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Abstract: We review the methodology, algorithmic implementation and performance char-
acteristics of a hierarchical modeling scheme for the generation, equilibration and topolog-
ical analysis of polymer systems at various levels of molecular description: from atomistic
polyethylene samples to random packings of freely-jointed chains of tangent hard spheres
of uniform size. Our analysis focuses on hitherto less discussed algorithmic details of the
implementation of both, the Monte Carlo (MC) procedure for the system generation and
equilibration, and a postprocessing step, where we identify the underlying topological struc-
ture of the simulated systems in the form of primitive paths. In order to demonstrate our
arguments, we study how molecular length and packing density (volume fraction) affect the
performance of the MC scheme built around chain-connectivity altering moves. In parallel,
we quantify the effect of finite system size, of polydispersity, and of the definition of the
number of entanglements (and related entanglement molecular weight) on the results about
the primitive path network. Along these lines we approve main concepts which had been
previously proposed in the literature.
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1. Introduction

During the last decades numerous and foremost advances in various technological areas constantly
render computer processors faster and more powerful at an affordable cost allowing the formation of
super-computers of even myriads of processors. In parallel, scientific breakthroughs in the various fields
of computer simulations have lead to the development of novel algorithms that are capable of taking
full advantage of the allocated resources. Thus, it is not surprising that nowadays modeling and simu-
lations are widely accepted as valuable companions to the more ”mature” experimental and theoretical
studies. Computer-generated specimen of varied molecular detail and diverse chemical constitution can
be simulated under ”idealized” and well-controlled conditions addressing ”what-if” questions on the
structure-property relation that otherwise would require the execution of a series of cost-demanding and
time-consuming experiments. However, severe limitations often hinder the effectiveness and plague the
performance of conventional simulation techniques necessitating the fabrication of novel algorithms or
even their combined employment through hierarchical and multi-scale modeling schemes.

In particular, regarding macromolecular (polymer) systems the complex chemical constitution of
the monomer (repeat) units along with the large spectrum of characteristic length and time scales re-
quire the development and employment of highly-efficient, system-specific methodological approaches.
For example, in a typical polymer melt the shortest characteristic distance is that of the bond length
l (O(100) Å). For conceptual purposes a chain can be further divided into equivalent freely-jointed Kuhn
segments of uniform size. For flexible chain molecules each segment typically spans up to a dozen of
successive monomers [1]. Chain size for a molecule of N repeat units is generally quantified by the
mean square end-to-end distance 〈R2〉 or the mean square radius of gyration 〈R2

g〉. It is well established
that in the asymptotic limit of very long chains (N →∞) the two quantities are interrelated through the
Debye equation for a random walk [2]: 〈R2〉 = 6〈R2

g〉. Polymer stiffness is more suitably expressed by
the characteristic ratio, CN a measure that incorporates chemical and molecular details of the constituent
monomers. At infinite chain length it stands C∞ = 〈R2〉/(N − 1)l2 [3]. Experiments have shown that
for a linear polyethylene (PE) melt of average molecular length C1000 (where the number in the subscript
denotes the carbon atoms along the chain) the average end-to-end distance 〈R2〉0.5 is by almost two
orders of magnitude higher than the carbon-carbon bond length (l ' 1.54Å) [4]. Similarly to the diver-
sity of lengths scales, the relaxation spectrum of polymer melts spans from the fastest dynamical mode
corresponding to bond vibration – on the order of femtoseconds, i.e., O(10−15) s – moving to the de-
correlation time of torsional (dihedral) angles, usually on the order of picoseconds, i.e., O(10−12) s [5,6]
– up to the slowest global chain relaxation. The latter has been quantitatively described by the Rouse [7]
and reptation [8,9] models for ”relatively short” and ”adequately long” chain molecules, respectively.
According to the tube model and the reptation theory the sluggish chain motion is strongly hindered by
topological constraints (entanglements) imposed by surrounding macromolecules. Thus, the motion of
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Figure 1. Schematic drawing summarizing the construction of the (three–dimensional) prim-
itive paths (PP). (a) Microscopic configuration. For clarity reasons, two out of hundreds of
chains are shown. (b) For the construction of the PP within the Z1 code, the backbone is
considered infinitely thin, and chain ends are fixed in space. (c) The length of the multiple
disconnected path is monotonically reduced, subject to chain-uncrossability, by introducing
a smaller number of nodes. (d) Upon iterating the geometrical procedure one converges at a
final state, the shortest path, shown in (d), together with the original chain, and alone in (e).
Each chain carries a part of the multiple disconnected shortest path, called its PP. A single
PP is often characterized by its conformational properties such as reflected by contour length
Lpp and number of kinks, denoted as Z. Self–entanglements are not taken into account into
the analysis.

(a) (b) (c) (d) (e)

the inner chain segments is restricted along the contour path of the tube; perpendicular motion is set only
for short time scales and for distances that at most commensurate the tube radius. The axis of the tube
constitutes the primitive path (PP) defined as the shortest path that connects the two ends of the chain by
fully respecting all imposed topological constraints, cf. Figure 1. According to numerous experimental
studies for well entangled polymer melts at equilibrium the diffusivity of the center of mass, DG, and the
corresponding zero shear-rate viscosity, η0, scale with molecular length N as DG ∼ N−b and η0 ∼ N c,
respectively, with b ' 2.3 and c ' 3.4 (see for example [10,11] and references within). Zero-shear rate
viscosity is proportional to the reptation time τd which is defined as the characteristic time needed for the
whole primitive chain to escape the original confining tube [9]. For a linear C1000 PE melt, τd is on the
order of tens of microseconds (O(10−5) s)), which is about ten orders of magnitude longer than the vibra-
tional relaxation of bonds. The terminal relaxation mechanism is even more complicated for polymers
exhibiting highly non-linear chain architecture like long-chain branching, stars or rings [12–16].

Building on the original tube model by de Gennes [8,17,18] and Doi-Edwards [9] a large body of
theoretical studies and predictive models, often accompanied by supporting experiments, provided sig-
nificant insights into the molecular mechanisms that govern the dynamical and rheological behavior of
complex polymeric systems (see for example Refs. [19–34]). From the modeling perspective for poly-
mer systems the large spectrum of characteristic time and length scales along with the diversity of the
chemical detail of the repeat units require the development of advanced case-specific simulation tech-
niques. In parallel, different length scales necessitate the employment of varied methods that span from
quantum mechanical calculations to atomistic and more meso/macroscopic simulations. Consequently,
to establish a (micro)structure - (macro)property relation so as to address typical, industrially-relevant
polymer processes and phenomena one has to resort to multiscale, hierarchical approaches that combine
the aforementioned techniques and exchange data between different levels of system representation [35–



Int. J. Mol. Sci. 2009, 10 5057

40]. Regarding atomistic simulations a wealth of information on the static and dynamic properties of
polymers melts of low to intermediate average molecular weight (MW) can be extracted from conven-
tional Molecular Dynamics (MD) [41–43] simulations. MD is the most straightforward and attractively
general computational method since in its core implementation it solves the classical (Newton’s) equa-
tions of motion for a set of molecules (particles) [41]. However, for long and definitely entangled poly-
mer systems it is well established that the equilibration afforded by atomistic MD simulations, especially
regarding the long-range characteristics, is inadequate even when highly-sophisticated, state-of-the-art
realizations [44,45] are employed in massively parallel simulations. Since the fastest relaxation time
(that of bond length) of chain molecules imposes a time integration step that can not exceed a couple of
femtoseconds, months or even years of computational time are required for MD to reach times on the
order of tens of microseconds which correspond to the chain reptation time of entangled polymer melts
(see discussion above).

The challenge of polymer equilibration can be addressed by mapping the atomistic reference system
into a less-detailed ”coarse-grained” configuration which is characterized by significantly fewer degrees
of freedom allowing for simulations which extend over time and lengths scales that are not accessible in
the atomistic level of description. Numerous schemes exist for the systematic ”coarse-graining” of the
monomer units of various polymers resulting into supersites (i.e., segments of atoms lumped into single
interacting sites) that range from spherical blobs to complex ellipsoids [46–54]. In recent modeling
approaches equilibration is afforded through a fine-graining scheme which is performed on initial coarse-
grained polymer representations to produce well-relaxed atomistic ones [55].

