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Abstract: The first algorithm for Emulsion Stability Simulations (ESS) was presented at 
the V Conferencia Iberoamericana sobre Equilibrio de Fases y Diseño de Procesos [Luis, 
J.; García-Sucre, M.; Urbina-Villalba, G. Brownian Dynamics Simulation of Emulsion 
Stability In: Equifase 99. Libro de Actas, 1st Ed., Tojo J., Arce, A., Eds.; Solucion’s: 
Vigo, Spain, 1999; Volume 2, pp. 364-369]. The former version of the program consisted 
on a minor modification of the Brownian Dynamics algorithm to account for the 
coalescence of drops. The present version of the program contains elaborate routines for 
time-dependent surfactant adsorption, average diffusion constants, and Ostwald ripening.  

Keywords: Flocculation, Coalescence, Adsorption, Surfactant, Drops, Ostwald, 
Simulations, Emulsion, Deformation. 

 

1. Introduction 

Emulsions are dispersions of two immiscible liquids, kinetically stabilized by the action of a 
surface-active substance known as a surfactant. The role of the surfactant in emulsion stability is 
decisive. Even the external phase of the emulsion resulting from the mixing of oil (O) and water (W) 
depends on the surfactant solubility [1-5]. In the absence of surfactants, drops aggregate rapidly as a 
consequence of the van der Waals force. Surfactants adsorb to the interface of the drops creating a 
repulsive barrier that decelerate aggregation and Ostwald ripening. They also favor the occurrence of 
immobile interfaces, delaying the drainage of the intervening film between flocculated drops [6]. 
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Conversely, surfactants lower the interfacial tension of these O/W/O films, favoring the appearance of 
surface oscillations and holes. Depending on their interfacial properties, these films can drain and 
rupture or remain stable for long periods of time [7-10].  

In order to understand the role of the surfactant in the stability of emulsions, simulations can be a 
valuable tool. However, there are severe computational restrictions for the simulation of emulsions 
apart from the large number of processes involved. First, the number of surfactant molecules in a 
typical system is very high even at dilute concentrations. Hence, it is not possible to simulate the 
movement of surfactant molecules explicitly along with the movement of the drops. Second, the time 
step of the simulation has to be very small in order to sample appropriately the potential of interaction 
between the drops. Third, drops of small size exhibit Brownian motion due to their thermal interaction 
with the solvent [11]. This has to be taken into account into their equation of motion. Fourth, it is not 
possible to simulate the behavior of drops using a constant potential as it is done in molecular 
dynamics. The potential of interaction changes with time as a consequence of surfactant adsorption 
and the progressive decrease of interfacial area of the emulsion due to the coalescence of drops. This 
demands the frequent calculation of the interfacial properties that determine the forces between  
the particles. 

In this review we concentrate on the evolution of oil-in-water (O/W) emulsions composed of non-
deformable drops. The next section introduces the technique of Brownian Dynamics simulations and 
the most relevant aspects of the classical theory of Derjaguin-Landau-Verwey-Overbeek (DLVO). 
Section 3 describes the algorithm of Emulsion Stability Simulations (ESS) in detail. In section 4 some 
illustrative results of ESS are discussed. Following, the modifications of the former algorithm required 
for the simulation of deformable drops are outlined. The paper finishes with a brief conclusion and  
the bibliography.  

2. Brownian Dynamics (BD) Simulations  

The movement of one small particle (1 nm – 10 μm) diffusing in a quiescent media is the result of 
external and random forces. Random forces represent the effect of millions of collisions occurring 
between the solvent molecules and the particle surface. In the absence of external forces the energy for 
the displacement of a spherical particle is provided by the solvent, which at the same time takes away 
some energy from the particle in the form of friction. The whole process is a manifestation of the 
Fluctuation-Dissipation theorem that is expressed concisely in the form of the Stokes-Einstein 
equation [11-12]: 

TkfD B=~  (1) 

In this equation, D~ and f stand for the diffusion tensor and the resistance tensor of the particle (or a 
set of particles), and kB is the Boltzmann constant. In the case of a spherical particle the diffusion 
tensor is diagonal and its three components are equal (D). According to Equation (1), the absolute 
temperature of the reservoir (T ) is kept constant while the movement of the particle occurs, although 
there is a continuous exchange of energy between the particle and the solvent. This stochastic process 
can be described analytically in terms of the Langevin equation [13]. The solution of Langevin’s 
equation for one spherical particle provides explicit expressions for its mean square displacement and 
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its diffusion constant (D). The diffusion constant turns out to be proportional to the temporal 
correlation of the random fluctuations of the particle movement. The overall effect of the interaction 
between a suspended particle and the surrounding molecules is a random drift in the trajectory of the 
particle, whose displacement shows a Gaussian distribution with zero mean and a standard deviation 
equal to tDΔ2  along each co-ordinate axis. Here tΔ  is the lapse of time considered and D is the 

diffusion constant of a solitary particle [13]. 
The diffusion tensor can be evaluated from the resistance tensor: TkfD B

1~ −=  for a particle 
moving through the liquid as a consequence of external, hydrodynamic or interparticle forces. In turn, 
the resistance tensor can be obtained from the drag force experienced by the particle when it moves 
through the fluid at a constant velocity v [14]:  

vfF −=  (2)  

The specific form of the diffusion constant of a sphere depends on the velocity of the liquid at the 
particle surface. If the surface is rigid and smooth, the velocity of the fluid becomes zero at the surface. 
In this case the diffusion constant comes out to be RTkDD B ηπ60 == , where: η  and R  are the 

shear viscosity of the solvent and the radius of the particle, respectively.  
In the case of liquid drops, porous spheres, and bitumen drops, the diffusion constant can be 

expressed as: 
)1(

0 corrfDD =  (3)  

where )1(
corrf  is a correction function depending on the characteristics of the O/W interface [14].  

The addition of more particles to the system increases the complexity of the problem considerably. 
First, the random movement of the particles must be connected in such a way that they fulfil the 
Stokes-Einstein relation. Second, the movement of each particle generates fluxes (disturbances) in the 
solvent which affect the movement of the surrounding particles and its own. Thus, it is necessary to 
account for hydrodynamic interactions between the particles. Third, the particles interact with 
deterministic forces other than external forces. Thus, their movement is a combination of deterministic 
hydrodynamic and random forces. 

One of the most widely used algorithms for Brownian Dynamics simulations is the one of Ermak 
and McCammon [15]. In this formalism the position of a particle at time t+Δ t, ( )ttri Δ+  is equal to: 

( ) ( ) [ ] ( )tRtTkFDrDtrttr i
j

Bjij
j

jijii Δ+Δ+∂∂+=Δ+ ∑∑ ~000  (4)  

where the superscript “0” indicates that the variable is evaluated at the beginning of the time step. 
Subscripts i and j run over the particle coordinates (1 Nji 3, ≤≤ ). Fj is the sum of interparticle and 
external forces acting on direction j. Dij are the components of the diffusion tensor. The gradient of the 
diffusion tensor (second term on the right hand side) can usually made equal to zero selecting a tensor 
that depends on the distances between the particles and not on the particles coordinates. The third term 
on the right hand side stand for deterministic contributions and the fourth term correspond to the 
random displacements. A random deviate has the form: 
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( ) ∑=Δ
i

j
jiji XtR σ~  (5)  

Here Xj stands for a random variable sampled from a Gaussian deviate generator: 0=iX , 

tXX ijji Δ= δ2 , where ijδ is the Kronecker delta. The weighting factors are given by: 
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 (7)  

According to the Ermak and McCammon equation (4) is compatible with a Fokker Planck 
description of the problem in the phase space. In the past, our group carried out the implementation of 
the above-mentioned algorithm with different tensors including Oseen, Rotne-Prager, and Batchelor’s 
[16] finding several limitations of this technique for emulsion stability calculations. Equations (5)-(7) 
describe a particular method for taking the square root of the diffusion tensor ( tDΔ~2 ). However, the 

methodology suggested (Cholesky decomposition [17]) only works with particles of equal radii, and 
dilute systems. Other methods found in the bibliography like the QR decomposition also fail in 
simulations of polydispersed concentrated systems. This failure is caused by the assumption of pair 
wise additive hydrodynamic interactions. These schemes overestimate the hydrodynamic fluxes 
generated between the one central particle and its neighbours. They do not take into consideration that 
the flux coming from a particle located in the second coordination layer is partially screened by the 
inner neighbours. Dickinson suggested that the assumption of pair wise hydrodynamic interactions 
might even lead to negative diffusion constants [18].  

When an average diffusion constant is used instead of a tensor, its value is de-coupled from the 
random deviates. Using this approximation and 0DD = , we quantified the kinetic energy of micron-

size particles produced by the random fluctuations of the Box-Muller algorithm [17]. The kinetic 
energy was computed from the time step of the simulation and the displacement of each particle in the 
absence of deterministic and external forces. It was observed that fluctuations as high as 10,000 kBT 
must be allowed in order to reproduce a mean square displacement equal to: tDr Δ= 62 . Cut off 

thresholds in the value of the deviates corresponding to kinetic energies of 1000 kBT and 100 kBT fail 
to reproduce the correct value of 2r . It was evident that values of the displacement corresponding to 

the outskirts of the Gaussian distribution are necessary in order to simulate the Brownian movement of 
the particles correctly [19]. 

The above considerations are profoundly related to the outcome of ESS calculations and its 
discussion is not a mere technicality. The most famous theory of colloidal stability, Derjaguin-Landau-
Verwey-Overbeek’s DLVO theory [20] is based on the problem of diffusive passage over a  
potential barrier.  

The presence of a strong repulsive force between the particles generates a potential barrier and two 
minima at each side of the barrier (Figure 1).  
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Figure 1. Classical DLVO potential. The curve corresponds to the interaction potential 
between two 3.9-μm drops of dodecane (AH = 5.03 x 10-21 J) suspended in water. The drops 
are partially covered with sodium dodecyl sulfate (Cs = 10-4 M, zs = -0.2057) using a 
homogeneous surfactant distribution (Section 3).  
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On the one hand, primary minimum flocculation occurs at very small distances of separation and is 
assumed to be irreversible. Irreversible meaning that the aggregates formed do not separate if one 
lowers the ionic strength of the solution, increasing the repulsive force. This behaviour is due to the 
strong van der Waals force experienced by the particles at short distances of separation. On the other 
hand, secondary-minimum flocculation is usually reversible for small particles and could be 
“irreversible” for micron size drops [21]. Irreversible meaning in this case that the minimum is deep 
enough to prevent the particles from moving in and out of the potential well. 

