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Abstract: The incorporation of reinforcing fillers into natural rubber latex (NR) to achieve
superior elasticity and mechanical properties has been widely applied across various
fields. However, the tendency of reinforcing fillers to agglomerate within NR limits their
potential applications. In this study, multi-walled carbon nanotube (MWCNT)–silica
(SiO2)/NR composites were prepared using a solution blending method, aiming to enhance
the performance of NR composites through the synergistic effects of dual-component
fillers. The mechanical properties, dispersion behavior, and Payne effect of three types of
composites—SiO2/NR (SNR), MWCNT/NR (MNR), and MWCNT-SiO2/NR (MSNR)—
were investigated. In addition, the mean square displacement (MSD), fractional free
volume (FFV), and binding energy of the three composites were simulated using molecular
dynamics (MD) models. The results showed that the addition of a two-component filler
increased the tensile strength, elongation at break, and Young’s modulus of NR composites
by 56.4%, 72.41%, and 34.44%, respectively. The Payne effect of MSNR was reduced by
4.5% compared to MNR and SNR. In addition, the MD simulation results showed that
the MSD and FFV of MSNR were reduced by 21% and 17.44%, respectively, and the
binding energy was increased by 69 times, which was in agreement with the experimental
results. The underlying mechanisms between the dual-component fillers were elucidated
through dynamic mechanical analysis (DMA), a rubber process analyzer (RPA), and field
emission scanning electron microscopy (SEM). This study provides an effective reference
for broadening the application fields of NR.

Keywords: natural rubber latex; multi-walled carbon nanotubes; silica; dispersion behavior;
mechanical properties; molecular dynamics simulation

1. Introduction
Natural rubber latex plays an important role in the global economy, with more than

13 million tons of natural rubber latex produced globally each year to meet the needs of
a wide range of industries, particularly the transportation, medical, and manufacturing
sectors. Natural rubber latex (NR) is widely used in tires, industrial products, and essential
daily products due to its excellent comprehensive properties [1–5]. However, the inherent
properties of pure NR are limited, restricting its broader application. Fillers, as an important
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component of rubber composites, play a critical role in enhancing the performance of
rubber composites. Reinforcing fillers such as carbon black (CB) [6–9], carbon nanotubes
(CNTs) [10,11], and silica (SiO2) [12–14] are commonly used in NR. However, integrating
separate reinforcing fillers into natural rubber latex, while significantly enhancing certain
properties, is a high-cost process that suffers from processing difficulties and leads to
poor dispersion and increased brittleness [15], seriously affecting the practical application
of natural rubber latex composites. Thus, there is a need to improve the dispersion of
reinforcing fillers in matrices to expand the application scope of natural rubber latex to
applications such as high-performance materials, conductive rubber, electronic packaging,
and high-temperature and aging applications.

To address the above-mentioned issues, researchers have focused on modifying re-
inforcing fillers to enhance their dispersion in the matrix. For instance, You et al. [16]
used a silane coupling agent (Si-69) to perform a hydrophobic modification of SiO2. The
organic groups of Si-69 improved the interfacial compatibility between SiO2 and rubber,
increasing the affinity between the two and reducing the aggregation and agglomeration
of SiO2 particles. This improved its dispersion within NR and enhanced the mechanical
properties of NR. Zhou et al. [17] utilized ionic liquids (ILs) and 1-ethyl-3-methylimidazole
acetate to introduce carbon black (CB) homogeneously into NR to optimize its structure
and properties, resulting in a reduced mutual attraction between particles, an increased
interfacial compatibility, and improved rheological properties. Xun et al. [18] oxidized
CNTs using potassium ferrate (K2FeO4), increasing the number of surface hydroxyl groups,
which allowed for CNTs to be uniformly dispersed in NR and, thereby, enhanced the
performance of NR composites. However, the above-mentioned modification processes are
complex, are inefficient, and involve the use of large amounts of chemical reagents, which
contribute to environmental pollution.