Alternatively, the equilibration of macromolecular systems can be achieved through stochastic Monte
Carlo (MC) [41–43] simulations where trial moves are attempted between two configurational states and
are accepted or rejected according to the Metropolis criterion. In the last two decades many ”smart”
MC techniques (moves) such as reptation [56], configurational bias [57–59], concerted rotation [60] and
parallel rotation [61] have appeared for the simulation of dense polymer systems either for lattice-based
or continuum simulations of varied chemical representation. Even the combination of such efficient
algorithms is not able to provide robust sampling of the configurational space for truly polymeric sub-
stances of high MW. Towards this direction an advanced set of highly-sophisticated chain-connectivity
altering moves (CCAMs) was developed in the last 15 years. These algorithms, through unphysical but
”smart” transitions that entail appropriate re-arrangements of the connectivity of chains, provide a vig-
orous sampling of dense phases for a variety of polymer systems. Prominent among the CCAMs are the
end-bridging (EB) [62,63] and the double-bridging (DB) [64,65] moves along with their intramolecular
counterparts [64,65], variants [66] and similar algorithmic schemes [67–70]. In the past MC simulations
based on CCAMs along with localized moves have successfully equilibrated, within modest computa-
tional time, in atomistic detail the short- and long- range structural characteristics and volumetric prop-
erties of polydisperse (up to C6000 [71]) and monodisperse (up to C1000 [64,65]) linear, H-shaped [72],
short-chain branched [73] and star-like [74] polyethylene melts. The EB and DB algorithms have been
further modified and expanded to treat atomistic systems of macromolecules with varied chemical con-
stitution of the repeat units [75–77]. While MC simulations, by evolving as long sequences of stochastic
processes, can not provide any information regarding the evolution of the system in time they do im-
part a wealth of information regarding the static, thermodynamic and volumetric properties of polymer
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melts and glasses. Furthermore, through hierarchical modeling schemes, MC-based trajectories can be
used as well-equilibrated starting configurations for successive modeling studies, to extract for example
information on the dynamics (through extensive MD simulations [78–80]) or on the barrier properties
(through Transition State Theory (TST) calculations [81]) of the simulated system.

We should note that the efficient application of MC schemes, especially the ones built around CCAMs,
is not straightforward for chemically complex atomistic macromolecular systems where it may happen
that the performance of the underlying moves is so poor that the whole MC scheme is rendered practically
useless. For example, the ability of MC mixtures, based on the configurational bias algorithm [57–59],
to provide full-scale equilibration for PE melts at ambient conditions declines sharply as the system
chemical description transits from the united-atom (UA) to the explicit-atom (EA, where interactions of
hydrogen atoms are taken into account) representation [82]. Solution to this and similar problems related
to the ”ruggedness” of the energy landscape of explicitly detailed molecular models can be provided by
casting the aforementioned MC moves in a minimum-to-minimum mapping (Min-Map) sampling pattern
[83] based on the reversible bijective method [84,85].

During the last years well equilibrated, representative polymer configurations obtained by different
methods and at diverse levels of molecular detail have been subjected to extensive topological analyses
for the extraction of the primitive paths (PP) and the corresponding network of intermolecular topolog-
ical constraints (entanglements). The original algorithms for the construction of the PP network were
based on secant areas [86] or energy minimizations through annealings [87–100] while latter topologi-
cal approaches adopt either direct geometric (the ”Z1” method [101,102]) or stochastic (the ”CReTA”
method [103,104]) algorithms for the identification of entanglements and for the calculation of the statis-
tics of the corresponding PP network [52,53,101–112]. Through the primitive path analysis significant
insights can be gained for the rheological behavior of polymer melts and solutions since the calculated
quantities (for example the contour length of the primitive path, Lpp) can be readily correlated with key
parameters of the reptation theory [9] and of the tube model [8]. Furthermore, results obtained from the
topological analysis on well equilibrated polymer samples [105] can validate newly-introduced analyti-
cal predictions [113,114], proposed formulas and expressions [109] regarding the behavior of PP-related
statistics at and beyond equilibrium.

In the present contribution we review the salient technical characteristics of a new MC scheme [115],
based on advanced chain-connectivity-altering moves, for the efficient generation and equilibration of
random packings of athermal polymer models of freely-jointed chains of tangent hard spheres and its
combination with the latest implementation of the Z1 algorithm [101,102] for the extraction of the un-
derlying primitive path network. The paper is organized as follows: Section 2 presents the algorithmic
details and reports on the equilibration efficiency of the MC method, while section 3 analyzes the effect
of system size on the MC-based estimation of chain size. Section 4 focuses on the description of the Z1
algorithm along with the benchmark times required for the construction of the PP network. Section 5
summarizes the key features of the proposed hierarchical approach and of the underlying methodologies
and concludes with proposed plans for future extensions and generalizations.
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2. Monte Carlo Scheme for the Generation and Relaxation of Athermal Polymer Models

In the present section we will describe how the existing chain-connectivity altering moves [62–
65,116], originally formulated for the atomistic simulation of polyethylene melts, can be modified so
as to function with optimal efficiency in simulations of random packings of freely-jointed chains of tan-
gent hard spheres of uniform size at packing densities (volume fractions), that range from dilute up to
very dense ones. According to the freely-jointed chain model of hard spheres, there is no bending or
torsional hindrance and pairs of spheres interact solely through the typical hard-core potential form, U(r)
of:

U(r) =

{
0 , r ≥ σ

∞ , r < σ
(1)

where r is the distance between the spheres and σ is the sphere diameter (collision distance) being equal
to the bond length for strictly tangent spheres. In the continuation, volume fraction (packing density) is
defined as:

ϕ =
πnσ3

6V
(2)

where V is the volume of the simulation cell and n is the total number of spheres in the system. In typical
simulations of the bulk phase periodic boundary conditions are applied in all dimensions of the cell. The
nature of the hard-core potential (Equation 1) allows for the decomposition of the original simulation
cell into a number of equivalent sub-cells each with dimensions slightly larger than the collision distance
σ. As a consequence, once a sphere-site (or a sequence of sites) is displaced during a MC move checks
for hard-sphere overlaps are performed only with unmoved sites belonging to the closest neighboring
cells of the new (trial) position.

In the original end-bridging (EB) algorithm [62] the move proceeds by cutting (removing) a prop-
erly selected trimer of atoms from the backbone of a chain (jch) that lies within a specific radius from
the end of another chain (ich) and by re-connecting the trimer to the end of chain ich so as to form
two new macromolecules with completely different connectivities. The DB algorithm [64,65] evolves
around the re-construction of two trimer bridges, while in the intramolecular variants (IEB [116] and
IDR [64,65,116]) the re-bridging(s) take place within a single chain. In general, all atomistic chain-
connectivity altering moves rely on the following geometrical problem for the construction of the trimer
bridge: ”two dimers in a three-dimensional space should be connected through a triplet so as the re-
sulting heptamer bears prescribed bond lengths and bending angles”. The original problem was solved
through the psi-function formulation [62,63,65] while in a more recent approach for the MC simulation
of cyclic peptides Wu and Deem mapped the problem into solving a sixteenth degree polynomial of
inverse kinematics involving serial chain manipulators in robotics [117]. By construction, since after a
successful EB move one of the participating chains (the ”predator” ich) grows while the other (the ”prey”
jch) shrinks, polydispersity in molecular lengths is introduced in the simulated system. The form and the
width of the chain length distribution can be fully controlled by casting the simulations in the semi-grand
canonical statistical ensemble where the following parameters are held fixed: the total number of chains
(Nch) and spheres (n), the pressure (P ), the temperature (T ) and the spectrum of chemical potentials µ∗

for all chain species expect two which are taken as reference. More details about the expressions of the
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chemical potentials required to reproduce commonly observed chain length distributions can be found
in Ref. [62].

Double bridging (DB) alleviates the disadvantages and limitations of the EB move (mainly the re-
quirements of chain length polydispersity and the presence of chain-ends) by performing two trimer
bridgings in backbone segments that lie in the internal parts of the participating chains. Consequently,
it is generally applicable to simulations of macromolecular systems with no free ends (cyclic peptides),
with long branches (H-shaped macromolecules) or with specific constrained geometries (terminally-
grafted brushes) [64]. Furthermore, since segments in DB are removed from and reconstructed in both
participating chains, specific combinations can lead to chains with exactly the same molecular length as
the original ones before the attempted move preserving monodispersity in molecular weights [64,65].
However, the major advantages that enhance the general applicability of DB come at a high cost: since
two triplets of interacting sites are required to be repositioned in the system, the acceptance rate of DB
is quite lower than the corresponding one of EB. For example, in simulations of monodisperse C1000 PE
melts at T = 450K and P = 1atm approximately one move gets accepted over 80,000 trials [65], while
the analogous acceptance rate of EB for polydisperse systems of the same average molecular length and
under the same simulation conditions is around 0.2%.