The occurrence of primary minimum flocculation depends on the diffusive passage of the particles 
over the potential barrier. According to Chandrasekhar [22] and Kramer [23] the probability of 
“jumping” over the barrier decreases exponentially with the size of the barrier. In order to account for 
the effect of the barrier on primary minimum flocculation, Fuchs [24] defined a “Stability ratio” W. 
The complete formula of W was deduced later by McGown and Parfitt [25]:   

( )[ ] ( ) ( )[ ] ( )∫∫
∞∞

==
ii R

BA
R

BT
slow
f

fast
f drTkVrrfdrTkVrrfkkW

2

2

2

2 expexp  (8)  

Here fk stands for the flocculation rate. It can be either fast ( fast
fk ) or slow ( slow

fk ) if the potential of 

interaction between the particles is only due to attractive forces (VA) or caused by a combination of 
attractive and repulsive (VR) contributions (VT = VA + VR). In Equation (8) the dependence of the 
friction on the distance between the particles (r) has been remarked. Numerical evaluations of 
Equation (8) lead Prieve and Ruckenstein [26] to a very useful relation between the height of the 
repulsive barrier (ΔV) and the stability ratio: 

( ) ( )140.0log −Δ= TkVW B  (9)  
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Fuchs demonstrated that the theory of Smoluchowski [27] for fast flocculation could be 
conveniently modified in order to incorporate the average effect of a repulsive barrier through the 
stability ratio. Thus, the change in the total number of aggregates of a dispersion per unit volume (n), 
can be written as: 

( ) ( )Wtnkntn fast
f 00 1 +=  (10)  

where n0 = n(t = 0).  
According to Equations (8)-(10) a repulsive barrier produces large values of W which retard the 

attainment of primary minimum flocculation. A measure of colloid stability towards flocculation is 
given by the half lifetime of the dispersion t1/2. This is the time required for a decrease of n0/2 in the 
initial number of aggregates: 

002/1 1 nknkWt slow
f

fast
f ==  (11)  

In the case of non-deformable drops, primary minimum flocculation implies coalescence. Drops that 
jump over the repulsive barrier necessarily coalesce since there is no other repulsive force to prevent 
it. Due to the irreversible nature of the coalescence process the correct simulation of the diffusion 
tensor and the random deviates is critical.  

3. Emulsion Stability Simulations (ESS) 

3.1. Equation of Motion  

Emulsion Stability Simulations start from a cubic box that contains N drops randomly distributed. 
The particles move with an equation of motion similar to the one of Brownian Dynamic Simulations 
[28-30]: 

( ) ( ) ( ) ( ) [ ]aussGtdDtTkdDFFtrttr ieffBieffiext
j

jiii

rrrrr
Δ+Δ

⎪⎭

⎪
⎬
⎫
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⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++=Δ+ ∑ φφ ,2, ,,,  (12)  

In Equation (12) subscripts i and j refer to particles i and j. The displacement of particle i during 
time Δt: ( ) ( )trttr ii

rv −Δ+ , is the result of two contributions. The second term on the right hand side of 

Equation (12) represents the effect of deterministic forces acting on particle i. It is composed of inter 
particle ∑

j
jiF
r

 and external forces iextF ,

r
. These forces move i with a constant velocity 

( ) TkdDFF Bieffiext
j

ji φ,,, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+∑
rr

during time Δt, where ( )φ,, dD ieff  is an effective diffusion constant.  

In the case of non-deformable particles ( )φ,, dD ieff  is calculated following the methodology 

described in Ref. [30]. At every step during the simulation the space around particle “i” is divided in 
three spherical regions. If at least one neighbour particle reaches the internal region: intrdrij =<  

(where: ( ) ( )trtrr jiij
rv −= ), the formula of Honig et al. [31] is used to compute the diffusion 

constant of i. Otherwise the volume fraction of particles around i ( tint exij rrr << ) is used to evaluate an 
empirical expression of ( )φ,, dD ieff  [30]. Particles located at extij rr >  do not contribute to the 

hydrodynamic interactions of i. For spherical particles, ( )φ,, dD ieff  is equal to ( ) )2(
, , corrieff fDdD =φ , 
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where )1(
0 corrfDD =  (Equation (3)). The first correction term ( )1(

corrf ) takes into account those factors 

that change the expression of the diffusion constant of a particle at infinite dilution (D) [14]. The 
second correction term )2(

corrf  takes into account hydrodynamic interactions caused by the movement of 

the surrounding liquid as the particles move [30]. 
The program includes several forms for )1(

corrf  and )2(
corrf . However, in almost all simulations of non-

deformable droplets previously reported, we assumed ideal spherical particles with zero tangential 
velocity at their surfaces, for which 1)1( =corrf . Thus, we concentrated on the effect of the hydrodynamic 
interactions generated by the neighbour particles of i, ( ) )2(

0, , corrieff fDdD =φ , with: 

2)2( 91.0734.10.1 φφ +−=corrf  for extij rrr <<int , (13)  

And: 

( ) ( )20.13646 22)2( +++= uuuufcorr  for  intrrij ≤  (14)  

In Equation (13) φ stands for the local volume fraction of oil around a central particle “i”, and  

( ) 0
~RRRru jiij −−=  (15)  

where iR  is the radius of particle i, and 0
~R  a radius of a reference. The third term on the right hand 

side of Equation (12) gives the random deviates of the moving particles. The stochastic vector 
aussG
r

stands for a set of random numbers generated by the Box-Muller algorithm. The characteristic 
mean square displacement of the Brownian movement is obtained multiplying each random deviate 
by ( ) tdD ieff Δφ,2 , . 

In ESS, non-deformable drops coalesce if the distance between their centres of mass gets smaller 
than the sum of their radii: 

jiij RRr +<  (16) 

When this occurs a new drop is created at the centre of mass of the coalescing drops. The radius of 
the new drop results from the conservation of volume: 

3 33
jinew RRR +=  (17) 

3.2. Interaction Forces and the surface excess 

In ESS the attractive force between the drops is determined by the effective Hamaker constant of 
two oil drops separated by water [32-33]. This constant (AH) is often of the order of 10-21 J for 
hydrocarbons and lattices. In the case of Bitumen some old experimental evidence indicated a value of 
AH ~ 10-19 J, but recent evaluations suggest a much lower value (AH ~ 10-21 J).  

The van der Waals potential for two spherical drops of different radius (R1, R2) is equal to [32]: 

( ) ( ) ( ) ( ) ( )( )[ ]yxxyxxxyxyxxyxyxxyxyAVV HvdWA ++++++++++++−== 2222 ln212  (18)  

here: 12 Rhx = , 12 RRy = , and 21 RRrh ij −−= .  

There is always an attractive force between two drops of similar composition suspended in aqueous 
media. However, the repulsive force depends on the characteristics of the O/W interface and the type 
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of surfactant adsorbed. Oil drops often exhibit an electrostatic surface potential between -10 mV 
(octacosane [34]) and -35 mV (benzene [35]) when suspended in water. This charge originates from 
the preferential adsorption of OH- ions to the oil/water interface. If this is the case, an initial value of 
the surface charge per unit area (σ0) can be introduced as input in order to reproduce the total value of 
the surface charge σT in the absence of surfactants.  

When ionic surfactants are present, they add their charge to the initial surface charge of the drop 
(σ0): 

 ( ) ( ) Γ+=Γ+=+= ezRezARNez sisiiisT 0
2

0
2

0 44 σπσπσσ  (19)  

Here Ni, Ai, zs, e stand for the number of surfactant molecules attached to drop i, the area of the 
drop: 24 ii RA π= , the effective valence of a surfactant, and the unit of electrostatic charge (1.6 x 10-19 

Coul.). Γ stands for number of surfactant molecules per unit area at the oil/water interface. The 
interfacial area of one surfactant molecule at maximum packing (As = 1

max
−Γ ) is typically of the order of 

50 Å2 [36]. It depends on the adsorption time and on the way the surfactant partition between the 
immiscible phases and the interface.  

The effective charge of an ionic surfactant molecule (q = zs e) can be calculated from the zeta 
potential (ζ) of a drop saturated with surfactant molecules. In the most usual situation zs is varied until 
the experimental value of ζ is reproduced. This calculation is done assuming that σ0 = 0. In this case, 
the effective charge of the surfactant contains the contribution coming from the hydration layer. It is 
also possible to use a finite value of σ0 to reproduce the surface potential of an oil drop in water, and 
then vary zs to fit the value of ζ. The value of zs results from apportioning the effective charge of a drop 
to a discrete number of surfactant molecules (0.17 ≤  zs ≤  0.23 [37]). 

The estimation of q requires knowledge of the maximum number of surfactant molecules in each 
drop. This number is equal to: 

siis ARN 2max
, 4π=  (20)  

The current version of the program contains four analytical expressions for the calculation of the 
electrostatic force [38-42]. The formalism of Sader et al. [39-41] was used in previous simulations of 
non-deformable drops. According to these authors, the electrostatic potential between two spherical 
drops is given by Equation (21): 

( ) ( )[ ] hRRrjBiBCTkV jiijBE κexp=  (21) 

where: 
2

04 eTkC B εεπ=  (22) 

( ) ( ) ( )iiP RRiB κκγ Ω+Ω+Φ= 14  (23) 
( )4tanh PΦ=γ  (24) 

( ) ( )324 γγ−Φ=Ω P  (25) 
In Equations (21)-(25), 0ε is the permittivity of vacumm, ε  the dielectric constant, κ-1 the Debye 

length, and Tke BP 0Ψ=Φ the reduced electrostatic potential of the particle at its surface. The 

relation between the surface charge and the surface potential is given by: 
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( )( ) QRRTke PPiiPPBT
22sinh2 Φ−Φ−Φ+Φ= κκεκσ  (26) 

where: 

( ) ( )[ ]PPiPP RQ Φ−Φ−Φ−Φ= 4sinh24tanh4 κ  (27) 

Notice that knowledge of σT and the ionic strength of the solution allow the numerical evaluation of 
the surface potential from Equation (26), as well as the rest of the variables (Equations (22)-(25)) of 
the potential (Equation (21)). Since the ionic strength is set by the experimental conditions, and σT 

depends on the surface excess, only Г is required in order to calculate the electrostatic potential 
between suspended drops.  

Surfactants can be ionic, non-ionic, zwitterionic, and have a complex molecular structure. Hence, 
the interaction potential between the drops can vary amply. The program of ESS includes expressions 
for van der Waals, electrostatic, oscillatory, depletion, hydration, and steric forces.  

 In the case of non-ionic surfactants the stabilization force between emulsion drops is assumed to be 
steric [43-44]. Steric forces are composed of an osmotic (mixing) contribution and an elastic one: 

( ) ( )hVhVV elastosmsteric +=  (28) 

where h stands for the minimum distance between the surfaces of the drops. The mixing contribution is 
generated by the cross linking of the hydrophilic chains of the surfactants of each drop. The elastic 
force comes from the drastic modification of the surfactant conformation at close distances of 
separation between the particles. We developed expressions for both types of contributions modifying 
the equations reported by Vincent [45] and Bagchi [46]. On the one hand, Vincent used simple 
analytical formulas to describe the distribution of polymer monomers perpendicular to a planar 
interface. Following he used the Derjaguin approximation [47] to evaluate the expression of the free 
energy of mixing deduced by Flory and Krigbaum [48], for two spheres stabilized with polymer 
molecules. On the other hand, Bagchi calculated the exact volume of overlap between the polymer 
layers of two colliding drops, but used the Flory-Huggins [49] expression for the calculation of the free 
energy. Lozsán et al. [43] showed that the methodology of Vincent with the exact calculation of the 
volume of overlap is equivalent to the methodology of Bagchi if the free energy is evaluated with the 
expression of Flory-Krigbaum.  

The ESS code has several expressions for the calculation of the steric interactions [43] including the 
expression of De Gennes [50]. An example of these expressions is given by Equation (29) for 
distances between δ < h < 2δ [43-44]: 

 
( ) ( )[ ]( )( )

( ) ( ) ( )( )jijiji

jiwBosm

RRhRRhRR

xhVTkhV

++−−+++

−−=

232223

22/134
2

2

δ

δχφφ
 (29)  

In Equation (29) Vw stands for the molar volume of the continuous phase, χ is the Flory-Huggins 
solvency parameter, and iφ stands for the volume fraction of surfactant molecules in the interfacial 
layer of drop i. In order to estimate iφ  it is usually assumed that the hydrophobic chain of the 

surfactant is dissolved in the oil phase, and only its hydrophilic chain lies in the outer region of the 
drop. If the density of hydrophilic chains in the interfacial layer is assumed to be constant, iφ  can be 

expressed in terms of the surface excess [44]: 
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( )( )33
23 iiii RRR −+Γ= δρφ  (30) 

where: ρ2 stand for the density of the hydrophilic chain. 
As in the case of the electrostatic potential, the steric potential depends on some parameters and is a 

function of the surface excess.  