The method of using dual-component fillers to enhance polymer composites has
been widely applied in various studies. For instance, Mohd Khairuddin et al. [19] used a
combination of SiO2 and calcium carbonate (CaCO3) to generate micro-roughness, thereby
improving the dispersion of SiO2 within the NR matrix and enhancing the hydrophobicity
of NR composites. Shahamatifard et al. [20] combined carbon black (CB) with multi-walled
carbon nanotubes (MWCNTs) to study the dispersion, mechanical properties, and thermal
conductivity of CB and MWCNTs within NR, showing that both the thermal conductivity
and mechanical properties of the composites were improved. Sun et al. [21] synthesized
low-cost crude carbon dots (CDDs) mixed with SiO2 via an industry-compatible melt
blending method to improve the vulcanization rate and mechanical properties of NR.
However, these studies all require specialized equipment, and the preparation processes
are complex, making practical engineering applications challenging. Meanwhile, there is
a lack of relevant computational simulations in the above studies—they mainly focus on
experimental work. Therefore, it is of great significance to design NR composites with a
simple preparation process and good dispersion using a combination of experiments and
computational simulations.

Molecular dynamics (MD) simulations have become an effective computational tool
for studying the physical behavior and molecular interactions of materials at the atomic
scale. They can complement experimental research and provide a strong theoretical basis
for studies. MD simulations have proven to be suitable for investigating polymer material
properties, including their binding energies and intermolecular interaction forces [22–27].
The application of molecular dynamics simulations in filler dispersion studies is very
important because they provide a deep understanding of the interaction between the
filler and the matrix and reveal the dynamic processes of distribution, aggregation, and
movement of the filler at the molecular level. Therefore, a comprehensive study combining
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experimental methods and MD simulations is necessary to evaluate the applicability of NR
enhanced with dual-component fillers.

MWCNTs have a very high surface area and excellent electrical conductivity, leading
to excellent interfacial bonding with SiO2. Due to the strong van der Waals forces and
π-π interactions, carbon nanotubes can effectively promote the dispersion of the fillers
and form strong and effective contacts with the SiO2 surface, which enhances the stability
and homogeneous distribution of the fillers in the matrix. Compared with single fillers or
other traditional two-component fillers (e.g., the combination of carbon black and SiO2),
the composite system of MWCNTs and SiO2 is capable of achieving a more homogeneous
dispersion and reducing aggregation phenomena at the microscopic scale. In this study,
SiO2 and MWCNTs were used as reinforcing fillers, with NR as the matrix. The aim was
to enhance the interfacial bonding between the NR matrix and the fillers by employing
dual-component fillers to reinforce the NR composites and to improve the dispersion of
these reinforcing fillers. NR composites with excellent mechanical properties and dis-
persion abilities were prepared using a solution blending method. The dispersion of the
dual-component fillers within the NR was analyzed through dynamic mechanical analysis
(DMA), rubber process analysis (RPA), and field emission scanning electron microscopy
(SEM). Moreover, MD simulations further verified the consistency between the experimen-
tal results and molecular dynamics modeling. This research enables the combination of
MWCNTs and SiO2 with potential for applications in high-performance tires, electronics,
and high-temperature and chemical-resistant sealants.

2. Results
2.1. Mechanical Properties

Good mechanical properties are crucial for practical applications. Figure 1a shows
the stress–strain curves of the four composites, all of which exhibit a linear growth trend.
Among them, MSNR shows the most pronounced growth curve, indicating increased
stiffness when dual-component fillers are added. Figure 1b presents the tensile strength,
elongation at break, and Young’s modulus of the four composites. It is evident that MSNR
has the highest tensile strength, which is attributed to the synergistic effect between the
MWCNTs and SiO2 that reduces filler agglomeration in the NR matrix, allowing for the
fillers to be better dispersed. Upon stretching, dispersing stress is generated, resulting
in MSNR having an excellent tensile strength. In addition, MSNR exhibits the highest
elongation at break, indicating that this material can withstand higher stress concentrations
without failure. Furthermore, the Young’s modulus of MSNR was increased by 28.74%,
3.35%, and 3.54% compared to NNR, SNR, and MNR, respectively, demonstrating that
MSNR has a good resistance to deformation. Specific mechanical properties are shown in
Table S2, and compared with other studies on the mechanical properties of natural rubber
latex, the reinforcement effect of the two-component filler is better [2,5,7,16–18].