The non-negligible deterioration of the acceptance rate for the class of chain-connectivity altering
moves is especially apparent in simulations of dense packings of freely-jointed, hard-sphere chains pri-
marily as a consequence of the reduced free volume available for the reconstruction of a whole trimer
of hard spheres (or of two trimers for DB). Consequently, in the original implementation of the EB
algorithm for dense systems of hard-sphere chains, for the vast majority of the attempted moves the
reconstruction of the triplet of spheres of all candidate geometrical configurations leads to energetic
overlaps with the fixed sites. A second source for the poor performance of chain-connectivity altering
moves is that for freely-jointed chains the absence of any kind of imposed bending hindrance in the form
of a potential function allows for the bond angles to fluctuate uniformly in the closed interval [0,120◦]
(except for the existence of characteristic peaks at high volume fractions as a result of the excluded vol-
ume interactions [115,118–120]). In turn, the geometric bridging of the two dimers with the triplet of
spheres entails the random selection of five bending angles, that can not connect the dimers if they lie far
apart, but are still within the maximum allowed bridgeable distance of 4σ. The aforementioned disad-
vantages and limitations can be removed by properly modifying the original chain-connectivity altering
algorithms so as to function efficiently for any kind of force field that allows for close proximity (tan-
gency) of intermolecular pairs of interacting sites. Towards this direction we have recently introduced
the simplified end-bridging (sEB [115]) and its intramolecular variant termed simplified intramolecular
end-bridging (sIEB [115]).

2.1. Simplified End-Bridging

The schematic representation of the sEB move is shown in Figure 2. The move is initiated as follows:
an end-site i (the ”predator”) of chain ich and an internal sphere j (the ”prey”) of chain jch are tangent
within a numerical tolerance of dσ, i.e., the distance between spheres i and j is within the range [σ,σ +

dσ]. A bond is temporarily formed between spheres i and j and depending on the molecular lengths
of the resulting chains, sEB can proceed in at most two different combinations: in pattern (b) the bond
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Figure 2. Schematic representation of the simplified end-bridging (sEB) move [115]. Left:
initial configurations where chain end i of chain ich (shown in blue) is tangent (within a
numerical tolerance) to intermolecular neighbor j that lies in the inner segments of chain jch
(shown in red). Right: sEB proceeds by cutting the bond between sphere j and either sphere
j+1 (pattern (b)) or sphere j−1 (pattern (c)). A new bond is formed between sites i and j
altering the backbone connectivities and forming new chains ich′ and jch′. By construction,
after a successful sEB move the number of monomers in chains ich′ and jch′ grows and
shrinks, respectively, introducing polydispersity in molecular lengths.

between spheres j and j+1 is cut so that the whole sequence (j1, ..., j) that was originally part of jch
belongs now to new chain ich′ while new jch′ consists of the remaining segment (j+1, ..., j2). In pattern
(c) the bond between spheres j and j−1 is removed leaving the sequence (j1,...j−1) as jch′ and connecting
the part (j2, ...j) with the original ich. It is obvious that in both patterns (b) and (c) chain ich increases
in molecular length while jch shrinks so that the total number of repeat units before and after the move
remains the same. An inspection of Figure 2 shows clearly that the initial and final configurations of
the two participating chains are very different. Furthermore, a remarkable feature of the sEB move
is that while this alternation of molecular conformations is very profound it does not imply any sphere
displacement, rather it proceeds by a single bond deletion and a consequent bond insertion. Accordingly,
the transition between the initial (old) and final (new) states does not evolve any potential changes in
system energetics.

In the final step of its application, the sEB move is accepted or rejected according to the following
criterion:

PsEB(old→ new) = min

[
1,
wsEB(new→ old)
wsEB(old→ new)

]
(3)
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where wsEB denotes the weighting factor for the attempted transition according to:

wsEB(new→ old) =
1

nsEB(jend)
, wsEB(old→ new) =

1

nsEB(i)
(4)

nsEB being the number of the neighbors with whom spheres jend and i can initiate a sEB move in the
final (new) and initial (old) states, respectively. Depending on the sEB combination the newly formed
chain-end jend of jch′ corresponds to either site j+1 (pattern (b)) or to site j−1 (pattern (c)).

2.2. Simplified Intramolecular End-Bridging

The simplified intramolecular end-bridging (sIEB) move, by being the intramolecular variant of the
sEB algorithm, is executed in a very similar fashion, the only difference being that all alternations occur
in a single chain. The schematic representation of sIEB is depicted in Figure 3. Chain ich consists of the
original sequence of spheres (j1, ..., i). If chain-end i and internal site j lie within the bonded distance
of σ + dσ (i.e., they are tangent within the specified numerical tolerance of bond lengths) an sIEB move
can be initiated. For any given pair of intramolecular pairs sIEB proceeds in a single pattern: the bond
between sites j and j2 breaks and a new one is formed between i and j. As a result the sequence of
spheres in ich changes to (j1, ..., j2) (as seen in Figure 3) and sphere j2 becomes the new terminal site of
chain ich.

Figure 3. Schematic representation of the simplified intramolecular end-bridging (sIEB)
move [115]. Left: initial configuration where chain end i of chain ich (with sequence
(j1, ..., i)) is tangent (within a numerical tolerance) to intramolecular neighbor j. Right:
sIEB proceeds by cutting the bond between spheres j and j2 while a new bond is formed
between sites i and j altering the backbone connectivity of chain ich to sequence (j1, ...j2).
By construction, a successful sIEB move does not alter the molecular length of ich but only
its monomer sequence. The sequence of bonds along the backbone of the chain before and
after the move is shown as a guide of the eye to illustrate the alternation of chain connectivity
as a result of the bond swapping.
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The acceptance criterion of the sIEB move is very similar to the corresponding one of sEB of Equa-
tion 3:

PsIEB(old→ new) = min

[
1,
wsIEB(new→ old)
wsIEB(old→ new)

]
(5)

where now the weighting factors in the forward and reverse transitions can be calculated as:

wsIEB(new→ old) =
1

nsIEB(j2)
, wsIEB(old→ new) =

1

nsIEB(i)
(6)

with nsIEB(j2) and nsIEB(i) being the number of intramolecular neighbors within the range of σ + dσ of
end-spheres j2 and i in the reverse (new→ old) and forward (old→ new) transitions, respectively.

2.3. Algorithmic Implementation of the sEB and sIEB Algorithms

In the course of a typical MC simulation based on the chain-connectivity altering moves special lists
are kept and are constantly updated for both sEB and sIEB. For every chain-end i present in the system
distance checks are performed with all intra- and inter- molecular neighbors that reside in the closest
sub-cells (the parent one where the reference end belongs to and the 26 closest neighboring cells, see
Section 2. for more details on the division of the simulation box to equal sub-cells). If the distance
between i and one of the neighboring sites j is smaller than σ + dσ then: i) if j is an intramolecular
neighbor no further action is required and i and j are automatically added in the list of site pairs that
can initiate an sIEB move, ii) if j belongs to another chain jch, the provisional molecular lengths of
ich′ and jch′ are calculated based on the position index of j in jch for both patterns (b) and (c) of sEB
(see Figure 2). In the case that, for at least one of the possible combinations ((b) and (c)), the new
chain lengths of ich′ and jch′ both fall within the range of the allowed chain lengths, as imposed by the
applied distribution, then the pair i and j is added in the corresponding list of sEB initiators along with
the feasible combinations.

Both moves commence by selecting randomly one of the pairs included in their special lists. If an
sEB (or sIEB) is attempted and its list of initiators is empty then the move is automatically rejected.
For sEB if both combinations (b) and (c) are permitted then one is randomly picked. In the reverse
transition (new → old) the (sEB or sIEB) neighbors of the new temporary chain end are counted since
their number enters into the weighting factor of the reverse transition (Equations 4 and 6). Finally, the
move is accepted or rejected according to the corresponding acceptance criterion, Equations 3 and 5 for
sEB and sIEB, respectively. In case of acceptance of an sEB move, because of the major alternations in
chain connectivities, the sEB-related lists are calculated from scratch for all chains in the system, while
the ones of sIEB are computed only for ich and jch. In an analogous fashion, after an accepted sIEB
move the sEB-related lists are re-calculated for all molecules but the sIEB-related ones are updated only
for chain ich.