3.3. Surfactant Distribution (Evaluation of the surface excess) 

The value of the surface excess of a surfactant at the interface of emulsion drops cannot be 
measured directly. It is extrapolated from the variation of the interfacial tension in systems with a 
macroscopic O/W interface. Unfortunately, emulsions are constantly evolving, continuously changing 
their drop size distribution and total interfacial area, AT:  

∑=
i

iT AA  (31) 

As a result, the surface excess is not constant and the interaction potential between the drops 
changes as a function of time.  

Ionic surfactants are not soluble in the oil phase. They can migrate to the oil phase in the form of 
inverse micelles if the salt concentration of the system is unusually high. In the typical case, ionic 
surfactants adsorb to the O/W interface before they form micelles. The amount of surfactant required 
for the complete coverage of the interface can be larger or equal to the critical micelle concentration 
(CMC). It varies with the volume fraction of oil (φ) and AT. The larger the values of φ and AT, the 
higher the surfactant concentration required for the complete coverage of the drops. 

In the case of non-ionic surfactants the situation is more unpredictable. The partition of non-ionic 
molecules depends on the affinity of its lipophilic and hydrophilic moieties for the oil and water 
phases. For example, the partition coefficient of alkylphenol oligomers between water and n-alkanes is 
equal to [51]: 

ACNSACNmKm 03.00425.045.075.3log +−+−=  (32) 

where m is the number of ethylene oxide units in the surfactant molecule, SACN is the number of 
carbon atoms in the alkyl chain of the surfactant, and ACN is the number of carbon atoms in the n-
alkane molecule. The adsorption of surfactant molecules depends on time and on several formulation 
variables like the number of methylene groups of the oil molecule (Equation (32)), the salt 
concentration, the presence of alcohol molecules in the system, etc. Furthermore, adsorption can be 
reversible or irreversible [52-53]. 

The routines of surfactant distribution attempt to recreate the most common experimental situations. 
The strategy of ESS is to apportion the surfactants to the interfaces of the drops in such a way that it 
reproduces the variation of the surface excess in the experimental system. Consequently, only the 
movement of the drops is considered explicitly in Equation (12). 

Some of the routines for surfactant distribution have a formal theoretical background [54-55]. Some 
others are only practical approximations to the very complex problem of surfactant diffusion and 
adsorption [56-57]. These routines resemble the cases of Homogeneous and Non-homogeneous 
surfactant distributions. The effect of non-homogeneous distributions results from an incomplete 
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mixing of the emulsion components. Most recent studies concern the cases in which the surfactant is 
evenly distributed among the surfaces of the drops. Three examples of these strategies are  
given below. 

3.3.1. Homogeneous Surfactant Distribution with fast and irreversible surfactant adsorption 

This is the simplest methodology. It consists in ascribing to each drop a number of surfactant 
molecules ( isN , ) proportional to its interfacial area. 

TiTs
i

iiTsis AANAANN ,,, =⎟
⎠

⎞
⎜
⎝

⎛
= ∑        ( max

,, isis NN ≤  ) (33) 

Here TsN , stands for the total number of surfactant molecules in the system. Equation (33) can 

always be applied regardless of the total surfactant concentration available. It resembles the cases in 
which: (a) the surfactant adsorption is very fast in comparison to the collision of drops; (b) the mixing 
conditions are homogeneous; (c) the adsorption is irreversible.  

If the number of drops decreases as a consequence of coalescence, Equation (33) can be used to 
recalculate the number of surfactant molecules adsorbed to the remaining drops. The number of 
surfactant molecules of each drop increases as the calculation progresses because the total interfacial 
area of the emulsion decreases as the drops coalesce. However, the interfacial area of one surfactant 
molecule cannot be lower than its minimum cross-sectional area at the O/W interface ( sA ). Hence, 

isN , cannot exceed siis AAN =max
, . If the number of surfactants in the system surpass the amount 

required for the complete coverage of all the drops, the value of isN ,  is set equal to max
, isN . 

3.3.2. Homogeneous Surfactant Distribution with time-dependent surfactant adsorption 

 In the case that the adsorption is basically controlled by the diffusion of surfactant molecules from 
the bulk to the subsurface [58], the surface excess is a function of the total surfactant concentration CT, 
the diffusion constant of the surfactant Ds, and the time:  

( ) ( ) 2/12 πtDCt sT=Γ  (34) 

The mechanism of surfactant adsorption can be very involved, including barriers of adsorption, 
reorientation at the surface, etc. However, Liggieri et al. [59] demonstrated that most process of mixed 
adsorption kinetics can be reformulated in terms of a diffusion controlled mechanism (Equation (34)) 
if Ds is substituted by an “apparent” diffusion constant (Dapp). Furthermore, this equation is also 
compatible with the findings of Hua and Rosen [60-61] for a large number of surfactants with different 
molecular structures. According to these authors, the surface tension of most surfactants shows four 
characteristic regions of change known as: the induction period, the fast-fall region, the meso-
equilibrium region and the equilibrium region. The time required for the surface pressure to drop to 
half its value at mesoequilibrium, is found to follow Equation (35). This equation allows estimating the 
value of Dapp required for the evaluation of Equation (34).  

( )( ) ( ) 2/14loglog2)log( appT DCtt π+Γ=  (35) 
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The routine of time dependent surfactant adsorption uses Dapp , and CT as input, estimating the value 
of the surface excess from ( ) ( ) 2/12 πtDCt appT=Γ . The number of surfactant molecules of drop i is 

calculated according to Equation (36) [55]: 

( ) ( ) ( )tRtAtAAN iisiis Γ=Γ== 2
, 4π  (36) 

Here ( )tAs  stands for an “effective” area per surfactant molecule at the oil/water interface. As ( )tΓ  
increases, ( )tAs decreases, increasing the number of surfactant molecules adsorbed to each drop. 

3.3.3. Equilibrium Surfactant Distribution (Gibbs) 

Equilibrium isotherms are only attained after long periods of time. In this routine we assume that: a) 
the adsorption of surfactant is very fast, and b) equilibrium adsorption is obtained instantaneously.  

Gibbs isotherm only applies to that range of surfactant concentration between the beginning of the 
decrease of the interfacial tension CT = C1, and the Critical Micelle Concentration (CMC). When CT ≥ 
Ccmc the maximum number of surfactants per drop is already adsorbed: isN , = max

,isN (Equation (20)). 

When CT ≤ C1 the change in the interfacial tension often shows a small maximum. We disregard this 
feature of the experimental curve. Instead we approximate the low concentration limit either by a) 
using an additional Gibbs isotherm between CT = 0 and CT = C1; or b) calculating an average surface 
excess including the point CT = 0, γ = γ0.  

In terms of finite differentials the equation of Gibbs is equal to:  

( )1212 log~ CCTkc B Γ−= γγ  (37) 

where c = 1 or 2 depending on the type of surfactant and the ionic strength of the solution. Assuming 
proportionality between the suggested value of the tension and the number of surfactant molecules 
adsorbed: 

( ) [ ]max
,,1212 isis NNγγγγ −+=                ( )12 γγ <  (38) 

Equation (38) is very convenient because it expresses the tension in terms of the surfactant 
population of each drop. According to Equations (37)-(38): 

[ ]( ) ( ) cmcTcmcisBis CCNTkcN γγγγ >−Γ−= 111
max
,, log~  (39) 

Equation (39) gives the number of surfactants attached to drop i as a function of the total surfactant 
concentration in the system. Here, 1γ  stands for the value of the interfacial tension at C1. The value of 
Гi is obtained from Equation (39) dividing isN ,  by Ai. Notice that there might be cases in which the 

number of surfactant molecules in the system might not be enough to cover the drops according to 
Equation (39). In those cases a homogeneous surfactant distribution is applied (Equation (33)) despite 
the initial selection of the Gibbs routine. 

3.4. Ostwald Ripening  

Although a large number of numerical techniques are available for the simulation of Ostwald 
ripening [62-66] they are based on population balance equations and cannot be incorporated into the 
algorithm of ESS. In order to simulate the process of Ostwald ripening we included the algorithm of 
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De Smet et al. [67-69] in our ESS code. The fundamental equation of this method is derived from the 
Fick’s law and the Kelvin’s equation assuming α << Ri : 

( ) ( ) ( ) ( )( )1~4, −∞= tRtRCDdttdn cioilio απ  (40) 

Here, ion ,  stands for the number of molecules of oil in particle i. oilD~ refers to the diffusion constant 
of an oil molecule. ( )∞C  stands for the aqueous solubility of the oil in the presence of a planar O/W 
interface. Rc is the critical radius of the emulsion equal to [70]: 

( ) ∑=
i

ic R
N

tR 1  (41) 

Here N is the total number of drops. Parameter α is the so called capillary length, defined as: 
TRVm

ˆ2γα =  (42) 

In Equation (42) Vm is the molar volume of the oil and R̂ the gas constant. Defining: 

( ) ( ) ( ) 1−= tRtRtP cii  (43) 

and: 

( ) tCDM m Δ∞= απ4 , (44) 

A simple equation for the exchange of oil molecules is obtained: 

( ) ( ) ( ) ( )tPtMtnttn iioio +=Δ+ ,,  (45) 

At any step of the simulation there exists a critical radius Rc of the emulsion. Particles with Ri < Rc , 
dissolve while particles with Ri > Rc grow. Particles with the same radius as the critical radius Ri = Rc 
preserve their size. The number of molecules exchanged by particle i is equal to the product ( ) ( )tPtM i .  

In ESS the value of M(t) is set once the time step of the simulation is chosen, ( ) MtM = . When the 
smallest particle i = small contains fewer molecules than the number it should lose according to 
Equation (45), M(t) is substituted by:  

( ) MntM smallo ,=  (46) 

Recently we implemented a new procedure to avoid a substantial decrease in the number of 
particles [71]. The simulation starts from a given Drop Size Distribution (DSD) of N0 drops, and 
evolves until it reaches N(t = t’) = N1 = 200. At this point, a new Drop Size Distribution (DSD) with N 
= N0 drops is built. This can be achieved approximating the probability distribution of particle sizes by 
the relative number of drops of each size existing at time t = t’:  

( ) ( ) 1',~ NtRNRP ii =  (47) 

where ( )', tRN i  is the number of drops with radius Ri existing at time t’. Thus, the number of drops of 
size Ri in the new distribution, ( )',' tRN i , is equal to: 

( ) ( ) ( ) ( )1010 ',',',' NNtRNNtRNNtRN iii ==  (48) 

Use of Equations (47)-(48) produces a new DSD with N0 drops that exactly matches the old one. 
The auxiliary code also calculates the new size of the simulation box, which is required in order to 
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preserve the initial volume fraction of oil with the new set of particles. Once the input file is modified 
and the new distribution read from an external file, the program generates a new set of co-ordinates for 
the new particles. As in the beginning of the simulation the particles are distributed at random avoiding 
overlap. At this point the code resumes the calculation of the main cycle (see below). 

3.5. The Algorithm of ESS 

The algorithm for ESS is shown in Figure 2 in the form of a flowchart.  