Figure 1c–f show the cyclic stress–strain curves of NNR, SNR, MNR, and MSNR. It
can be observed that for all four composites, the area enclosed by the curves decreases
with an increasing number of cycles, eventually converging. This is due to the viscoelastic
nature of rubber materials, where deformation increases with strain, and upon unloading,
the rubber cannot fully return to its original state, resulting in residual deformation [28].

Stress–strain cycling curves were used to evaluate energy loss in composites. A larger
hysteresis area indicates a higher energy loss in the material, which is due to the friction
generated between the filler and the NR molecular chains when strain occurs [29]. The
initial stress–strain cycling curves of the extracted NNR, SNR, MNR, and MSNR are shown
in Figure S1a–d. It can be seen that the hysteresis area of MSNR is the largest, and the
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energy loss within MSNR is large enough to effectively absorb and consume the externally
applied energy, thus effectively reducing the propagation of vibrations and impact energy.
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2.2. Rheological Properties

DMA provides insight into the mechanical response of rubber materials under various
operating conditions, especially under dynamic loading. Rubber composites are commonly
used in applications such as automotive tires, shock absorbers, and seals, where the
materials are subjected to complex loading conditions. DMA is an important tool for
studying the properties of materials under these complex conditions. Figure 2a shows
the storage modulus of NNR, SNR, MNR, and MSNR at different temperatures. It is
evident that the storage modulus of MSNR is higher than that of NNR, SNR, and MNR,
indicating that the dual-component fillers improved the dispersion of the fillers within
the NR matrix, enhancing the internal cohesion and interfacial bonding capabilities of
NR. This contributes to extending the service life of NR and reducing deformation-related
damage during use. Figure 2b presents the loss modulus of the four composites. Compared
to NNR, SNR, and MNR, MSNR exhibits a higher loss modulus, indicating better filler
dispersion and enhanced interfacial interactions within the NR matrix. Figure 2c illustrates
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the loss factor of the four composites, with MSNR showing the lowest loss factor, suggesting
that the dual-component fillers enable efficient energy storage and recovery within the
NR matrix, resulting in better elastic behavior under dynamic deformation. This also
indicates that it maintains good elasticity at low temperatures, thus preventing material
embrittlement and making it suitable for low-temperature environments. MSNR has
good energy absorption and vibration damping properties, demonstrating that it has a
good resistance to deformation. Specific DMA properties are shown in Table S3. Tg1,
Tg2, Tg3, and Tg4 represent the glass transition temperatures of NNR, MNR, SNR, and
MSNR, respectively. It is evident that Tg4 shifts significantly to the right, which is due
to the introduction of dual-component fillers that reduce the mobility of NR, restrict the
free movement of NR chains, and lead to stronger interfacial bonding [30,31]. Specific
rheological property ratios are shown in Table S2.
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The dispersion performance of MNR and MSNR was evaluated using a rubber process
analyzer (RPA). Figure 3a shows the storage modulus of the three composites under strain.
It is evident that all three composites exhibit a decreasing curve as strain increases, which
is due to the destruction of the internal crosslinked network structure of the composites—
a phenomenon known as the Payne effect [32]. The Payne effect is a significant non-
linear change in the modulus of elasticity of a rubber or other polymer-based composite
materials when a load is applied. This phenomenon is particularly evident in rubber
matrix composites and is often used to describe the effect of the dispersion state of the filler
on the properties of the material. In the case of tires, the Payne effect has an important
influence on the nonlinear properties exhibited by the material under load. The nonlinear
stiffness of the material can affect the traction, fuel efficiency, and wear behavior of the
tire. A lower Payne effect indicates that the filler is more uniformly dispersed in the rubber
matrix, forming fewer aggregates or agglomerated structures. This is due to the lower
interaction force between filler particles, which avoids the localized increase in stiffness
due to aggregation, thus reducing the dynamic modulus of the composite. The value of
∆G’ = G’ (10.47%) − G’ (95.35%) was used as a standard to evaluate dispersion, where
∆G’ represents the difference in G’ between a 10.47% strain and 95.35% strain. A larger
∆G’ value indicates more severe filler agglomeration in the matrix [32]. The calculated ∆G’
values for MNR, SNR, and MSNR are 417.27, 320.87, and 269.56, respectively, indicating
that the dual-component fillers in MSNR are more uniformly dispersed in the NR matrix.
Furthermore, Figure 3b shows the loss factor of MNR, SNR, and MSNR under strain. It
can be observed that the loss factor of MSNR is lower than that of MNR and SNR, which is
due to the complementary effect of the dual-component fillers within the matrix during
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deformation, improving the dispersion of MWCNTs in NR and optimizing the crosslinked
network of NR.
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2.3. Analysis of Interfacial Interaction Using the Lorenz–Park Method