2.4. Monte Carlo Scheme Based on sEB and sIEB

The Monte Carlo scheme used for the simulation of the freely-jointed chains of tangent hard spheres
is built around the sEB and sIEB moves and it further consists of local moves that undertake the task
of providing short-range relaxation. Additionally, by combining chain-connectivity altering algorithms
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and a set of varied localized ones we are able to significantly reduce the ”shuttling effect”, i.e., when
the system transits between a limited collection of different states ending up in the original one. For
example, it is quite frequent for the system to perform, through a chain-connectivity altering move, the
(old → new) transition and successively to annihilate it by moving back to the original state through
the reverse move (new → old). As a consequence of the transitional loop (old → new, new → old)
the system remains trapped in the original state. In order to significantly reduce or even eliminate the
”shuttling effect” the special lists maintained for each move should contain as many as possible pairs of
initiators and these should be frequently replaced by new ones. Towards this, efficient local algorithms,
by moving a single site or a whole sequence of them either in the end of the chain or in the internal
parts, provide the necessary invigoration in the special lists of sEB and sIEB. In the present MC mixture
we employ the following localized moves: i) reptation [56], ii) intermolecular reptation [72,108,116],
iii) end-mer rotation [41], iv) internal flip [121] and v) continuum configurational bias (CCB)) [57–
59,122]. The concerted rotation (ConRot) move [60] was excluded from the current MC scheme since,
in a fashion analogous to the original chain-connectivity altering algorithms, it entails the trimer bridging
construction whose geometric solution becomes inefficient for freely-jointed chains (see also related
discussion in Section 2.). A key characteristic in the application of the local algorithms in simulations of
dense packings of hard-sphere chains is that they are all cast in an adaptive configurational-bias pattern
with the number of the trial configurations ndis in the reverse and forward transitions being strongly
dependent on the volume fraction (packing density) ϕ [115]. For example, ndis is equal to 10 and 80
at ϕ = 0.10 and 0.60, respectively. This increment of ndis with ϕ guarantees the highest achievable
acceptance rate of the move (see for example Figure 3 of [115]) without resorting to more complicated
algorithmic approaches like casting all local moves in a bijective Min-Map bias pattern according to Ref.
[83]. As a side effect, by increasing the number of trial configurations the average CPU time required
per move grows too. Thus, the optimum value of ndis is identified through preliminary trial simulations
at the specified volume fraction.

The simulation of dense random packings of freely-jointed chains of tangent hard spheres splits into
two phases: the first step of the generation for the simulation box filled with the non-overlapping chain
monomers at the desired volume fraction ϕ and the second of the full-scale equilibration at constant
density. The numerical challenge of generating long trajectories of random assemblies of monomeric
hard spheres is readily addressed by various techniques [123–125] very close to and even at the random
close packing (RCP) limit [126–128]. Nowadays the RCP limit tends to be replaced by the mathemat-
ically more firm concept of the maximally random jammed (MRJ) state [129–131], which corresponds
to packing densities in the range of ϕ ≈ 0.64 depending on the applied generation protocol and on the
incipient degree of ordering (crystallinity) [132,133]. The analogous problem for hard-sphere chains
at very high volume fractions remained until recently elusive because of the very slow relaxation dy-
namics of polymeric systems resulting from the intermolecular topological constraints as explained in
the introduction. As a consequence while there has been an appreciable body of simulation studies at
intermediate volume fractions [134–140], most algorithms fail to provide equilibration or even generate
configurations at volume fractions above the melting transition
(ϕM ' 0.545, [141]) . In our approach we employ the MC scheme built around the sEB and sIEB moves
described above for the generation and the successive relaxation of the hard-sphere chain configurations.
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Figure 4. Representation of the two participating chains before (left) and after (right) the
successful application of a simplified end-bridging (sEB) move from MC simulations on a
N = 24 system at packing density ϕ = 0.63. Constituent spheres are shown with the coor-
dinates of the centers fully unwrapped in space. Image created with the VMD visualization
software [142].

For the creation of the initial structures, we start from very dilute non-overlapping configurations
(ϕ ≈ 0.01) and apply the MC mixture. In more detail, it consists of the following moves, where the
numbers in parentheses denote percentage attempt probabilities: (i) sEB (0.1%), (ii) sIEB (0.1%), (iii)
adaptive-bias reptation (10%), (iv) adaptive-bias intermolecular reptation (25%, (v) adaptive-bias rota-
tion (10%), vi) adaptive-bias flip (10%) and adaptive configurational bias (20%). For the generation
phase, at regular intervals (every 500 MC steps) isotropic shrinkages of the simulation cell are attempted
with the chains being affinely repositioned, while preserving their bonded geometry, subject to the am-
plitude of the box shrinkage, dl, along each dimension and the distance between their first monomer and
the box origin [115]. The optimum value of dl varies strongly with volume fraction and in dimensionless
form (divided by σ) becomes on the order of O(10−7) as we approach the MRJ state [115]. It is thus
evident that by applying so small reductions in box size very long simulations, especially compared to
the ones for monomeric analogs, are required in order to create dense and nearly jammed random pack-
ings of freely-jointed, hard-sphere chains. In the second phase, very long MC simulations (in the order
of billions of MC steps), built around the proposed chain-connectivity altering algorithm and cast in the
nNchV Tµ

∗ ensemble (at constant density, excluding any type of volume fluctuations), undertake the task
of providing full scale equilibration of the generated random chain assemblies.

3. Results from Monte Carlo Simulations on Hard-Sphere Chains

The following systems of freely-jointed chains of tangent hard spheres have been studied: (i) 100
chains of average length 〈N〉 = 12 where chains are allowed to fluctuate uniformly in the interval
N ∈ [6, 18] (ii) 50 chains of 〈N〉 = 24, N ∈ [12, 36] (iii) 12 chains of 〈N〉 = 250, N ∈ [150, 350],
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(iv) 6 chains of 〈N〉 = 500, N ∈ [300, 700] and (v) 64 chains of 〈N〉 = 1000, N ∈ [600, 1400].
Additionally, simulations were conducted for the 〈N〉 = 12 and 24 systems with the molecular lengths
following the most probable (Flory) distribution. The numerical tolerance for the identification of bond
lengths was set at dσ = 10−4σ to guarantee maximum efficiency for the chain-connectivity altering
moves at intermediate densities. Very recent simulations with strictly tangent spheres (dσ = 10−8σ)
[120] confirm previous findings [115,143], that the allowed flexibility in bond lengths does not affect
the conformational properties and local packing compared to the model of strictly tangent hard–spheres
[144]. For the systems with the longer chains 〈N〉 = 250 and 500, the total simulation time ranged
from 3 × 1010 at dilute conditions (ϕ = 0.01) to 5 × 1011 MC steps at densities close to the MRJ state.
System configurations including sphere coordinates and chain connectivity along with MC statistics were
recorded every 1 × 107 resulting in simulation trajectories consisting of thousands of uncorrelated MC
frames. Figure 4 shows a typical system snapshot of the two participating chains with the coordinates
of the centers of the constituent sites fully unwrapped in space before and after the execution of an sEB
move for the 〈N〉 = 24 system with 50 chains at ϕ = 0.63. In an analogous fashion Figure 5 depicts
the two participating chains of a 〈N〉 = 1000 system at ϕ = 0.62 before and and after an sEB move,
now with sphere centers subjected to periodic boundary conditions. From a brief inspection of the two
figures it is immediately apparent that within a single successful sEB move profound alternations take
place regarding the internal structure and connectivity of the participating chains.

Figure 5. Same as in Figure 4 but for the 〈N〉 = 1000 system at volume fraction ϕ = 0.62.
The coordinates of the sphere centers appear wrapped in the simulation cell subjected to
periodic boundary conditions. All unmoved spheres (belonging to chains other than the
participating pair) appear as transparent for visual purposes. Image created with the VMD
visualization software [142].

A major advantage of the set of the sEB and sIEB moves compared to the original algorithms (EB
and IEB) but also to the localized algorithms steams from their particular form of application in com-
bination with the applied hard-core potential: they are able to provide robust re-arrangements in chain
connectivities through bond swapping without displacing any sites as explained in detail in sections 2.1.
and 2.2.. Therefore, it is expected that the new set of moves would be tailored to function at very dense
random packings, even in the close vicinity of the MRJ state. The validity of the above speculation is
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verified by the data shown in Figure 6 where the logarithm of the percentage acceptance rates of the sEB
and sIEB moves along with the corresponding one of the original EB algorithm are plotted as a function
of the logarithm of packing density for the 〈N〉 = 500 system of 6 chains.