Figure 2. Flowchart of Emulsion Stability Simulations. 
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At the beginning of the simulation the code reads or generates a drop size distribution and a set of 

co-ordinates for each particle. Additionally, the time step(s) of the simulation (single or double) must 
be specified. A combination of a small time step and a large one is used for the calculation of dilute 
dispersions [72]. For this purpose a distance of closest approach (dmin) must also be selected. The 
maximum range of the interaction potential usually approximates this distance (50 nm ≤ dmin ≤ 100 
nm). A double time-step calculation implies the use of a longer time step (ΔtL) when the particles are 
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far apart from each other, rij > dmin . If the distance between two particles becomes equal or lower than 
dmin, all particles are returned to their previous positions, and a small time step (ΔtS) is used in 
Equation (12) until ∑ Δ=Δ LS tt . This technique is efficient in those cases where the repulsive 

potential does not prevent coalescence. Otherwise the drops aggregate making rij always lower than 
dmin. This causes the continuous use of ΔtS after the first floc is formed. 

After the creation of the DSD, the program distributes the surfactant molecules among the drops. 
There are 11 routines to cover the most common experimental situations. 

At this point the interfacial tension of each drop can be determined. The calculation of the diffusion 
constants is also executed here, because some of its expressions depend on interfacial parameters. 
First, the program assigns the diffusion constant of Stokes to all particles according to their radius. 
Second it makes the corrections necessary to account for the effect of the interfacial properties and 
hydrodynamic interactions on the diffusion constant ( )1(

corrf  and )2(
corrf  ). 

Following, the forces are calculated and the drops are moved according to Equation (12). If the 
Ostwald ripening mode is selected, the oil molecules are exchanged at this point, and the program 
follows the path indicated by the thin solid arrows in Figure 2. Otherwise the program follows the path 
indicated by the thin broken-line arrows. In the latter case, the program checks for coalescence after 
the particles are moved. In the former case the program checks for coalescence after the exchange of 
oil molecules takes place. 

If coalescence occurs, the total interfacial area of the emulsion changes along with the volume of 
one (or several) drop(s). Therefore the surfactant population had to be redistributed among the drops. 
The same occurs if Ostwald ripening happens. However, in the latter case a minimum number of drops 
must be maintained. Therefore, the program checks if the remaining number of drops is higher than a 
fixed value (N(t = t’) > N1). If this is the case, the program proceeds with the redistribution of 
surfactant molecules. Otherwise, the program stops. An auxiliary program is used to build a new drop 
size distribution with N = N0 = N (t = 0) drops. This program also calculates the new size of the box 
necessary to keep the volume fraction of oil constant with the new set of particles. The new 
distribution is read from a file by the program of ESS. The co-ordinates of the new particles are then 
generated and the main cycle of ESS continues.  

If the Ostwald ripening process is not selected, the program neither exchange oil molecules nor 
does it re-builds the drop size distribution when N(t = t’) ≤  N1. In this case the code follows different 
routes depending on the outcome of the coalescence check. If coalescence occurs it is necessary to re-
assign the surfactant population. If it does not occur there are two possibilities. If one of the routines of 
time-dependent adsorption is used, it must recalculate the surfactant population anyway. If this is not 
the case, the program proceeds with the evaluation of the hydrodynamic interactions and a new  
cycle begins.  

It is important to remark at this point that the change of the number of particles during the 
simulations is only equal to the variation of the number of aggregates in the absence of a repulsive 
force. This was demonstrated quantitatively in Ref. [73].  

Whenever a repulsive barrier is present, the change in the number of aggregates as a function of 
time has to be calculated at the end of the simulation using a different program [21, 73-74]. This 
additional code uses as input the positions of the particles produced during the simulation and a fixed 
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flocculation distance. The flocculation distance is usually approximated by the position of the 
secondary minimum of the interaction potential. When these computations are finished, statistical data 
regarding aggregates, flocs, radius of gyration, etc, is obtained. 

4. Results 

The general results of the simulations can be classified into three categories depending on the total 
surfactant concentration of the system [74]. 

4.1. Low surfactant concentration 

If the surfactant concentration is not enough to stabilize the initial drop size distribution, drops 
coalesce as soon as they collide with each other. Hence, the change in the number of particles is equal 
to the change in the number of aggregates [73]. In this case, the systems follow the dynamics of 
Smoluchowski, in the sense that the number of aggregates changes as predicted by Equation (10) with 
W = 1 [72-73]: 

( ) ( )tnkntn fast
f 00 1+=  (49) 

The value of fast
fk depends on the mean free path between the drops and their attractive force. For 

volume fractions between 10-5 ≤ φ  ≤ 0.30 and a Hamaker constant AH ~ 10-21 J [72]:  

( ) ( )φ04.8exp1044.6 18−= xk fast
f  m3/s (50) 

In the case of AH ~ 10-19 J: 

( ) ( )φ41.15exp1055.9 18−= xk fast
f  m3/s (51) 

Notice that the value of fast
fk differs from the theoretical estimation of Smoluchowski 

( η34 Tkk BS =  ~ 6.11 x 10-18 m3/s) based on the Brownian motion of the particles only. 
The attractive force between the drops increases the value of fast

fk while the hydrodynamic forces 

decrease it. For AH ~ 10-21 J the effect of the attractive potential is small and the hydrodynamic 
interactions dominate (see Figure 8 in Ref. [29]). These are the cases of hydrocarbon-in-water 
emulsions and latex dispersions. For AH ~ 10-19 J (polar oils, metal salts) the attractive force dominates. 
In either case, the effect of the volume fraction remains. As φ increases the mean free path between the 
drops decreases. This diminishes the time of diffusion between the collisions of the particles, 
increasing the value of fast

fk .  

Notice that Equation (49) was intended to explain the phenomenon of irreversible flocculation of 
solid particles. Danov et al. [75] demonstrated that Equation (49) also applies to emulsions subject to 
the simultaneous processes of flocculation and coalescence. For this demonstration no distinction was 
made between aggregates formed by the collision of smaller flocs, and those of the same size resulting 
from the partial coalescence of flocculated drops. Similarly, no distinction was made between single 
particles formed through coalescence, and those initially present at t = 0. These are the same 
assumptions we use for determining the variation of the number of the aggregates as a function of 
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time. Danov et al. also supposed a constant collision kernel, but did not make any specific hypothesis 
regarding the coalescence rates.  

The fact that Equation (49) holds for coalescing emulsions is related to the suppositions followed by 
Smoluchowski for determining the flocculation rate. He pictured the case in which one particle was 
fixed in space while the others collided with it as a consequence of a gradient of concentration. This 
gradient was established as soon as t > 0 between the collision radius of the fixed particle and the bulk 
of the liquid. However, the density of particles at the collision radius was assumed to be equal to zero 
during the whole aggregation process. Hence, the fixed particle acted as a perfect sink. Every particle 
that collided with the fixed particle was assumed to disappear at the moment of the collision. 
Moreover, the collision efficiency of a cluster composed of single particles was estimated using the 
same procedure, but employing the average hydrodynamic radius of the aggregate to approximate its 
collision radius. As a result of these assumptions, the process of flocculation described by the theory of 
Smoluchowski “includes” the possible occurrence of instantaneous coalescence. Instantaneous 
meaning that the time required for coalescence is negligible in comparison to the time required  
for flocculation. 

Inhomogeneous surfactant distributions as well as reversible adsorption, also lead to fast 
aggregation and to the coalescence of drops, favouring the validity of Equation (49) [54]. The same 
occurs if the surfactant does not adsorb rapidly to the O/W interface (Dapp < 10-12 m2/s) [55]. 

Figure 3. Smoluchowskian decrease of the number of aggregates as a function of time. 
Subscripts “a”, “in agg” and “agg” stand for: the number of aggregates plus single particles 
( )aN , the total number of particles in aggregates ( )agginN , and the number of flocs ( )aggN , 

respectively (AH = 1.24 x 10-19 J).  
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The data of Figure 3 corresponds to system #12 in Refs. [19, 73]. The surfactant concentration in 

the system (Cs = 10-5 M) is not enough to prevent the coalescence of drops during the course of the 
simulation. Hence, the number of single particles is equal to the total number of aggregates ( )aN . The 
number of aggregates constituted by two or more particles ( )aggN  is zero, as well as the number of 
particles in aggregates ( )agginN . 
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In general, the initial interfacial area of an emulsion is higher than the one that can be stabilised 
with the surfactant concentration available. In this case a Smoluchowskian drop in the number of 
particles occurs at short times. In the preparation of emulsions, chemical methods usually employ a 
larger surfactant concentration than mechanical ones. This favours the formation of a repulsive barrier 
as soon as the drops are formed. In this case, the dynamic of aggregation is not expected to follow 
Equation (49). 

4.2. Intermediate surfactant concentration. Insufficient surfactant molecules to prevent the initial 
coalescence of drops 

According to ESS of non-deformable droplets, the variation of the number of aggregates in the 
presence of an appreciable repulsive barrier conforms to a remarkably simple expression [73]: 

( ) ( )[ ]tnkBtnkAnna 02010 exp1 −++=  (52) 

where A, B, k1 and k2 are constants and B = 1 - A. The second term in Equation (52) results from the 
consideration of the coalescence rate as a first order process, depending on the number of flocculated 
doublets. We used a Smoluchowskian term to represent flocculation and an exponential term to 
represent coalescence. Hence, k1 and k2 were formerly ascribed to the flocculation rate ( slow

fk ) and the 

coalescence rate (kc), respectively [73]. Coefficients A and B measure the extent of these two processes 
during the simulation. The curve described by Equation (52) generally shows a pronounced initial 
decrease followed by a much slower change in the number of aggregates per unit volume 
( VNn aa = ). See Figure 4. The initial decrease corresponds to the combined processes of flocculation 

and coalescence (FC period). During the FC interval, the total interfacial area of the emulsion 
decreases. This causes a substantial redistribution of surfactant molecules amongst the remaining drops 
if a homogeneous surfactant distribution is assumed. As a result there is a progressive increase in the 
repulsive potential between the drops, which slows down both destabilisation processes.  

Equation (52) was able to reproduce the behaviour of 34 simulations, including different DSDs, 
surfactant concentrations, number of particles, volume fractions (0.01 ≤ φ  ≤ 0.30), and spatial 
distributions. This is remarkable since the structure of the aggregates and their spatial distributions 
changed considerably from one system to another.  

We have also compared the prediction of Equation (52) with some unpublished experimental data 
on dodecane-in-water nano-emulsions (φ  = 0.20, T = 25 C) obtaining good results. For this purpose 
the average radius of the emulsion was measured as a function of time. The number of particles was 
estimated dividing the total volume of oil by the average volume of a drop at each time. Based on the 
results of the previous section (4.1), we approximated the number of aggregates by the number of 
particles during the FC period, and used Equation (52) to fit the results. The fitting is shown in Figure 
5 along with the experimental data (green circles). Notice that the experimental curve shows a sharp 
decrease in the FC rates after a pronounced initial drop in the number of particles. Equation (52) also 
appears to fit the data beyond the FC interval.  
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Figure 4. Behavior of system #13 from Refs. [19, 73-74]. The subscripts are the same of 
Figure 3. (φ = 0.22, Cs = 8.65 x 10-5 M, AH = 1.24 x 10-19 J).  
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Figure 5. Variation of the number of particles as a function of time for a dodecane in water 
nano-emulsion stabilized with Brij 30 (φ  = 0.20).  
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Series expansions of the exponential term and the flocculation function of Equation (52) around t = 
0, showed that these two functions are very similar. In fact, it is possible to exchange the pair of 
coefficients corresponding to each process (A, k1) ↔ (B, k2) and obtain a fitting of similar quality. This 
demonstrated that the processes of flocculation and coalescence are mixed in the kinetic rates of 
Equation (52). Moreover, it was also observed that Equation (52) was able to fit a terminal aggregation 
stage in those systems in which the number of particles stabilises after a certain period of time. 