The interfacial interactions between the filler and matrix were evaluated using the
equations proposed by Lorenz and Park. Figure 4a shows the plot of Qf/Qg as a function of
e−Z using the NNR, MNR, SNR, and MSNR composite specimens. The values of parameters
a and b are constants of the equation with values of 1.88 and 0.33, respectively, giving a
correlation coefficient (R) of 0.92. According to the observation of Lorentz and Park, a
constant value higher than 0.7 indicates a strong interaction between the MWCNTs and
SiO2 filler and the NR matrix [33]. In Figure 4b, the decrease in Qf/Qg values with the
introduction of MWCNTs and SiO2 is evident, confirming the effective interaction between
the rubber matrix and filler.
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2.4. Microscopic Morphology

The dispersion of fillers within the NR matrix is crucial. Figure 5a shows the SEM
image of MNR, where it is evident that MWCNTs are entangled within the NR matrix,
hindering the uniform dispersion of the filler within the matrix and leading to severe
agglomeration. Figure 5b shows the SEM image of SNR. Compared to MNR, the SiO2 in
SNR is more uniformly dispersed, though some minor agglomerates are still present. In
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contrast, Figure 5c shows the SEM image of MSNR, where uniform dispersion within the
NR matrix is observed. This is attributed to the high adsorption energy of the SiO2 surface,
which leads to the attachment of MWCNTs to SiO2 and results in a synergistic effect that
enhances the overall performance of NR. This synergy is also a key factor contributing to
the excellent mechanical properties of MSNR.
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2.5. Molecular Dynamics
2.5.1. Mean Square Displacement (MSD, Section S2.1)

The mean square displacement (MSD) of polymer composites is used to represent
the trends in the molecular chain motion in a system, defined as the distance between the
positions of particles at time t and their initial positions [34]. It is typically calculated using
the formula:

MSD = < |r(t)− r(0)|2 > (1)

where r(0) and r(t) represent the position vectors of atoms at the initial time and time t,
respectively, and <> denotes the average overall atoms in the system. Figure 6a shows the
MSD of the four composites, indicating that MSNR has the lowest MSD, which suggests
that the dual-component fillers aid in dispersion within the NR matrix and improve the
strength of NR composites. Moreover, a lower MSD indicates a more restricted molecular
chain movement, demonstrating that the dual-component fillers exhibit better interfacial
bonding capabilities with the NR matrix [35].
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2.5.2. Fractional Free Volume (FFV, Section S2.2)