Figure 6. Logarithm of the percentage acceptance rates, log10(Pacc) for the simplified
end-bridging (sEB), simplified intramolecular end-bridging (sIEB) and of the original end-
bridging (EB) moves as a function of the logarithm of packing density, log10(ϕ) as obtained
from MC simulations on a 〈N〉 = 500 system of freely-jointed hard-sphere chains.

At very low concentrations the chain-connectivity altering moves, especially the EB and sEB moves
which require the close proximity of segments belonging to different macromolecules, exhibit very low
acceptance rates since in a highly diluted environment chains do not ”feel” the presence of each other
as they are far apart. Consequently, there exist very few to zero pairs of intermolecular neighbors that
lie close within the bridgeable distance of 4σ and σ + dσ for the EB and sEB moves, respectively. Not
surprisingly, in the dilute regime the acceptance rate of sEB is the lowest since it requires the closest
proximity of intermolecular neighbors. On the other hand sIEB exhibits low, but still superior compared
to the intermolecular variants, acceptance rate as the probability of a chain to coil is higher than to lie
close to another chain. In other words at very dilute systems a chain end finds easier intramolecular
neighbors than intermolecular ones within a specified radius. We should note that the low acceptance
rates of the moves at very low packing densities is not a practical problem since the corresponding
acceptance rates of the localized algorithms are so high that a MC scheme built around the CCB move
with deep cuts (i.e., including the reconstruction of many chain monomers) is adequate to provide rapid
full-scale equilibration. As packing density increases chains come closer and tend to coil leading to an
increase in the acceptance rate of all moves as shown in Figure 6. At intermediate densities the efficiency
of the conventional EB starts to decrease as the bridging construction and the consequent re-positioning
of three spheres leads to overlaps with the unmoved spheres of the system. It is further evident that
after a volume fraction of approximately ϕ ' 0.45 the acceptance rate of EB drops to such low levels
(Pacc ∼ O(10−7)) that the inclusion of the move in the MC scheme becomes practically fruitless. In
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sharp contrast, the acceptance probabilities of both sEB and sIEB get continuously augmented with
increasing packing density. Given that the moves do not entail site displacements their performance
depends solely on the wealth and the update rate of the lists of the initiator pairs for each move (see also
related discussion in sections 2.1. and 2.2.). As density increases, and especially close to the random
close packing, chains collapse in size [145] a characteristic that favors the sIEB move and come closer,
almost jammed, a trend that alleviates the performance of sEB. Hence, it is not surprising the fact that
both moves exhibit their highest acceptance rates at the maximally random jammed state (MRJ), in sharp
contrast to all conventional MC moves [115].

While the data on the acceptance rate reveal significant limitations and advantages of the employed
simulation algorithms their ability in equilibrating the long-range characteristics of polymer systems is
typically quantified by the evolution in (computational) time of the orientational autocorrelation function
of the end-to-end unit vector 〈u(t) · u(0)〉 where u(t) and u(0) are the end-to-end unit vectors at time
t and reference time t = 0, respectively, and 〈..〉 denote averaging over all chains and MC frames by
employing multiple time origins [41]. Starting from the initial value of unity the faster 〈u(t) ·u(0)〉 drops
to zero the faster the system looses the memory of the its initial chain configuration. Thus, the evolution
(decay) of the autocorrelation function 〈u(t) · u(0)〉 serves as an accurate measure of the relaxation rate
even if MC simulations can not provide dynamical information regarding the evolution of system in
time. Figure 7 presents 〈u(t) · u(0)〉 as a function of MC steps as obtained from MC simulations on
the 〈N〉 = 250 and 500 systems at various volume fractions spanning the whole concentration range
from dilute to nearly jammed packings. It is evident that packing density bears only a minor effect on
the equilibration efficiency of the proposed MC algorithm as all decay curves fall very close to each
other. In addition, similar trends appear regarding the effect of chain length on relaxation time: at all
packing densities, within the statistical error which is relatively high because of the limited number of
existing chains, there is no clear difference between the curves of the 〈N〉 = 250 and 500 systems. The
performance of the MC mixture built around the sEB and sIEB moves is further compared against a
conventional MC scheme that bears the original EB algorithm for the 〈N〉 = 500 system at ϕ = 0.60.
As seen in Figure 7 the new MC scheme outperforms the conventional one by many orders of magnitude.
Even more, as the 〈u(t) · u(0)〉 curve for the latter does not leave the original value of unity over the
whole simulation time it is perfectly clear that the system is trapped in its initial configuration with no
hint of long-range equilibration.

From the time evolution of the 〈u(t) ·u(0)〉 one can calculate the total equilibration (or decorrelation)
time, τc as the integral of the form:

τc =

∫ ∞
0

〈u(t) · u(0)〉 dt (7)

Calculated values of τc as obtained from the integration of the 〈u(t) · u(0)〉 curves like the ones shown
in Figure 7 are reported as a function of packing density for the 〈N〉 = 250 and 500 systems in Figure 8.
Past MC simulations on hard-sphere systems of short chains (〈N〉 = 12 and 24) [115] suggested that
the total decorrelation time appears to be unaffected by both the average chain length and the volume
fraction. Here, from the simulation data of Figure 8, we are in position to confirm the validity of the
previous findings even for entangled model systems that lie deep in the polymeric regime. In particular,
at intermediate and high densities (ϕ > 0.40) and especially in the vicinity of the MRJ state the longer
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Figure 7. Orientational autocorrelation function of the end-to-end unit vector 〈u(t) · u(0)〉
as a function of CPU time (in MC steps) for the 〈N〉 = 250 and 500 systems at various
packing densities ϕ. Also shown for comparison purposes is the corresponding curve from
MC simulations with the original EB algorithm on the 〈N〉 = 500 system at ϕ = 0.60.

system 〈N〉 = 500 appears to equilibrate even faster than the shorter one 〈N〉 = 250 regarding the
long-range characteristics. This behavior is reminiscent of the ones of the EB [62,63] and DB algorithms
[64,65,72,79,116] when applied on realistic polymeric systems in atomistic detail. Furthermore, as in the
case of oligomers [115], the relaxation of random assemblies of long freely-jointed hard-sphere chains
appears to be unaffected by packing density. For example, the equilibration times for the 〈N〉 = 500

system are equal to τc ' 3.6 and 3.2× 107 MC steps at ϕ = 0.35 and 0.62, respectively. For comparison
the corresponding time with the conventional MC scheme, where the sEB and sIEB are replaced by the
original EB and IEB moves, grows to τc ' 2.5× 1010 steps at ϕ = 0.50, while the analogous relaxation
at ϕ = 0.60 is so slow (see also the corresponding curve at Figure 7) that no reliable estimate can be
provided from extrapolations regarding τc.

3.1. Analysis of the Effect of System Size on Chain Dimensions in MC Simulations

In the remaining subsection we will investigate the effect of system size on the structural properties
of model polymer systems of freely-jointed hard-sphere chains. As a test case we employ extensive
MC simulations on two different realizations of the 〈N〉 = 500 system: one ”small” with 6 chains and
one ”large” with 162 chains for a total of 3000 and 81000 interacting sites, respectively. In both cases
molecular lengths were allowed to fluctuate uniformly in the interval of N ∈ [300, 700] under the same
simulation parameters and identical mixture of MC moves at ϕ = 0.45 and 0.60. Initial configurations
were generated independently so as to ensure the absence of any kind of statistical correlation between
the two simulated systems. Compared to the dimensions of the simulation cell the end-to-end distance
〈R2〉0.5 of chains is smaller by a factor of approximately 2 and larger by a factor of more than 1.5 for
the large and the small system, respectively, at both densities. We should note that in the continuation
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Figure 8. Total equilibration time τc, versus packing density ϕ, as obtained from MC sim-
ulations on the 〈N〉 = 250 and 500 systems. The corresponding equilibration time us-
ing the original EB algorithm for the 〈N〉 = 500 system at ϕ = 0.50 is approximately
τc ' 2500× 107 MC steps.

all reported values of the end-to-end distance (and of the contour length of the primitive path, see next
section) are rendered dimensionless by dividing with the collision diameter σ which is set equal to one.
At ϕ = 0.45 for the small system the acceptance rates of both moves is 1.1% while the corresponding
percentages grow to 21 and 17% for sEB and sIEB, respectively, for the large system. In an analogous
fashion at ϕ = 0.60 the acceptance rates are 4.2% (sEB) and 4.8% (sIEB) and 48% (sEB) and 51%
(sIEB) for the small and large systems, respectively. The low acceptance rates exhibited by both moves
for the smaller boxes steam from the fact that in many cases and because of the very limited number of
chains, there are no ”predator-prey” pairs to initiate the moves. We should note that at ϕ = 0.60 the
acceptance rates are very close to 50% as would be expected from the formulas of the acceptance criteria
of the moves applied on homogeneous, isotropic chain system of adequate size.