It was also found that the interfacial area of the emulsion after ~200 seconds was proportional to the 
number of surfactant molecules. The slope of this curve provides a measurement of the area per 
surfactant molecule that is required (~ 236 Å2) in order to avoid an initial pronounced drop in the 
number of particles. Using the effective charge of a surfactant molecule (0.21e), the corresponding 
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value of the surface charge can be obtained (σ = 13.95 mCoul/m2). The electrostatic surface potential 
can also be calculated (Ψ0 ~44 mV) using the relation between σ and Ψ  (Equation (26)). 
Unexpectedly, these values do not correspond to a positive magnitude of the potential energy for the 
referred systems. Instead, they correspond to the appearance of a shoulder at negative values of the 
potential energy (see Figure 6-7). This shoulder originates the secondary minimum (for 
which 0=∂∂−= rVFi ), along with a small potential barrier. Yet, this barrier occurs at negative 

values of the interaction potential where an attractive force between the particles exists. 

Figure 6. DLVO potential (red line) between two spherical drops of bitumen (Ri = 0.39 
μm) with a surface charge of σ = 13.95 mCoul/m2 (Ψ0 ~44 mV, AH = 1.24 x 10-19 J). The 
ionic strength of the solution is equal to 1.4 x 10-2 M. The van der Waals potential is shown 
in blue. 
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Figure 7. Potential energy between two spherical drops of bitumen (Ri = 3.9 μm) with a 
surface charge of σ = 13.95 mCoul/m2 (Ψ0 ~44 mV, AH = 1.24 x 10-19 J). The ionic strength 
of the solution is equal to 1.4 x 10-2 M.  
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From the variation of na vs. t (or Na vs. t) in the systems studied (see Figure 4) it is clear that a 
considerable stabilisation is reached shortly after the FC interval. At this point, several factors may 
favour the decrease of the flocculation rate. The number of remaining drops after the FC period is 
smaller and the mean free path between the drops is larger than it was at the beginning of the 



Int. J. Mol. Sci. 2009, 10             
 

 

781

simulation. Moreover, the diffusion constant of the remaining drops is smaller since it is inversely 
proportional to the radius of the drops. However, these factors are likely to produce a progressive 
decrease of the FC rate as is observed in Figure 8. Instead a sharp change in the behaviour of na was 
observed in most systems studied in Ref. [73].  

We believe that the drastic change in the slope of na vs. t is basically caused by the increase of the 
repulsive force between the remaining particles of the emulsion. In this regard it should be noticed that 
when the particles execute Brownian motion, their kinetic energy is lost in a short period of time. As a 
result, the total energy of the drops should approach closely the potential energy curve. Hence, the 
absence of a driving force at the secondary minimum ( 0=∂∂−= rVFi ) should slow down 

considerably the movement of small drops. In this situation a small repulsive force could be enough to 
prevent primary minimum flocculation (coalescence). 

Figure 8. Behavior of system #12 from Refs. [19,73-74]. The subscripts are the same of 
Figure 3. ( φ = 0.16, Cs = 4.10 x 10-5 M, , AH = 1.24 x 10-19 J). 
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A more conventional effect of the repulsive barrier was observed in the simulation of hexadecane-
in-water nanoparticles (Ri = 200 nm) stabilized with nonyl phenol ethoxylated (NPE) surfactants. In 
these calculations the repulsive potential was assumed to be steric, and the interfacial area of the 
surfactant molecules was kept constant during the whole simulation. These calculations showed that 
there is an analytical relationship between the height of the repulsive barrier of the interaction potential 
and the stability ratio: 

( ) ( )1493.0log −Δ= TkVW B  (53)  

This equation is very similar to Equation (9) except for the method of evaluation of VΔ and W. 
Equation (9) was deduced from the systematic evaluation of Equation (8) for the case of solid particles 
suspended in water. Instead Equation (53) was deduced from emulsion stability simulations of liquid 
drops exposed to flocculation and coalescence. In the present case VΔ  was measured from the base of 
the secondary minimum up to the top of the potential barrier. In the former case the height of the 
barrier was measured from V = 0. Moreover, Equation (8) was deduced assuming the validity of the 
formalism of Smoluchowski (Equation (10)). However, the plot na vs. t does not follow the Equation 
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(10) in the presence of a sizeable repulsive barrier. Instead, we redefined W in terms of the half-
lifetime of the dispersion:  

fastslow ttW 2/12/1=  (54)  

Equation (54) results from the inverse proportionality between the half-lifetime and the flocculation 
rate suggested by Equation (11). However, it does not depend on the particular form of the curve  
of na vs. t.  

4.3. High surfactant concentrations 

Equation (8) does not impose any restriction to the value of W: the higher the potential barrier the 
higher the stability ratio. However, according to ESS of non-deformable drops [44], the number of 
particles of the emulsion is preserved when the repulsive barrier between the drops is higher than 

TkB7.12 . In this case the dynamics of the system depend on the depth of the secondary minimum of 
the interaction potential [21].  

According to Verwey and Overbeek [20] a 25-kBT barrier is necessary for a 7-day stabilization of a 
concentrated emulsion (n0 ~ 1014 m-3). This corresponds to W = 109. Much higher values of the 
stability ratio (1010 – 1017) are found in the literature published between 1917 and 1940 (see Refs. [21, 
76] and citations therein). These high stability ratios mostly correspond to sols of very small particles 
(between 20 nm and 200 nm). Much lower values of W (1 ≤W ≤  100) are found for latex suspensions 
(see Table 1 in Ref. [21]).  

The wide range of stability ratios reported during the past century is partially caused by the 
inadequate definition of W. The first expression of W deduced by Fuchs [24] compared the actual 
value of the flocculation rate with the theoretical value predicted by Smoluchowski. These stability 
ratios tend to be high since Smoluchowski did not include the effect of the attractive force in the 
calculation of fast

fk ( η34 Tkk BS = ). However, even when the correct expression of W is used 

(Equation (8)), its value rarely surpasses 1000 for particles between 0.5 μm and a few microns. These 
low values of W do not agree with the fact that most of these particles exhibit a high repulsive barrier 
against primary minimum flocculation (Equations (9)).  

We studied this problem in Ref. [21] using several particle sizes and interaction potentials. Varying 
the surface charge of the particles and the ionic strength of the solution, it was evident that particles 
between 10 nm and 100 nm usually show very shallow secondary minima or no secondary minima at 
all. Micron size particles instead show deep secondary minima.  

The simulations indicated that the systems with barrier heights higher than 20 kBT preserve the 
number of particles (coalescence does not occur during the extent of the simulation). In these cases the 
depth of the secondary minimum determines the evolution of the system. On the one hand, shallow 
minima do not lead to aggregation [21,74]. Hence, the total number of aggregates (na) oscillates 
frequently around the number of particles indicating the sporadic formation of doublets and their quick 
dissolution. On the other hand, deep secondary minimum promotes fast flocculation. In this case 
irreversible secondary-minimum flocculation occurs. The random fluctuation of the number of 
aggregates previously observed with shallow minima does not occur. The particles do not go in and 
out the secondary minimum as it happened in the former case. The curves of na vs. t show a 
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progressive decrease as a function of time, as it is usually exhibit in the case of fast aggregation. It is 
important to realise that deep secondary minimum often occur at high ionic strength, where the 
repulsive barrier and the secondary minimum are closest to the particle surface.  

Recently Kuznar and Elimelech studied the deposition of micrometer-sized particles on a single 
layer of packed glass beads using a flow-cell [77]. The colloidal particles used had a mean diameter of 
4.1 μm. The diameter of the glass spheres was 1 mm. The shapes of the DLVO potential between the 
particles and the glass beads (Figs. 6-7 in Ref. [77]) were very similar to those reported by our group 
in Figure 1 of Ref. [21]. In the experiments of Kuznar and Elimelech the depth of the secondary 
minimum varied from -0.62 kBT at 1 mM KCl to -21.7 kBT at 30 mM. The repulsive barrier of the 
DLVO potential changed from 5029 kBT (at 10 mM) to 1089 kBT (at 30 mM). Notice that huge values 
of W result from introducing these potential barriers into Equations (9) or (53). Hence, these high 
repulsive barriers should prevent the deposition of particles over the glass beads. However, this 
behaviour was only observed at 0 mM KCl where the highest repulsive barrier occurred. At 100 mM 
the repulsive barrier was completely screened by the counter ions, and large amounts of latex particles 
were deposited. These two findings agree with the theory of DLVO. However, between 10 mM and 30 
mM increasing amounts of latex particles were deposited. This behaviour completely contradicts the 
predictions of DLVO. Moreover, when the ionic strength was decreased after the deposition of the 
particles, most of them were washed out, but some of them remained attached to the glass beads. In a 
previous article [78] Tufenkji and Elimelech reported deviations from the classical colloid filtration 
theory in the presence of repulsive DLVO interactions. According to these authors, the fast deposition 
of microbial particles on porous columns was caused by the combined effect of favourable and 
unfavourable colloidal interactions. The authors related the deposition rates to the influence of deep 
secondary minimum in the aggregation process, proposing a dual-deposition model that includes slow 
and fast aggregation rates. 

The experimental evidence described above strongly supports the predictions of Ref. [21]. Hence, it 
is possible to obtain fast secondary-minimum flocculation in systems of micron-size particles even in 
the presence of a high repulsive barrier. 

Figure 9 shows unpublished experimental data regarding the aggregation of 96-nm sulfonated latex 
particles. This latex was synthesised by Ms. K. Rahn and Dr. A. Lozsán at the University of Almería, 
Spain, under the tutorage of Dr. M.S. Romero-Cano. The experimental values of W shown in Figure 9 
(blue symbols), were evaluated from the initial slope of the absorbance (Ab) of latex suspensions as a 
function of time [79]: 

( ) ( )csaltMcsalt dtdAbdtdAbW 1==  (55)  

In Equation (55) subscript “csalt” stands for the salt concentration of the solution (ionic strength). 
Theoretical values of W were estimated following a methodology similar to the one reported in Ref. 
[80]. In the present simulations we take advantage of the fact that primary minimum flocculation 
implies coalescence for non-deformable droplets. Hence, we approximated the flocculation time 
between two latex particles in the experimental set up, by the coalescence time between two non-
deformable drops with the same interaction potential. The drops were initially located 20 nm apart 
from each other. The average coalescence time -at each ionic strength- was estimated from 100 
simulations, which only differ in the initial value of the random number generator.  
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fast
avec

slow
avec ttW ,,=  (56)  

For the evaluation of slow
avect ,  the complete DLVO potential was used. For fast

avect ,  only the van der 

Waals contribution was included.  
These calculations are the simulation analogue of the numerical evaluation of Equation (8). While 

many-particle calculations give information about the evolution of the emulsion and the structural 
characteristics of the aggregates formed, two-particle simulations are restricted to the evaluation of the 
time required for primary-minimum flocculation. However, these calculation are fast and provide all 
the information necessary for the evaluation of W.  

As shown in Figure 9, the value of the stability ratio tends to 1 at high ionic strengths and steeply 
increases below 570 mM NaCl. The values of W produced by the simulations vary non-monotonously 
around the experimental measurements. This could be caused in part by the low number of calculations 
used to compute the average values of the coalescence time. Notice also that we could not evaluate the 
stability ratio corresponding to 400 mM NaCl, because in this case the repulsive barrier was higher 
than the coalescence threshold of TkB7.12  ( VΔ ≥ TkB7.12 ). The calculation corresponding to 400 
mM NaCl has been running since several months ago, and not a single coalescence event has  
been observed.  