Figure 6b shows the fractional free volume (FFV) of the four composites. This param-
eter reflects the size and mobility of the free space available for molecular chains within
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polymer composites, which subsequently affects material performance [36]. The FFV is
calculated using the following formula:

FFV =
VFree
VTotal

× 100% (2)

where VFree and VTotal are the free and total volumes of the model system, respectively. The
FFV calculation models for the four composites are shown in Figure S2. The calculated FFV
values exhibit a decreasing trend, with MSNR having the lowest FFV, indicating that the
dual-component fillers reduce the free movement space of NR molecular chains, strengthen
intermolecular interactions between the fillers, and more effectively restrict the movement
of NR chains. This leads to NR composites having improved interfacial bonding and an
enhanced strength.

2.5.3. Binding Energy (Section S2.3)

The binding energy is used to characterize the strength of interactions between sub-
stances. It is calculated using the formula:

Eint = EA+B − (EA + EB) (3)

where Eint is the total interaction energy and EA and EB are the energies of individual
components. When Eint < 0, the interaction between materials is stronger [37]. Figure 6c
shows the binding energy of MNR, SNR, and MSNR composites. The results indicate that
MSNR exhibits the highest negative binding energy, suggesting improved interactions
between the fillers and the polymer, leading to better dispersion within the NR matrix [37].

The results of the experimental data show that MSNR has significant advantages over
other composites in terms of mechanical properties, energy storage modulus, loss modulus,
and dispersion of filler in a rubber matrix. Furthermore, by comparing the molecular
dynamics simulations, the volume fraction (FFV) and mean square displacement (MSD) of
MSNR reached the minimum values, and the binding energy showed the maximum; these
results demonstrate the strong interaction and high binding efficiency of MWCNT and
SiO2 with the rubber matrix at the microscopic scale. This agreement between experimental
and simulation results not only proves the reliability of the simulation method, but also
highlights the remarkable potential of MWCNT and SiO2 bicomponent fillers to enhance
the properties of natural rubber, which provides an important theoretical and experimental
basis for the design and development of high-performance rubber matrix composites.

3. Materials and Methods
3.1. Materials

Polymers: natural rubber latex (NRL, with a solid content of 60%) was purchased from
Zhengmao Petrochemical Co., Ltd., Maoming, Guangdong, China. Fillers: multi-walled
carbon nanotubes (MWCNTs, length: 10–20 mm, diameter: 4–6 nm, specific surface area:
500–700 m2/g, purity > 98%) were obtained from Chengdu Organic Chemicals Co., Ltd.,
Chengdu, China. Silica (SiO2, particle size: 50 ± 5 nm) was purchased from Shanghai
Macklin Biochemical Co., Ltd., Shanghai, China. Additives: other reagents, including sulfur
powder (S), zinc oxide (ZnO), stearic acid (SA), N-isopropyl-N′-phenyl-p-phenylenediamine
(4010NA), N-tert-butyl-2-benzothiazolesulfenamide (NS), and tetrahydrofuran (THF), were
obtained from Kunming Kerei Instruments Co., Ltd., Kunming, China.
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3.2. Sample Preparation

In this study, NR composites were prepared using a solution blending method. First,
NR, MWCNTs, and SiO2 were separately ultrasonically stirred in THF for 2 h; the rotational
speed of the mixer and the ultrasonic power of the ultrasonic cleaner were 400 Rpm
and 100 Hz, respectively. Subsequently, the materials required for vulcanization (S, ZnO,
SA, NS, 4010NA) were added, and the mixture was heated to 50 ◦C to remove most
of the solvent and vacuum-dried in an oven at 60 ◦C to remove all of the solvent to
obtain an uncured MWCNT-SiO2/NR composite. Finally, the uncured MWCNT-SiO2/NR
composites were vulcanized at a temperature of 150 ◦C and a pressure of 15 MPa for 15 min.
The experimental formulation consisted of 4 g of NR, 0.08 g MWCNT, 0.2 g SiO2, 0.12 g
sulfur (S), 0.2 g zinc oxide (ZnO), 0.08 g stearic acid (SA), 0.08 g N-isopropyl-N′-phenyl-
p-phenylenediamine (4010NA), and 0.06 g N-tert-butyl-2-benzothiazolesulfenamide (NS).
Pure NR was designated as NNR, SiO2/NR composites as SNR, MWCNT/NR composites
as MNR, and MWCNT-SiO2/NR composites as MSNR. The experimental procedure is
illustrated in detail in Figure 7. Experiment-specific formulations are presented in Table S4.
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3.3. Characterization Method
3.3.1. Mechanical Property Tests