The evolution of the instantaneous value of the mean square end-to-end distance 〈R2〉 as a function
of MC steps is shown in Figure 9a for the small and large systems at ϕ = 0.45 while Figure 9b shows
the corresponding results for the running average of 〈R2〉 values at both densities. The calculated values
are: (i) ϕ = 0.45: 〈R2〉 = 967 (small) and 948 (large) with the relative error being less than 1.9% and
(ii) ϕ = 0.60: 〈R2〉 = 778 (small) and 789 (large) with the relative error being less than 1.3%. Both
relative errors are very low and definitely far below the statistical error in the calculation of the related
quantity.

Identical conclusions are drawn for all measures of chain size and for the radial distribution functions
in the level of individual spheres and for the whole range of concentrations even for nearly jammed
structures. It is thus established that there exist no system size effects on the MC results that could
potentially affect key findings regarding local packing [115,118,119,146], the numerical values of the
scaling exponents for the dependence of chain size [145–147] and of the topological hindrance [146,147]
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Figure 9. (a) Instantaneous values of the mean square end-to-end distance, 〈R2〉 as a function
of MC steps as obtained from simulations on the ”small” (6 chains) and ”large” (162 chains)
〈N〉 = 500 hard-sphere chain system at a packing density of ϕ = 0.45. Simulation times
for all systems in the x-axis are rescaled with respect to the maximum time for visualization
purposes. (b) Same as in (a) but for the running average values of 〈R2〉 at ϕ = 0.45 and 0.60.

on packing density for random packings of freely-jointed chains of tangent hard spheres. However we
should note that the combination of the limited number of existing chains along with low acceptance
rates (for the small system) and the short duration of the MC simulations (for the large system) results
in a system–size effect on the shape of the applied molecular length distribution. The shape of the
molecular length distribution deviates markedly from the expected one corresponding a uniform one.
With increasing simulation time and for systems with an adequate number of chains the aforementioned
problem diminishes.

A remaining effect of system size on the final configuration, which has to be taken into account
into a more detailed analysis of our data, is the degree of polydispersity. Statistical properties of chain
molecules eventually depend on the shape of the distribution of chain lengths in a rather nontrivial man-
ner. Polydispersity does not affect those single chain statistical properties which are strictly proportional
to 〈N〉. The length of a representative primitive path (PP), and its number of entanglements, however,
and to be discussed in Sec. 4., are not strictly proportional to N , but linear in N , to a good approxima-
tion. In order to value the potential effect of system size on the properties defined on the PP, one has to
compare quantities defined on subsets with a narrow range of N values, rather than averages over the
whole system.

4. Direct Topological Analysis of Entanglements and Primitive Paths in Polymeric Systems

4.1. Calculation of the Primitive Path

For the melt configurations the reduction to primitive paths was performed using a procedure de-
scribed in Refs. [101,106]. In this method, known as Z1 code [148], all parent atomistic (or coarse-
grained) chain ends are fixed in space, cf. Figure 1. Excluded volume interactions are disabled while
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Figure 10. Snapshots made during runtime of the Z1 code [101,148]. (a) The original
configuration, shown in folded representation, (and belonging to the set denoted as “small
ϕ = 0.45” in Table 1) is (b–c) subjected to geometrical transformation which monotonously
decrease the length of the multiple disconnected path until (d) the length of the path (denoted
as primitive path network) has reached a minimum. The CPU time needed to complete the
process stays well below 0.5 seconds.

(a) (b) (c) (d)

chain uncrossability is retained. Contour lengths of the polymeric backbones are strictly monotonically
reduced through geometrical transformations. This operation leaves us with an entanglement network
of so called primitive paths (see Figures 10 and 11 for a series of snapshots for selected systems in both
folded and unfolded representation). Each original chain has its primitive path of length Lpp, and paths
have zero thickness. In addition to the set of lengths of the primitive paths, and the configuration of
the entanglement network, the Z1 analysis also yields the number of interior “kinks” [101], Z, in the
three-dimensional primitive path of each chain (see Figure 1). For long chains, Z is considered to be
proportional to the number of entanglements, regardless of the details of the definition of entanglement.
Below we are going to comment on this measure and details of the Z1 algorithm, which had not been
mentioned in the literature so far. In the following it will be important to keep in mind, that while the
structure and contour length of the entanglement network is a robust measure of the topological state of
a polymeric system, a derived quantity like Z is obtained in a postprocessing step, and its definition is
thus open for physically motivated refinement.

Within the Z1 code periodic images of the same chains are treated as different chains, while all
parts of a physically connected chain (which may cross the border of the simulation box) are treated
as belonging to the same chain. The minimization procedure terminates as soon as the mean length
of the primitive paths, 〈Lpp〉, has converged. Self entanglements are neglected in the mentioned sense,
and their number is often considered small and inconsequential for polymeric systems [88] although
a more detailed analysis on the role of self-entanglements may be required for very dense packings of
exceedingly long chains. Finite size effects for the counting of entanglements (cf. Sec. 4.3.) can however
not be prevented to set in when the chain dimension and mesh size of the PP network exceeds the box
size. Structural quantities like the structure factor or the end-to-end distance are seen to be less affected,
under melt conditions: See Figures 12a (ϕ = 0.45) and 13a (ϕ = 0.60) which show the probability
distribution for end-to-end distances R, obtained from a long MC trajectory for both “small” (6 chains)
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Figure 11. Snapshots made during runtime of the Z1 code [101,148]. (a) The original
configuration, shown in unfolded representation (and belonging to the set denoted as “large
ϕ = 0.60” in Table 1) is (b–c) subjected to geometrical transformation which monotonously
decrease the length of the multiple disconnected path until (d) the length of the path (denoted
as primitive path network) has reached a minimum. The whole operation requires about a
single CPU second on a single processor.

(a) (b) (c) (d)

and “large” (162 chains) systems. The corresponding histogram for the lengths of the primitive paths,
〈Lpp〉, is drawn in Figures 12b and 13b. Discrepancies between small and large system are clearly
visible, but remain minor, on the level of the length of the shortest path. The apparent differences can be
traced back to polydispersity effects, rather than finite size effects, as we will demonstrate below.

Figure 12. Probability distributions for various quantities resulting from the entanglement
analysis (Z1) for the system at ϕ = 0.45. (a) End–to–end distance, (b) contour length of
the primitive path, Lpp, and (c) number of interior kinks, Z. This procedure constitutes the
typical approach followed when analyzing monodisperse systems.
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The alternate CReTA method shares many similarities with Z1, and the conclusions reached here
for Z1 analysis should apply similarly to CReTA results [104,106,111,112]. Differences between the
original Primitive Path Analysis (PPA) presented in [87] and Z1 had been investigated and interpreted
in [106]. Main differences concern a loss of entanglements (during PPA), the quantity to be minimized
(energy versus length), and algorithmic speed (see also Table 1 for typical CPU times required for the en-
tanglement analysis). The geometric approaches supersede PPA speeds by several orders of magnitude,



Int. J. Mol. Sci. 2009, 10 5074

Figure 13. Same as Figure 12 for a larger packing fraction, ϕ = 0.60. For a better compari-
son, values range exactly as in Figure 12. Averages obtained from the distribution have been
collected in Table 1.
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Figure 14. Central routine of the Z1 code finds the shortest path for two adjacent segments
(solid lines) in the presence of none, one (a), two (b), or more obstacles. Each obstacle
correspond a point which belongs to the contour of a different chain (not shown), and which
intersects with the plane spanned by the two segments. Z1 locates potentially intersecting
points efficiently, and operates at a variable number of nodes characterizing the shortest path.
The central routine is iteratively applied to all pairs of adjacent segments until the multiple
disconnected path has converged to a minimum length. The algorithm scales linearly with
the total number of particles.