In our view, the agreement between theory and experiment shown in Figure 9 is reasonable. This 
suggests that the coalescence times determined by ESS for systems of non-deformable particles should 
be meaningful.  

Figure 9. W values of 96-nm latex suspensions at several ionic strengths.  
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4.4. Time-dependent adsorption 

On the one hand a 0.1 g/L solution of sodium dodecyl sulfate (SDS) causes a drop of 15 mN/m in 
the interfacial tension of a dodecane/water system in a period of 100 s [81]. On the other hand a diluter 
solution of SDS (CT = 0.014 g/L) achieves the same fall in only 6 s in the presence of 0.1 g/L NaCl. 
Which chemical condition is more effective for stabilising a dodecane-in-water emulsion considering 
that the electrostatic interaction is screened in the latter case?  

In order to throw some light into this problem, we computed the evolution of a set of oil-in-water 
emulsions with volume fractions between 0.10 ≤≤ φ 0.40, apparent diffusion constants in the range 
10-12 m2/s ≤≤ appD 10-9 m2/s, and two surfactant concentrations CT = 1 x 10-4 M, and CT = 5 x 10-4 M 

[55]. These parameters cover an ample range of experimental situations. Non ionic surfactants usually 
show diffusion limited adsorption [58,82]. A typical value for their diffusion constant is 10-10 m2/s, 
unless their molecular weight is very large. Ionic surfactants show kinetically limited adsorption [59]. 
This means that the molecules approaching the interface experience the electrostatic repulsion of those 
previously adsorbed. Hence, the apparent diffusion constant of these molecules could be substantially 
lower than 10-10 m2/s. Furthermore, according to Rosen et al. [60,61] a concentration of 5 x 10-4 M is 
the lowest surfactant concentration required to achieve a 1-second surface tension reduction that does 
not change much if the surfactant concentration is increased. In these simulations the surfactant was 
assumed to be ionic. Therefore, the interaction potential between the drops was supposed to be DLVO. 
Up to our knowledge this was the first off-lattice simulation that took into account the effect of time-
dependent surfactant adsorption along with the explicit movement of the drops. The question we 
addressed in that article was: Under what conditions of φ , CT , and appD  is dynamic  

adsorption relevant? 
The stability of an emulsion depends on the balance between: a) the mean time between the 

collisions of the drops, and b) the time necessary for a sufficient surfactant adsorption.  
A close look at Equation (49) indicates that the half lifetime of the emulsion, defined as:  

f
fast
f tnkt == 02/1 1 , (58) 

is also equal to the mean time between collisions ( ft ). This time depends on the volume fraction of oil, 

the attractive force between the drops, their initial spatial distribution and the polydispersity of the 
DSD. The value of ft  can be calculated from ESS in the absence of a repulsive force. For 
monodisperse drop size distributions, AH = 1.24 x 10-19 J, and φ = 0.10, 0.20, 0.30, 0.40, ft  is equal to 

45.2 s, 7.6 s, 1.0 s, and 0.14 s, respectively. 
The time required for an effective surfactant adsorption can be roughly estimated from Equation 

(34) assuming maximum surface excess: ( ) sAt 1=∞=Γ  ( sA = 50 Å2): 

( )sTsmsa DCAt 224π=  (57) 

Table 1 shows the values of tmsa as a function of appD  and CT. The value of appD depends on the 

molecular structure of the surfactant and other environmental parameters as the salt concentration, the 
temperature of the system, and the type of oil. 
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Table 1. Time required for maximum surfactant adsorption (tmsa). 

appD (m2/s) TC (M) msat  (s) 

1 x 10-9  5 x 10-4 0.03 
1 x 10-9 1 x 10-4 0.87 
1 x 10-10 5 x 10-4 0.35 
1 x 10-10 1 x 10-4 8.67 
1 x 10-12 5 x 10-4 34.7 
1 x 10-12 1 x 10-4 867 

 
 Comparison of the values of tf with the ones of tmsa (last column of Table 1) shows that a typical 

non-ionic surfactant ( appD = 10-10 m2/s) can stabilize emulsions with φ  ≤  0.30 if a minimum 

concentration of 5 x 10-4 M is used. The lower surfactant concentration (CT = 1 x 10-4 M) can only 
stabilize emulsions with φ  ≤  0.10. The exact value of the volume fraction in these estimations 
depends on the total interfacial area of the dispersion. The larger the interfacial area the higher the 
surfactant concentration required. For the extreme case of appD = 10-12 m2/s, a concentration of 5 x 10-4 
M can only stabilize an emulsion with φ  ≤  0.10. 

If the surfactant concentration is high CT = 5 x 10-4 M, and its diffusion constant fast appD  = 10-9 
m2/s, the initial drop size distribution of the emulsion is preserved [55]. In the opposite case, appD = 10-

12 m2/s, CT = 1 x 10-4 M, complete destabilisation of the system is obtained. The most common cases 
happen between these extreme situations. They show an initial decrease in the number of drops due to 
the early destabilisation of the former DSD. Destabilisation occurs faster when the mean free path 
between the drops is small (high volume fraction, inhomogeneous spatial distribution of drops, etc.). 
As time passes, surfactant adsorption progressively increases until it reaches a point in which the 
repulsive potential generated by the surfactant is enough to preserve the current DSD. At this point the 
kinetic rates of coalescence and flocculation markedly change. The variation of number of aggregates 
as a function of time follows the prediction of Equation (52) for a completely different reason as the 
one discussed before. The repulsive force between the drops increases with time, not as a result of the 
surfactant redistribution among the drops, but due to the augment of the surfactant adsorption as a 
function of time. Notice also that in the case of non-deformable drops the diffusion constant decreases 
with Ri and the repulsive forces augment. This might also cause a progressive stabilization of the 
system as a function of time.  

In our calculations, CT = 5 x 10-4 M is the lowest surfactant concentration able to generate a 
substantial repulsive potential for appD  ≥  10-10 m2/s [55]. However, it must be kept in mind that in the 

referred simulations the total surfactant population is distributed among the surfaces of the drops. 
Hence, the mass balance does not include the surfactant solubility in the water phase. As a result it is 
expected that the surfactant concentration required for the attainment of the fastest stabilisation of the 
emulsion should be higher than 5 x 10-4 M. 

As Equation (34) shows, a slow surfactant adsorption can be compensated with a high surfactant 
concentration. However, a low surfactant concentration can only be partially compensated with the 
increase of appD . That is the case of the systems with CT = 10-4 M and φ ≥  0.20 [55]. A very low 
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surfactant concentration does not generate a high repulsive force even if instantaneous  
adsorption occurs. 

We also observed a marked effect of the hydrodynamic interaction in the most concentrated system 
(φ  = 0.40). This system was expected to experience the highest destabilisation due to the short mean 
free path between the drops. However, this was partially the case, since the hydrodynamic interaction 
slowed down the flocculation of the drops considerably, producing a substantial lag time between the 
beginning of the simulation and the first coalesce event.  

It should be remarked that the effect of the ionic strength was not considered in Ref. [55]. On the 
one hand, a high surface coverage generates a substantial repulsive force between the drops at low 
ionic strength (Figure 1). On the other hand, a high ionic strength (~ 1 M NaCl) can screen completely 
the electrostatic interaction, eliminating any effect of dynamic adsorption on emulsion stability, for the 
case of an ionic surfactant. However, according to the results of Figure 9, an ionic strength as high as 
0.55 M might not be not enough to eliminate the repulsive barrier between particles of nanometer size 
( Tσ  = 39 mCoul/m2 , AH = 4.27 x 10-21 J, W = 1.22).  

Furthermore, it should be noticed that the value of the Hamaker constant used in the simulations of 
Ref. [55] was meant to represent the attraction between bitumen drops stabilized with a cationic 
surfactant [83]. A more typical value of AH for oils (~10-21 J) should decrease the flocculation rate, 
diminishing the effect of the time dependent adsorption even more.  

Taking into account the results of the simulations [55] and all the limitations outlined, the effect of 
dynamic adsorption is only expected to be relevant at low surfactant concentrations, CT ≤  10-4 M, 
mostly between 0.20 ≤≤φ 0.30. More precision requires further calculations employing the specific 
characteristics of the experimental system. These include not only the exact values of φ , CT , and appD , 

but also the initial DSD of the emulsion, the ionic strength of the aqueous solution, and the solubility 
of the surfactant (or its adsorption isotherm). 

4.5. Ostwald Ripening 

The Liftshitz-Slezov-Wagner (LSW) theory of Oswald ripening, predicts a linear variation of the 
cube of the average radius of a dispersion as a function of time ( 3

cR vs. t) [84-85]. It also envisages a 
left-skewed drop-size distribution with a cut-off radius of 1.5 cR . These predictions are obtained 

assuming that: 

a) The particles are fixed in space. 
b) The system is infinitely dilute (implying the absence of interactions). 
c) The molecules of the internal phase are transported from one particle to another by molecular 

diffusion. 
d) The concentration of oil is the same through the whole system except in a direct neighbourhood 

of the particles, where it is given by the Kelvin equation. 

LSW does not provide analytical expressions for the variation of cR  during the transient period of 

ripening, nor does it consider the effects of flocculation and coalescence that simultaneously occur. At 
long times (in the asymptotic limit) LSW predicts a constant value for the Oswald ripening rate, VOR, 
equal to:  



Int. J. Mol. Sci. 2009, 10             
 

 

788

( ) 943 ∞== CDdtdRV mcOR α  (59) 

Sakai et al. [86] studied the evolution of the DSD for several alkane/water systems in the absence of 
a surfactant. For a dilute dodecane in water emulsion ( ≈φ 2.29 x 10-4) a ORV  rate equal to 4.0 x 10-26 

m3/s was found. This rate is three times larger than the theoretical estimation (1.3 x 10-26 m3/s). 
Moreover, the DSDs of all measured systems were skewed to the right, in contradiction with the 
predictions of LSW. Using freeze-fracture electron microscopy, Sakai et al. [87] also reported direct 
observations of flocculation and coalescence of metastable benzene droplets under surfactant-free 
conditions. They observed small drops with diameters at 30-100 nm immediately after sonication, as 
well as aggregates of medium size (200-500 nm) composed of small droplets. 

In Ref. [71] we revisited the evolution of a dodecane-in-water nanoemulsion in the absence of 
surfactant molecules. The research included simulations and experimental results. The main purpose of 
the investigation was to determine the effect of flocculation and coalescence in the temporal variation 
of 3

cR . 

The first set of simulations followed the original algorithm of De Smet [67]. This code does not 
consider the movement of the drops. The initial DSD was Gaussian with ( )0=tRc = 30 nm. According 
to these calculations, cR does not increase prior to 800 s as a consequence of molecular diffusion. 

During this transient period the average radius of the emulsion slightly decreases due to the exchange 
of oil molecules between the drops. Moreover, cR does not increase until the first small particle 
dissolves. Hence, any increase of ( )tRc

3  prior to ~ 800 s is the sole result of flocculation and 

coalescence (FC).  
We carried out similar calculations with the ESS program including Ostwald Ripening (ESS+OR 

simulations). For these simulations 1000 non-deformable drops were used. The potential was 
completely attractive, characterized with a Hamaker constant, AH = 5.02 x 10-21 J. When the movement 
of the particles is incorporated, the simulations showed that dtRd 3  changes linearly with time as a 
result of flocculation and coalescence: dtRd 3 = VFC = 3.11 x 10-22 m3/s (r2 = 0.9979). This rate is four 
orders of magnitude higher than the theoretical value of ORV  and cannot be attributed to Oswald 

ripening. Moreover, right-skewed distributions of particles were obtained [71]. 
This finding motivated the measurement of cR at short times. Dilute O/W dispersions of dodecane-

in-water (φ = 2.3 x 10-4) were prepared using an aqueous solution of NaCl (0.5 M) to screen the 
electrostatic charge produced by the preferential adsorption of hydroxyl ions. Immediately after 
sonication, the light scattered by the emulsion was measured at 90º using a BI-200SM goniometer 
(Brookhaven Instruments). The mean diffusion coefficient was derived from the intensity 
autocorrelation function using a cumulant analysis [88].  