The mechanical properties of the four samples were tested using a universal testing
machine (WDW-10, Changchun Institute of Testing Machines, Changchun, China); knowing
these properties is essential for materials used in practical applications. The experimental
conditions were as follows: room temperature, rate: 200 mm/min−1, size: 40 × 10 × 1 mm.
The motion of the molecular chains of the composites was investigated using a dynamic
mechanical analyzer (DMA, TAQ800, TA Instruments, New Castle, DE, USA) to characterize
the confined regions formed within the composites. The test temperature range and
frequency were −140–50 ◦C and 1 Hz, respectively.

3.3.2. Dispersion Performance Test

The Payne effect of the composites and the dispersion of fillers in the NR matrix
were studied using a rubber processing analyzer (RPA, Premier RPA, Premier Control
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Technologies, Manchester, UK) with a strain range of 10–100% and a frequency of 1 Hz. A
field emission scanning electron microscope (FE-SEM, NOVA Nano SEM450, Hillsboro,
OR, USA) was used to characterize the morphology of the MWCNT/NR composites under
an accelerating voltage of 10 kV. The samples were frozen in liquid nitrogen for 5 min, and
then an external force was applied to fracture the samples to obtain a new fracture surface.
The fracture specimen was sprayed with platinum to increase its conductivity and obtain
higher-quality FE-SEM images.

3.3.3. Analysis of the Interfacial Interaction Between the MWCNTs and the Matrix (Via the
Lorenz–Park Method)

Analysis of the Interfacial Interaction between the MWCNTs, SiO2, and the NR Matrix
(via the Lorenz–Park Method).

The Lorenz–Park method was used to evaluate the interaction between MWCNTs,
SiO2, and NR [38]. Based on swelling tests conducted in a solvent, the appropriate parame-
ters were determined, and the interaction was calculated using Equation (2) [33]:

Q f
Qg

= ae−z + b (4)

Assume Q is the mass of toluene absorbed per gram of rubber; f and g represent the
vulcanized nanocomposite including a filler and NR, respectively; and z represents the
ratio of the filler mass to the rubber mass. a and b are constants. Equation (3) is used for
the calculation.

Q = ωs−ωd

ωr × 100
/

ωF
(5)

where ωs refers to the mass of the swollen composite when equilibrium is reached, ωd

refers to the mass of the dry composite, ωr refers to the mass of the rubber in the dry
composite, and ω f refers to the total mass of the formulation.

