K1-
hPD-1 cells approached approximately 1000, indicative of optimal binding efficiency. For
subsequent multi-concentration blocking assays, peptides were prepared in concentration
gradients spanning 200 µM, 100 µM, 50 µM, 25 µM, 12.5 µM, and 6.25 µM. Peptides at
different concentrations were incubated with hPD-L1 (mPD-L1) protein (50 ng) on ice
for 30 min. Subsequently, the mixture was added to CHO-K1-hPD-1 or CHO-K1-mPD-1
cells and coincubated on ice for 30 min. Subsequently, an anti-Fc PE antibody was added,
and the mixture was incubated on ice for 30 min. The ability of the peptide to block the
PD-1/PD-L1 interaction was assessed using flow cytometry [36].

3.5. Binding Assay

The concentrations of hPD-L1-His and mPD-L1-His proteins were adjusted to 200 nM
and 800 nM, respectively, utilizing PBST as the diluent. Simultaneously, the concentration
of RED-NHS676 dye was diluted to 100 nM in PBST. Subsequently, protein and dye were
subjected to co-incubation at a volumetric ratio of 1:1 for a duration of 30 min, thereby
facilitating the generation of labeled proteins. To establish peptide gradients, a progressive
dilution was initiated from an initial concentration of 400 µM, eventually reaching 0.012 µM.
Following this preparation, a homogenous amalgamation comprising 5 µL of labeled
protein and 5 µL of small molecule diluent was extracted for further experimentation [36].
Subsequently, the samples were transferred to standard capillary tubes and analyzed by an
MST instrument (Nano Temper, Monolith NT.115, München, Germany).

3.6. Coculture Assay

In the coculture experiment, Jurkat cells were stimulated with 12-myristic ester-13-
acetate (PMA, 25 ng/mL) and phytohemagglutinin (PHA, 1 µg/mL) and cocultured with
CHO-K1-hPD-L1 cells. Then, the cells were treated with 100 µM D-gal-LPPA-1 for 4 h. Then,
1 µL of protein transport inhibitor was added, and the coculture was incubated for 48 h.
The cells were subsequently collected and incubated on ice for 30 min upon the addition of
an anti-human CD45 FITC antibody. The cells were then fixed with 4% paraformaldehyde
and incubated with anti-human-IL-2-APC (MQ1-17H12; eBioscience, San Diego, CA, USA)
for 30 min. Flow cytometry was used for detection and analysis [37].
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3.7. In Vivo Antitumor Experiment

Animal experiments were approved by the Zhengzhou University Ethics Committee.
MC38 cells (1 × 106) were subcutaneously inoculated into C57BL/N mice. The MC38
tumor-bearing mice were randomly allocated to three groupsn (n = 5 per group): a control
group (NS, normal saline containing 1% DMSO); a D-gal-LPPA-1 peptide group (1 mg/kg);
and a D-gal-LPPA-1 peptide group (3 mg/kg). Daily intraperitoneal injections of the
peptide were initiated when the tumor volume reached 50–90 mm3. The tumor dimensions,
including length, width, and height, were measured, and tumor volume was calculated
using the following formula:

V = 1/2 × A (length) × B (width) × C (height).

One day after the completion of administration, the mice were humanely sacrificed,
and the tumor tissue, lymph nodes, and spleen were collected for subsequent experimental
procedures [38].

Tumor cells, spleen cells, and lymph node cells were isolated from the tumor-bearing
mice, and a single-cell suspension was prepared. The cells were plated and stimulated with
20 ng/mL 12-myristic ester-13-acetate (PMA; Sigma, Livonia, MI, USA) and 1 µM iono-
mycin (Sigma). During the plating process, protein transport inhibitors were added. After
4 h, the cells were collected for antibody staining. The relevant antibodies used included
anti-mouse CD3 PerCP-eFluor710 (17A2, eBioscience), anti-mouse CD8α eFluor450 (53–6.7,
eBioscience), and anti-CD45-FITC (30-F11). Following antibody incubation, staining was
carried out using the intracellular marker anti-mouse IFN-γ APC (XMG1.2, eBioscience) or
isotype control antibodies.

3.8. H&E Staining Analysis

Tumor tissue and heart, liver, spleen, lung, and kidney tissues were isolated from MC38
tumor-bearing mice and fixed in 4.0% paraformaldehyde. The samples were subsequently
embedded in paraffin and subjected to hematoxylin and eosin staining. The results were
analyzed using ImageJ1 software (NIH, Bethesda, MD, USA).

3.9. Statistical Analyses

The data were statistically analyzed using Graph Prism 7.0. A two-tailed Student’s
t test or one-way analysis of variance followed by the Student–Newman–Keuls (SNK) test
was used to assess significant differences. A p value < 0.05 was considered to indicate
statistical significance. * p < 0.05, ** p < 0.01, and *** p < 0.001 based on the SNK test.

4. Conclusions

Based on the structure of the PD-1/PD-L1 peptide inhibitor DPPA-1, the present
study introduced the novel L-type peptide LPPA-1. Subsequent glycosylations with D-
glucose (D-glu) and D-galactose (D-gal) resulted in two glycopeptides: D-glu-LPPA-1 and
D-gal-LPPA-1. The inhibitory efficacy of these compounds against PD-1 and PD-L1 was
evaluated, revealing IC50 values of 75.5 µM and 101.9 µM for D-glu-LPPA-1 and D-gal-
LPPA-1, respectively. Notably, D-gal-LPPA-1 exhibited significant potency in restoring T-cell
functionality. In a murine model of MC38 tumors, D-gal-LPPA-1 demonstrated substantial
suppression of tumor progression. Moreover, D-gal-LPPA-1 elicited a pronounced increase
in the population of CD8+ T cells within the local tumor environment, coupled with an
increase in the proportion of CD8+ T cells secreting IFN-γ. Furthermore, D-gal-LPPA-1
markedly elevated the percentage of CD8+ T cells secreting IFN-γ in the lymph nodes and
spleen. These results collectively indicated that D-gal-LPPA-1 profoundly enhanced the
antitumor immune response in MC38 tumor-bearing mice.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules29081898/s1. The mass spectrometry data of D-glu-LPPA-1 and
D-gal-LPPA-1.

https://www.mdpi.com/article/10.3390/molecules29081898/s1
https://www.mdpi.com/article/10.3390/molecules29081898/s1
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