Figure 10 shows the result of one of these measurements. A value of 2.6 x 10-23 m3/s was found for 
dtRd 3 . This value differs in one order of magnitude from the one of the simulations, but is three 

orders of magnitude away from the theoretical value of ORV  (1.3 x 10-26 m3/s). Moreover, if the 

emulsion is measured for a longer period of time (~200 s), a small temporary plateau is reached, and 
the typical order of magnitude of OR (10-26 m3/s) is recovered. 

The above result demonstrated that it is possible to obtain a linear relation of 3
cR vs. t as a 

consequence of flocculation and coalescence, and not necessarily as a consequence of Ostwald 



Int. J. Mol. Sci. 2009, 10             
 

 

789

ripening. It also suggests the existence of a small repulsive barrier that hinders flocculation and/or 
coalescence even at high ionic strengths.  

In Section 3 we mentioned that in the absence of a strong repulsive force, the expression for the 
total number of aggregates of a dispersion (Equation (49)) is the same for suspensions and emulsions 
except for some minor restrictions regarding the counting of the aggregates. In the same reference [75] 
Danov et al. demonstrate that the formula for the concentration of i-particle aggregates is also equal to 
the one deduced by Smoluchowski if the coalescence time is infinite, or what is the same, if only  
flocculation occurs: 

( ) ( ) 1
0

1
00 1 +−

+=
islow

f
islow

fi tnktnknn  (60)  

The average size of the particles in the system can be calculated substituting Equation (60) into: 

∑
∞

=

=
1i

iaggi nRR  (61)  

Figure 10. Experimental variation of the cube average radius as function of time. The data 
corresponds to a dodecane-in-water nano-emulsion produced by sonication.  
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Smoluchowski supposed that the dispersion was initially composed by particles of equal radius. 

Hence, some prescription was necessary to connect the size of the aggregates with the initial particle 
radius ( 0R ). For example:  

0RiR l
aggi =  (62)  

For coalescing emulsions l should be equal to 3. However, only certain values of l allow obtaining 
an analytical expression for R . A value of l = 1, consistent with the formation of linear 
aggregates, 0RiR aggi =  produces a very simple formula: 

( )tnkRR f 00 1+=  (63)  
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If the aggregates formed are not linear and/or coalescence occurs, Equation (63) is not valid and 
constitutes a very rough approximation to the mean particle radius. However, if we assume the validity 
of Equation (63) for a flocculating emulsion, a simple expression for dtRd 3 results: 

( ) ( )200
3
0

3 13 tnknkRdtRdV ffF +==  (64)  

where FV stands for the velocity of flocculation. The short-time limit of Equation (64) provides a very 
useful relation between FV  and fk : 

( )0
3
03 nkRV fF =             when:   0→t  (65)  

Notice that a real exponent p in Equation (63): ( )p
f tnkRR 00 1+= , still produces the same short-

time limit, except for a constant multiplication factor p. Hence, use of the expression for the average 
radius found for Diffusion Limited Cluster Aggregation (DLCA): R  = ( ) fD

f tnkR /1
00 1+ [89], also 

leads to Equation (65) with a different pre-factor: fD3 . Moreover, the same limit is obtained for the 

case of Reactive Limited Cluster Aggregation (RLCA), where: 
3

R = ( )ff DtnkR 0
3
0 3exp  [90]: 

( ) 3
00

3 3 RnkDtdRd ff=           when:   0→t  (66) 

The data shown in Table 2 corresponds to the ESS + OR simulations referred above. As expected 
VF is proportional to kf. However, the quotient between VF and 3

00 Rnk f does not appear to be related 

to any of the exponential factors suggested by Equations (65)-(66). Hence, it appears that the effect of 
the coalescence on the value of tdRd 3 is significant. Yet, there appears to be a proportionality 

between the value of the flocculation rate and dtRd 3 . 

Table 2. Relationship between kf and VF (R0 = 30 nm, n0 = 2.01 x 1018 m-3). 

System kf (m3/s) VF (m3/s) 3 p 
Dodecane/Water 7.37 x 10-18 3.11 x 10-22 0.78 

Octane/Water 6.62 x 10-18 2.58 x 10-22 0.72 

5. Modifications of ESS for the Calculation of Deformable Drops 

The problem of drop deformation is formidably complex. Deformation results from the interplay 
between hydrodynamic and interaction forces. Hence it depends on all the parameters that affect these 
forces. As soon as deformation occurs, the geometrical part of the interaction potentials changes. 
Analytical forms for the potentials of truncated spheres are available in the literature, but they are 
function of the radius of the film between flocculated drops and its width. Moreover, the process of 
deformation itself involves several stages including the formation of a dimple, its evolution to a plane 
parallel film and the destabilisation of the film either by surface oscillation or by the formation of 
holes [91]. This complexity is additional to the one resulting from the simulation of all destabilisation 
processes that occur in emulsions. Hence, some drastic approximations are necessary. The 
methodology outlined in this section mostly corresponds to the thesis of Dr. Toro-Mendoza [92,93]. 
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5.1. Regions of deformation 

The present version of the ESS code has routines for non-deformable and deformable drops, but 
cannot simulate both types of drops during the same calculation. Thus, if the mode of deformable 
droplets is selected, it is assumed that the deformation of the drops occurs independently of the energy 
required for this process. Both types of simulation use the same equation of motion (Equation (12)) 
and follow the algorithm illustrated in Figure 2, but they differ in the way of calculating the diffusion 
constants, and the forces. Moreover, they differ in the criteria employed for the coalescence of drops.  

In the mode of deformable droplets, the drops move as spheres until they reach the initial distance 
of deformation h0. When this occurs, a model of truncated spheres is used [6, 38, 94-95]. The transient 
time between the formation of the dimple and the surface oscillations that lead to the formation of a 
thin liquid film between flocculated drops is not taken into account. As soon as ijr < 0hRR ji ++  the 
code calculates the dimensions of truncated spheres that are compatible with h0 and ijr . Using the 

resulting film width and film radius, the program computes the potential of interaction between 
truncated spheres. In the absence of other coalescence mechanisms different from film drainage, the 
drops coalesce if the separation between their surfaces reaches a critical distance h = hcrit. 

In order to calculate the forces and diffusion constants three regions of approach are defined: 
Region I: The distance of separation between the centres of mass of the drops rij, is greater 

than 0hRR ji ++ . In this case the drops maintain their spherical shape. Consequently: 

jiij RRrh −−=  (67) 

0=filmr  (68) 

Region II: It covers the range of distances between the beginning of the deformation filmr ≠  0, and 

the attainment of the maximum film radius: filmr = 0max hRr if = (for Ri < Rj). Within these limits, the 

closest distance of separation between the surfaces of the drops is constant h = h0 [6], and: 

( ) 00
2

0
2

0 hRRrhRRhRRh jiijijii ++<<−+−+  (69) 

( ) ( ){ }2
0

2
jiijiifilm RRhrRRr +−−=  (70) 

Region III: The film already attained its maximum radius, 0max hRrr iffilm == , and it 

progressively drains until reaching a critical distance of approach. Within these separations: 

( ) ( )0
2

0
2

00
2

0
2 hRRhRRhrhRRhRRh ijiiijijiicrit −+−+<<−+−+  (71) 

( )2
max

22
max

2
fjfiij rRrRrh −+−+=  (72) 

Notice that the drops behave as spheres in Region I (rij > 0hRR ji ++ ) even in the case in which the 

mode of deformable drops is selected. This means that the potential of interaction and diffusion 
constant in Region I correspond to spherical particles. When the distance of separation between the 
surfaces of the drops is less than h0 (Regions II and III), the expressions of the potentials 
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corresponding to truncated spheres are employed [38]. As explained in the next section, two additional 
potentials appear during the evolution of the film (Region II). They take into account: (a) the increase 
of interfacial area between a sphere and a truncated spheroid (extensional potential), and (b) the 
change of curvature of the interface (bending elasticity potential). These potentials contribute to the 
total potential of interaction and its force within Region II, but they assume a constant value in Region 
III and do not contribute to the value of the force in this zone. 

5.2. Interaction forces between deformable droplets 

As soon as deformation occurs, the analytical forms of the interaction potentials change. Analytical 
forms of the potentials for truncated spheres are available in the literature. However, they are 
expressed as a function of the radius of the film between flocculated drops and its width [6, 38, 95]. 
For example, the geometrical part of the van der Waals potential for truncated spheroids is equal to: 
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where: 2
111 filmrRRhl −++= , 2

222 filmrRRhl −++= , 22 4 filmrhd += , filmr is the radius of the 

thin liquid film between flocculated drops, and h is the closest separation between the surfaces of  
the drops. 

Different types of interaction potentials for truncated spheres are found in the literature [38,95]. The 
researchers of the University of Sofia deduced most of them. They include van der Waals, 
electrostatic, oscillatory, depletion, steric, etc. These mathematical equations are expressed in terms of 
h and filmr . Use of Equations (67)-(72), allows to recast those potentials in terms of rij. Hence, it is 

possible to differentiate the potentials with respect to rij using a package of symbolic algebra. In this 
way, the force is obtained for each deformation zone. 

Additionally, two new contributions to the free energy appear. The first one is called dilatational or 
extensional energy and is caused by the increase of the interfacial area of the particle as it looses its 
spherical shape. The analytical form for the extensional potential corresponding to the change between 
a sphere and a truncated spheroid is [38, 94-95]: 
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( )iifilmd RrV 24
,πγ=  (74) 

where ifilmr , is the radius of film formed by the truncated sphere i.  

The variation of the interfacial curvature requires an additional amount of energy. This contribution 
can be positive or negative depending on the value of the spontaneous curvature of the interface: 

0,0 1 cRH −=  (75) 

where Rc,0 is the radius of curvature of the surface adopting its lowest free energy configuration. The 
energy of interfacial bending [38, 94-95] is equal to: 

HBrV filmb 0
22π−=  (76) 

where H stands for the actual curvature of the interface: 

iRH 1−=  (77) 

and B0 is the interfacial bending moment of a flat interface:  

00 4 HkB b−=  (78) 

Constant B0 is related to the bending moment in the theory of Helfrich [96]: kb. Theoretical 
estimations suggest a value of 5 x 10-11 N for B0. However, this value produces elastic potentials 
higher than 600 kBT for micron-size drops. In current calculations we adjust the value of B0 in order to 
reproduce the expected bending energy of a 100 nm drop (31 kBT) [6]. This suggests a value of B0 of 
1.6 x 10-12 N. 

The potentials of surface deformation occur at close separation distances, within or nearby the same 
region of influence of the other potentials of interaction like electrostatic, steric, etc. In the absence of 
other repulsive potentials, deformation (dilatational + bending) generates two minima in the interaction 
potential separated by a repulsive barrier, similar to the ones exhibit by the DLVO potential (see 
Figure 1 and Figure 11). The presence of other repulsive contributions changes the smooth form of the 
total potential, increasing its value at short distances. This may also produce additional peaks and 
minima. Whatever the case, the passage of the particles over the closest repulsive barrier  
implies coalescence. 