3.4. Molecular Dynamics Simulation Methods

In this study, Materials Studio 2020 (MS) software was used for molecular dynamics
(MD) simulations to construct polymer models and periodic structures. The main compo-
nent of natural rubber latex is cis-1,4-polyisoprene, and repeat units were created using the
Visualizer module in MS, with a polymerization degree of 20 [39,40] to establish MWCNTs
and SiO2. MWCNT parameters were set at N: 6 and M: 6, with 10 repeat units, where
N and M are the diameters of the outer and inner carbon nanotubes, respectively. The
radius of SiO2 was set to 10 Å, as shown in Figure S3a–d. A 40 × 40 × 40 empty cubic unit
cell was constructed, and the Amorphous Cell module was used to build natural rubber
latex molecular chains, with a predefined density of 0.93 m2/g, through the Construction
function. A single-repeating-unit molecular chain was placed into the unit cell. The Packing
module was then used to separately incorporate MWCNTs and SiO2 into the unit cell; the
models for NNR, SNR, MNR, and MSNR are shown in Figure 8a–d. Subsequently, the
lowest energy model was obtained using the Forcite module for geometry optimization
and annealing (300–500 K, heating ramps per cycle: 5, dynamics steps per ramp: 100,
total number of steps: 50,000) and dynamics simulations (Time step: 1 fs, Total simulation
time: 200 ps, Number of steps: 20,000). Finally, the fractional free volume (FFV), mean
square displacement (MSD), and binding energy of the four models were calculated. The
COMPASS force field was used throughout the above process, with a time step of 1 fs and
a total simulation time of 200 fs, under an NVE ensemble.
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4. Conclusions
The objective of this study was to improve the dispersion of fillers within a natural

rubber latex (NR) matrix. NR composites, multi-walled carbon nanotube (MWCNT)/NR
(MNR) composites, silica (SiO2)/NR (SNR) composites, and MWCNT-SiO2/NR (MSNR)
composites were prepared using a solution blending method to investigate the effects of
dual-component MWCNT and SiO2 fillers on NR composites. Mixing multi-walled carbon
nanotubes with silica in a natural rubber latex matrix produces a significant synergistic
effect and improves the mechanical and dispersive properties, making this composite
material suitable for a wide range of applications in the fields of automobile tires, conveyor
belts, and electrical insulation materials. The following conclusions were drawn:

(1) After adding MWCNTs and SiO2, the tensile strength, elongation at break,
and Young’s modulus of the NR composites increased by 59.85%, 71.44%, and 28.74%,
respectively.

(2) Dynamic mechanical analysis (DMA) showed that the storage modulus and loss
modulus of NR composites increased after adding MWCNTs and SiO2, while the loss factor
decreased. This indicates that the stiffness of MSNR increased, and the molecular chains
within NR were restricted, resulting in a higher interfacial bonding strength.

(3) The dispersion performance of the MNR, SNR, and MSNR composites was ana-
lyzed using a rubber process analyzer (RPA). The Payne effect of the MSNR composite was
lower, indicating better dispersion.

(4) The fracture surface morphology of the MNR, SNR, and MSNR composites was
analyzed using scanning electron microscopy (SEM). The synergistic effect between MWC-
NTs and SiO2 in the MSNR composite resulted in a uniform distribution of all fillers within
the NR matrix, thereby improving the overall performance of NR.

(5) Molecular dynamics (MD) simulations were used to calculate the MSD, FFV, and
binding energy of the composites. The results showed that MSNR had the lowest MSD and
FFV and the highest negative binding energy, indicating that the dual-component fillers re-
stricted the movement of NR molecular chains and exhibited better interfacial bonding with
the NR matrix. These simulation results were consistent with the experimental findings.

(6) The hysteresis area of the first cycle stress–strain curve of MSNR was the largest;
a larger hysteresis area usually means that the material loses more energy after a force
is applied, resulting in a larger hysteresis loss. The results show that MSNR has a weak
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elastic recovery compared to the other three composites. This is due to the fact that NR is
inherently viscoelastic. In future work, we will focus on the difficult task of reducing the
viscoelasticity of NR composites to minimize the hysteresis loss.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules30020349/s1, Figure S1: Stress–strain cyclic curve
of NNR, MNR, SNR and MSNR; Figure S2: Free volume model of NNR, MNR, SNR and MSNR.
Figure S3: Molecular dynamics model: (a) NR; (b) MWNCT; (c) SiO2 and (d) different atoms. Table S1:
Definitions of abbreviation used in this study; Table S2: Comparison of mechanical properties.
Table S3: DMA performance comparison. Table S4: The formula of the composites.
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