(a) (b)

and they are essentially parameter–free. All approaches return the primitive path network, in particular
the length of the PP. The geometric approaches had been used to define a additional number of entangle-
ments directly without referring to the statistics of the PP, while it had been always pointed out that the
number of entanglements, albeit necessarily being based on the complete information of the primitive
path, is not uniquely defined.

4.2. Algorithmic Details of the Z1 Code

Within the Z1 algorithm the primitive path is a connected (mathematical) path of straight segments.
Contour length of the multiple disconnected path is monotonically reduced by iteratively applying basic
moves of the type shown in Figure 14. The physical information of this path is not the number of
segments, but the shape and total contour length of the path. The algorithmic version may have 10
successive bonds at vanishing bond angle (and even vanishing length), but the physical information is
the same if the 10 bonds would be replaced by a single straight bond with the total length of the 10 shorter
bonds. The bond length of the algorithmic version is therefore not identical with what is commonly called
a step length of the primitive path. A step length (Kuhn length [149]) is usually defined as the length
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Figure 15. The primitive path of an individual chain is mainly characterized by its contour
lengthLpp and end–to–end distanceR. The application Z1 provides not only these quantities,
but information about the number of kinks. A number of possibilities are shown, where
two (a,b) and three (c,d,e) chains meet, respectively. Cases (b) and (c) we call multiple
entanglement events. In (a) and (d), one or more kinks meet a straight line.

(a) (b) (c)

4 kinks    2 kinks1 kink 6 kinks3 kinks

(d) (e)

of a hypothetical segment, so that the end-to-end distance of the primitive path and its contour length
(which is the same in any of its representations) matches the corresponding expressions for a random
walk. The primitive path does not belong to the class of ideal chains, insofar, it cannot be characterized
by a single step length, in general. If one prefers to characterize it by a single step length, one has to
use a statistical model (such as the random or semiflexible walk). Within the Z1 code, in order to obtain
a physical path which carries information about entanglements, one removes non-physical information
from the mathematical version, by disregarding nodes which do not change the direction of the path,
and by disregarding (”removing”) segments of vanishing length (it is just an algorithmic detail, that
vanishing means small and finite due to number precision; for the same reason one regards a bond angle
as ”vanishing”, if the cosine of the bending angle is above a threshold, which is 0.99 in Z1). The bond
length of the resulting physical Primitive Path (PP) is thus nonzero, and its bond angles are nonzero.
The remaining internal nodes had been called ”interior kinks”, their number been denoted as Z. Such
an interior kink, examples shown in Figure 1, might be identified with an entanglement, because the
kink can only be displaced to the expense of an increase of the length of the entanglement network
(mechanically disfavored).

Obviously, a number of kinks then corresponds to the number of changes in direction along the PP,
but does not inform us on how many chains contributed to their existence, see Figure 15. All kinks are
a result of at least two chains interacting, while chains can also interact without producing kinks on all
(at least two) involved paths. A PP can only bend if there is at least one chain obstructing it. And in the
general case there are kinks where two, three, or more chains exactly meet at a kink. Within the above
mentioned picture of a step length, which requires a single chain model, this also does not matter. It
matters only if we want to understand if the number of chains entangled with a given chain is larger than
the number of kinks, which is possible for several physical cases, but improbable for others. First of all,
PPs of several (say x) chains could meet in the same point in space, cf. Figure 15. If we assume that all
involved PPs exhibit a kink at this point, we would have x interior kinks due to a multiple entanglement
with x chains (Figure 15b–c). If all kinks were originated by twin events, and if the same chains would
not exactly meet in the same point in space, but still would be all entangled, we would count 2x interior
kinks (Figure 15e). Secondly, a straight segment can give rise to a kink on a neighboring chain, so that
such an entanglement would have a single kink in total (Figure 15a), and less than 2x kinks, in general
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Figure 16. Two system size effects potentially occurring during the construction of the PP,
when chain dimensions exceed box dimensions. (a) Shown is an unfolded single chain,
whose ends are residing within a central simulation cell. The system is subjected to periodic
boundary conditions. Because self–entanglements are excluded from the calculation of the
PP, the information about connectivity has to be kept, to see, that the chain in (a) is unentan-
gled. If this information is not used, self-entanglements will be underestimated, depending
on system size. (b) Shown are two out of 26 cells surrounding the central cell shown in (b).
Periodic images can however entangle and are treated as different chains as to minimize sys-
tem size effects in the determination of the PP. Concerning the algorithm it is of importance
to prevent using segments of the PP which exceed box size. The PP (not shown for this
graph, cf. previous Figures 1 and 15) is thus best represented by sufficiently many, nodes,
i.e., more nodes than visible kinks, in Figure 1.

(a) (b)

unentangled

entangled with periodic image

(Figure 15d) while a mutual entanglement, where both chains bend, has two kinks (Figure 15b). From
this discussion it is clear that there is some information missing between number of interior kinks and
number of entangled chains, while the former alone is used to define a step length of the PP. Because
chains do not slide past each other within the Z1 code, the probability for a multiple entanglement
(Figure 15c), where all chains bend at the entanglement point is expected to be small. It is simple to
invent other measures, but all of them will be lacking a connection to truly topological quantities in a
strict mathematical sense.

4.3. Comment about Self-Entanglements

There is, in addition, an issue to be discussed which is relevant if the system size is small compared
with the size of the chains. This issue had not been thoroughly addressed in the literature, and gives
rise to confusion whenever computational resources are not sufficient to study a large enough system.
As already mentioned, within the Z1 code periodic images of the same chains are treated as different
chains, while all connected parts of a chain belong to the same chain, regardless of its size compared
to simulation box size, see Figure 16. Self-entanglements have to be excluded from the analysis, as per
original definition of the PP. It is thus important to keep information about connectivity during the PP
analysis. Still, the results are prone to be biased in several respects, if chains sizes exceed system sizes,
but the above choice attempts to minimize the bias. Other issues like the so–called correlation hole (see,
e.g., [149]) potentially enter the discussion about self–entanglements and system–size effects.
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Table 1. Comparison between results for small and large systems (with same 〈N〉) at two
packing densities ϕ. Results denoted as 〈Z〉 (interior kinks) and 〈Lpp〉 (contour length of the
PP), i.e., without a prime, are based on classical procedure for monodisperse melts. The en-
tanglement molecular weight is evaluated via Ne = 〈N〉/〈Z〉, cf. [109] for a discussion. We
report CPU times (on a modern, conventional laptop) required to analyze a single configura-
tion. Differences between small and large systems we have carefully traced back to be caused
by the different polydispersity between small and large systems. The corrected quantities,
denoted with a prime, have been evaluated via Eqs. (8) and (9), Z∗ = 〈N〉(d/dN)〈Z/N〉
and N∗e = 〈N〉/Z∗, respectively, where individual {N,Z} values for each chain enter, rather
than their system averages. As is obvious from the table, while polydispersity effects seem to
play a minor role in the large system, the correction is important for the small one. Because
the values for the small systems sandwich the ones for the large system, and because the
difference between the values for small and large systems is within errors, we do not detect
any measurable finite size effect. An independent estimate of the entanglement molecular
weight can be based on 〈Lpp〉 rather than 〈Z〉 or Z∗, cf. [109].

system chains 〈N〉 〈R2〉1/2 CPU time 〈Lpp〉 〈Z〉 Z∗ Ne N∗e
ϕ = 0.45

small 6 500 31.1 0.12 s 83.5 11.8 13.2 42.4 37.9

large 162 500 30.8 7.93 s 84.0 12.2 12.2 40.9 40.9

ϕ = 0.60

small 6 500 27.9 0.16 s 75.5 11.6 13.0 43.1 38.5

large 162 500 28.1 8.34 s 78.3 12.6 12.6 39.7 39.7

4.4. Estimating the Entanglement Molecular Weight

With one of these measures, the contour length 〈Lpp〉 of the primitive path, or the number of entangle-
ments (here, Z), together with quantities which are already defined on the original chain, 〈N〉, and 〈R2〉,
one can estimate an entanglement molecular weight, ideally for a monodisperse system. This quantity,
denoted as Ne, is defined to characterize a system composed of infinitely long chains. Unfortunately, it
has always to be estimated from information about systems at finite chain length, which poses a practical
problem mainly in the world of simulations.