It is not yet possible to deduce a general analytical expression to relate h, filmr , and ijr  for all 

regions of deformation. Such an expression will round the sharp peaks of the total potentials shown in 
Figure 11, eliminating their present discontinuities. The acute changes of slope exhibited, result from 
the segmentation of the potential into three Regions (Equations (67)-(72)). However, all contributing 
potentials are differentiable within each domain and should not generate ill-define forces at  
the discontinuities.  

It should be noticed, that Equations (74)-(78) rely on the interfacial tension, which in turn depends 
on the surface excess (Γ). Moreover, both free energies require the evaluation of the radius of the 
O/W/O film between flocculated drops ( ifilmr , ). This radius depends on the properties of the interfacial 

layer. Hence, in order to evaluate the forces in Equation (12) the number of surfactant molecules 
adsorbed to the interfaces of the drops has to be previously determined. 
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Accurate estimation of h0 and hcrit is very difficult since they result from a balance between 
hydrodynamic and interaction forces. On the one hand, a formal prescription for their evaluation is 
given in Ref. [97]. That type of calculations is too expensive in computational time, and cannot be 
incorporated into ESS. On the other hand, emulsions are polydisperse systems and the value of 

filmr depends on the size of the flocculating drops and their interfacial tension. Figures 3 and 4 of Ref. 

[97] show the value of h0 resulting from free energy calculations. We obtained an empirical form for h0 
in terms of the radius of a drop and its interfacial tension, h0 (Ri,γ), fitting the referred curves with an 
empirical polynomial: 

( )( )
( )( )
( )( )00402.010exp109804.5103253.3

00402.0exp109804.5103253.3

108222.1exp106475.8102932.1

399

99

698
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−+
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−−=

xx
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xxRxxh i
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Figure 11. The curves correspond to the interaction potential between two deformable 
drops of dodecane suspended in water (Ri = 3.9 μm, AH = 5.03 x 10-21 J, Cs = 10-4 M, γ = 
48.5 mN/m, B0 = 1.6 x 10-12 N). (a) Sum of Extensional, Bending and van der Waals 
potentials. (b) Sum of Electrostatic and van der Waals potentials. 
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Equation (79) allows ascribing a value of h0 to each drop. Since the value of maxfr cannot be larger 

than the radius of the smallest drop ( 0max hRr if = ), the value of h0 selected for the flocculation of 
two drops of different sizes will be the one corresponding the smallest value of maxfr .  
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In regard to hcrit, the equation reported by Scheludko [98] and others [99-101] is used: 

( ) 4/1128γλcritHcrit Ah =  (80)  

where: 10filmcrit r≈λ . 

5.3. Calculation of the diffusion constant for deformable droplets 

The form of the diffusion constant employed at every distance of separation corresponds to the 
shape of the approaching drops. Within Region I the same formalism used for non-deformable drops is 
employed [30]. For zones II and III several expressions are available in the program. They correspond 
to the rates of thinning TV  of thin liquid films reported by Gurkov and Basheva [102]. These velocities 
depend on the force between the particles F, h and filmr . Thus, they can be transformed into effective 
diffusion constants using the Einstein relation: fTkD B= , where f  is the friction coefficient 

TVFf =  (Equation (2)).  
Most equations compiled by Gurkov and Basheva [102] require knowledge of the properties of the 

surfactant and/or the interfacial layer (Gibbs elasticity, viscosity, etc). Dr. Toro-Mendoza suggested 
Equation (81) based on a slight modification of the methodology previously used by our group for 
spherical drops [30].  

( ) ( ){ } ( )filmicorr rRuuuuuf 322)2( 420.13646 +++=  (81)  

Thus, the analytical form of )2(
corrf proposed by Honig et al. [31] for spherical drops (expression in 

parenthesis in Equation (81)), used for intrrij ≤  is modified as soon as the drops change their spherical 

shape to form truncated spheres with a plane parallel film. Hence, the additional friction generated by 
the creation of two planar disks between flocculated drops, decreases the diffusion constant beyond the 
estimation of Honig et al.  

5.4. Coalescence criteria for deformable drops 

The process of coalescence of deformable droplets is involved. It is known that thin liquid films not 
necessarily drain until reaching hcrit [7-10,103-105]: 

critrupture hh ≥  (82)  

Depending on the properties of its interfacial layers, films can collapse through the formation of 
holes [9-10] or due to the enhancement of surface oscillations [7-8, 105]. Stable Newton black films 
can also be formed, prolonging the stability of the flocs for months. In the case of small drops of 
nanometer size it seems unlikely that deformation takes place due to their high internal pressure.  

By default, the mechanism of coalescence of deformable drops is the one of film drainage. As the 
drops approach, a plane parallel film forms and thins until hcrit is reached. At this point, a new 
spherical drop is generated following Equation (17). 

It is known that thin liquid films of macroscopic radii experience surface oscillations. In some 
circumstances the interfacial waves at each O/W interface may grow until they touch. In this case, a 
channel between the oil phases of the drops could form causing their coalescence. This mechanism is 
additional to the one of film drainage. Other possible process like the condensation of holes in 
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common black films are also known to promote film rupture [9-10]. As in the case of surfactant 
adsorption, we use an algorithm which mimics the actual process. We do not attempt to simulate these 
processes in detail. 

If the additional mechanism of surface oscillations is selected, a random number is assigned to the 
surface of each drop every time a pair of particles enters Regions II or III above. The random number 
varies between -1.0 and 1.0 units. 

The amplitude (height) of each capillary wave (λ ) at each interface is estimated as the product of 
the referred random number times the value of hcrit.  

( ) ( ) criti htRant *=λ  (83)  

The time of existence of a doublet ( ijτ ) is estimated using one of two different procedures:  
(a) ijτ is counted continuously from the moment a doublet enters Regions II or III until either h = 

hcrit (coalescence occurs) or the double separates: rij > 0hRR ji ++ . If the doublet separates ijτ is 

made equal to zero (its starting value at the beginning of the simulation).  
(b) ijτ is estimated from the total number of time steps accumulated every time particles i and j 

enter zones II and III. In this case ijτ ≠ 0 after a couple of particles enter Regions II or III the 

first time. 
At each time step, the value of ijτ is compared with a characteristic time deduced by Vrij [7] for the 

fastest increase in surface oscillations: 
25

0
296 −= HVrij Ahηγπτ  (84)  

Equation (84) was deduced assuming van der Waals interactions only. A more general expression 
requires knowledge of the second order differential of the free energy in terms h under certain 
restrictions. This differential changes abruptly for the case of deformable droplets. The program has 
the additional option to introduce the value of Vrijτ as input.  

The value of the tension in Equation (84) is approximated by the average of the interfacial tension 
(γ ) between the two flocculated drops ( ) 2ji γγ + . iγ  is calculated at each time step of the simulation 

from the number of surfactant molecules adsorbed using Equation (85):  

( )( )max
,,00 isiscmci NNγγγγ −+=  (85)  

Here, 0γ , and cmcγ  stand for the value of the O/W interfacial tension in the absence of surfactant 
molecules, and at the CMC of the surfactant employed. In the absence of stabilisers, 0, =isN  at all 
times, and 0γγ =i . 

Coalescence occurs whenever the total height of the surface oscillations is greater than hcrit. The 
total height of the surface oscillations is approximated by: 

( ) ( )( )1exp −+= VrijijjiTOTAL ττλλλ  (86)  

Equation (86) takes into account the fact that the surface oscillations increase exponentially with 
time [7-8,105].  
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It is clear from above, that all coalescence mechanisms are defined in terms of doublets. If 
aggregation of multiple particles occurs, Equation (86) is applied to each film formed between the 
flocculated particles. 

The force routine is divided into two parts to account for non-deformable and deformable droplets. 
In the case of deformable droplets, the program estimates the value of h0 for each drop according to 
Equation (79). Using this value and the distance of separation between the centres of mass (rij), the 
region of approach can be determined (Regions I, II and III). The analytical expression for the force 
corresponding to the actual region of approach between each pair of drops is used. 

5.5. Preliminary Results 

The incorporation of deformable droplets is very recent [92-93]. We began the study of deformable 
droplets with the calculation of the coalescence time between two particles under the influence of van 
der Waals, extensional and bending potentials. All calculations began from a separation distance equal 
to h = h0 (5 nm ≤≤ 0h 15 nm). The particle radius was changed between 100 nm and 100 μm, for γ = 

1 mN/m. Within these limits, the diffusion constant used (Equation (81)) markedly decreases as a 
function of the particles radius [93]. The coalescence times calculated for each particle radius 
correspond to the average value of 1000 simulations which only differ in the initial value of the 
random number generator. Only the mechanism of film drainage was considered for the coalescence of 
the drops.  

For the 96-nm particles of Figure 9, the time for primary minimum flocculation changes between 
6.35 x 10-4 s and 4.81 x 10-3 s (AH = 4.26 x 10-21 J, h(t = 0) = 20 nm). For deformable particles between 
100 nm and 100 μm, the coalescence times are four orders of magnitude higher, increasing from a 
fraction of a second to 100 seconds (AH = 10-20 J, h(t = 0) = h0 ). These values are consistent with the 
times reported by Dickinson et al. for the coalescence time of emulsion drops with a planar oil-water 
interface (Figure 2 in Ref. [106]).  

The coalescence time between two non-deformable droplets increases steadily with the size of the 
particles. The coalescence time of deformable droplets increase between Ri = 100 nm and Ri = 5 μm 
(range 1), and between Ri = 10 μm and Ri = 100 μm (range 3). However, it decreases between 5 μm 
and 10 μm (range 2), generating a small peak in the curve of tc vs. Ri. This particular behaviour is due 
to the opposite trends of interaction forces and hydrodynamic effects. Within range 1 the diffusion 
constant decreases abruptly causing an increase of the coalescence time as a function of the particle 
size. From 5 μm to 10 μm the diffusion coefficient also decreases but in a much lower rate. Hence the 
attractive force prevails decreasing tc as a function of Ri. Within range 3, the interaction is still 
attractive. However, the values of h0 and 0max hRr if = , increase with the radius of the drop. The film 

drains at a slower rate, or what is the same, the effect of the diffusion constant prevails again, causing 
an increase in the value of tc as a function of Ri.  

In order to compare the effect of deformation on the rates of aggregation and coalescence, we 
evaluated an average (mixed) rate based on the variation of the number of particles in systems of 125 
(φ = 0.10 and φ = 0.30):  

02/11 ntkFC =  (87) 
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For φ = 0.10 the value of FCk  for non-deformable droplets (3 x 10-17 m3/s) is two orders of 
magnitude higher than the one of deformable droplets (5 x 10-19 m3/s). For φ = 0.30 the difference 
reduces to only one order of magnitude (3 x 10-16 m3/s and 4 x 10-17 m3/s, respectively). 

6. Conclusions 

This review describes in detail the algorithm of Emulsion Stability Simulations developed by our 
group. It was not until very recently that we completed the routines for deformable droplets and 
Ostwald ripening. Consequently, it is now that we are ready to study the role of the surfactant 
molecule in systems exhibiting the concurrent occurrence of most destabilization processes. This is 
why we are confident that the most outstanding results from ESS are yet to be produced. However, we 
had shown that the previous studies related to the behaviour of non-deformable drops are very 
insightful. In particular they had remarked the role of the secondary minimum in the flocculation of 
drops, suggested a new threshold for the coalescence of drops, and demonstrated that the cube of the 
average radius of an emulsion can change linearly with time as a consequence of flocculation  
and coalescence. 
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