There are remarkable and important deviations between the statistical properties of weakly entangled
and infinitely long, infinitely entangled, chains, i.e., between the regime where Z is not yet proportional
to N , and the regime where it has approached this scaling behavior, which must ultimately happen for
uniform, linear chains. These differences have been addressed recently by Hoy et al. in [109]. They
reviewed earlier estimators and proposed new ones, for both the case where information about kinks
(Z) is available, and the one where Ne is estimated based on 〈Lpp〉 and 〈R2〉. The main findings were:
(i) Ne is best obtained from the linear variation of Z with N , i.e., by assuming Z = Z0 + N/Ne

with two coefficients Z0 (which should be negative) and Ne, the entanglement molecular weight; (ii)
One has to take into account the characteristic ratio CN when estimating Ne using Lpp values. The
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entanglement molecular weight appears here because it is defined to be the ratio between 〈N〉 and 〈Z〉,
in the limit of large 〈N〉. The quantity Z0 reflects the fact, that a minimum amount of material is required
to produce a single entanglement. We expect it to depend on the molecular details of the model and state
variables such as temperature, which influence, e.g. the flexibility of chains. Upon applying the proposed
procedure, we can evaluate a corrected value for Z, denoted as Z∗, which is free from both polydispersity
effects and effects of finite chain length via

Z∗ = 〈N〉 d
dN
〈Z(N)〉 (8)

Here, the averages are calculated using all pairs of {Z,N} values for the individual chains (Figure 17
shows representative data). The quantity 〈Z(N)〉 is obtained using Z values for the subsystem of chains
of size N , and thus depends on N . The derivative becomes independent on chain length when 〈N〉
exceeds Ne. For the systems investigated here, this is clearly the case. Thus, Z∗ is proportional to 〈N〉
and characterizes the entangled state of the polymeric system. This quantity can be used to estimate
finite size effects of the MC generation procedure. With Z∗ at hand we can immediately calculate an
entanglement molecular weight, Ne, because it is defined as the ratio between N and Z in the limit of
large N . We thus have

N∗e =
〈N〉
Z∗

(9)

with Z∗ obtained via Equation (8) from the simulation data. Values Z∗ and N∗e are listed in Table 1. As
is obvious from this table, while polydispersity effects seem to play a minor role in the large system, the
correction is important for the small one. Because the values for the small systems sandwich the ones
for the large system, and because the difference between the values for small and large systems is within
errors, we do not detect any measurable finite size effect. An independent estimate of the entanglement
molecular weight can be based on 〈Lpp〉 rather than 〈Z〉, cf. [109].

5. Conclusions

We have reviewed the salient methodological characteristics of an hierarchical modeling scheme for
the molecular simulation of model polymer systems, and mentioned open questions. The present ap-
proach combines Monte Carlo simulations, based on chain-connectivity altering moves that undertake
the task of system generation and equilibration and a direct geometrical algorithm that renders the par-
ent polymer configurations into a primitive path mesh and fully identifies the topological constraints
(entanglements) between different chains. While the proposed algorithmic approach is general and can
be applied to any polymer system irrespective of the chemical constitution, repeat units or molecular
architecture, we have placed particular emphasis on the application on model random packings of linear
freely-jointed chains of tangent hard spheres of uniform size. We have clearly demonstrated that the
MC-based long-range equilibration of these systems is affected by neither the molecular length of the
chain nor by the volume fraction (packing density). In addition, we have analyzed the effect of system
size in key structural properties like chain size, contour length of the primitive path, number of entan-
glements and entanglement molecular weight. Finally, we have commented about the issue of treating
self-entanglements in the analysis, and the difficulties which prevent us from identifying entanglements
as (a fixed number of) kinks of the primitive path, while the underlying goal is to avoid any assumptions
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Figure 17. Ratios Lpp/N (left) and Z/N (right) vs. N , for the tangent hard sphere system
at ϕ = 0.60 (small system size, 6 chains). Each point is obtained from data for a sin-
gle chain of chain length N , during the MC. While both quantities are roughly constants,
there are important o(N−1) corrections [109] which lead to differences in the entanglement
molecular weights and quantities listed in Table 1. The variance of Lpp/N tends to decrease
with increasing N , and importantly, Lpp/N weakly decreases with N . Same for Z/N , but
in addition, points have to fall onto lines because the number of kinks, Z, for an individ-
ual chain, is an integer. The thin straight lines result from linear regression which allows
to determine a polydispersity-corrected number of kinks, and corresponding entanglement
molecular weight, cf. Equations (8) and (9).

about the statistics of the primitive path. Correlations between segment vectors along the PP rather than
a number of kinks can be used to characterize the properties of the PP as returned by the Z1 code, but as
long as the measured correlations produce a single number (like a persistence length), this number should
be related to a number of kinks. We have demonstrated how, starting from state-of-the-art simulation al-
gorithms for atomistic, chemically-simple polymer melts, we can arrive, mainly through simplifications
of the original implementation, on new moves tailored to provide rapid and robust equilibration in the
simulation of model random packings of hard-sphere chains. Through extensive Monte Carlo simula-
tions based of the sEB and sIEB moves [115], reaching the order of trillions (O(1012)) of steps, we were
able to identify the maximally random jammed (MRJ) state for model polymer systems and show that
hard-sphere chains can be as efficiently and as densely packed as the monoatomic analogs do [118]. Ad-
ditionally, the local structure and packing of the chain assemblies were studied and analyzed as a function
of packing density and compared against the ones of monomeric hard-sphere systems [119,120]. In com-
bination with the introduction and employment of new metrics [154] for the determination of local order
(crystallinity) we studied the spontaneous entropy-driven disorder-order transition in dense systems of
athermal chain molecules [155]. By extending the MC simulations to long macromolecular systems the
dependence of chain size on packing density was studied and the characteristic scaling regimes (dilute
[8,156,157], semi-dilute [8,156,157], marginal [145,156] and concentrated [8,145,156,157]) along with
the corresponding scaling exponents were identified and compared against theoretical expectations in
the whole density range [145]. Finally, through the combination of the equilibrated MC trajectories with



Int. J. Mol. Sci. 2009, 10 5080

advanced topological algorithms for the extraction of entanglements [101,102] and knots [158–160] we
analyzed the effect of concentration on topological hindrance that steams either from intramolecular
(knots) or intermolecular (entanglements) constraints [146,147].

The reviewed methodology can be applied to follow the dynamics of the primitive path, and to study
the fluctuations of the primitive path characteristics, in order to extract quantities such as the tube survival
probability and shear modulus [112,150–153]. The efficient calculation of the entanglement network fur-
ther allows to build Monte Carlo algorithms devoted to create polymeric system with given entanglement
characteristics, by tuning, e.g., density, stiffness or architecture of the polymers. The outlined method-
ology will also be required to set up a so called “beyond equilibrium molecular dynamics” (BEMD)
algorithm, which is devoted to self-consistently obtain the “building blocks” (Poisson bracket, entropy
gradient, friction matrix, cf. [102,161,162,164]) of the time evolution equation for some slow, relevant
system variables. For polymer melts, these variables might involve properties such as contour length,
tube diameter, stiffness, or number of interior kinks of the entanglement network [25,113,165,166]. So
far the BEMD strategy has only been demonstrated for rarefied gases [102,163] and unentangled polymer
melts [40].

Current efforts and future applications further include the molecular modeling of polymer samples
of varied molecular architecture in the bulk and at nano-interfaces at various descriptions of detail. The
proposed hierarchical scheme for the simulation of the hard-sphere chains is being presently expanded
so as to include dynamical and rheological information at and beyond equilibrium.
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101. Kröger, M. Shortest Multiple Disconnected Path for the Analysis of Entanglements in Two- and
Three-Dimensional Polymeric Systems. Comput. Phys. Commun. 2005, 168, 209–232.
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Entanglements, and Knots of Model Chain Molecules. Phys. Rev. Lett. 2008, 101, 265702.

148. http://www.complexfluids.ethz.ch/cgi-bin/Z1/, accessed on 21 November 2009.
149. Rubinstein, M.; Colby, R.H. Polymer Physics; Oxford University Press: Oxford, UK, 2003.
150. Harmandaris, V.A.; Kremer, K. Dynamics of Polystyrene Melts through Hierarchical Multiscale

Simulations. Macromolecules 2009, 42, 791–802.
151. Svaneborg, C.; Everaers, R.; Grest, G.S.; Curro, J.G. Connectivity and Entanglement Stress Con-

tributions in Strained Polymer Networks. Macromolecules 2008, 41, 4920–4928.
152. Larson, R.G. Looking inside the Entanglement ”Tube” Using Molecular Dynamics Simulations.

J. Polym. Sci. Part B 2007, 45, 3240-3248.
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