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Abstract: Over the years development of selective estrogen receptor (ER) ligands has been 

of great concern to researchers involved in the chemistry and pharmacology of anticancer 

drugs, resulting in numerous synthesized selective ER subtype inhibitors. In this work, a 

data set of 82 ER ligands with ERα and ERβ inhibitory activities was built, and 

quantitative structure-activity relationship (QSAR) methods based on the two linear 

(multiple linear regression, MLR, partial least squares regression, PLSR) and a nonlinear 

statistical method (Bayesian regularized neural network, BRNN) were applied to 

investigate the potential relationship of molecular structural features related to the activity 

and selectivity of these ligands. For ERα and ERβ, the performances of the MLR and 

PLSR models are superior to the BRNN model, giving more reasonable statistical 

properties (ERα: for MLR, Rtr
2
 = 0.72, Qte

2
 = 0.63; for PLSR, Rtr

2
 = 0.92, Qte

2
 = 0.84. ERβ: 

for MLR, Rtr
2
 = 0.75, Qte

2
 = 0.75; for PLSR, Rtr

2
 = 0.98, Qte

2
 = 0.80). The MLR method is 

also more powerful than other two methods for generating the subtype selectivity models, 

resulting in Rtr
2
 = 0.74 and  

Qte
2
 = 0.80. In addition, the molecular docking method was also used to explore the 

possible binding modes of the ligands and a relationship between the 3D-binding modes 
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and the 2D-molecular structural features of ligands was further explored. The results show 

that the binding affinity strength for both ERα and ERβ is more correlated with the atom 

fragment type, polarity, electronegativites and hydrophobicity. The substitutent in position 

8 of the naphthalene or the quinoline plane and the space orientation of these two planes 

contribute the most to the subtype selectivity on the basis of similar hydrogen bond 

interactions between binding ligands and both ER subtypes. The QSAR models built 

together with the docking procedure should be of great advantage for screening and 

designing ER ligands with improved affinity and subtype selectivity property. 

Keywords: receptor; selectivity; QSAR; docking 

 

1. Introduction 

The estrogen receptor (ER), a member of the nuclear receptor superfamily of ligand-modulated 

transcriptional factors [1], is responsible for transcription of genes containing estrogen responsive 

elements or repression of some genes [2]. ER mediates the activity of estrogens in the regulation of a 

number of important physioligical processes, including the development and function of the female 

reproductive system and maintenance of bone mineral density and cardiovascular health; however 

stimulation of other tissues can increase the risk of cancer within these tissues, particular in female 

breast and uterus [3]. Thus, ER has been a target for pharmaceutical agents for hormone replacement 

in menopausal women, uterine and breast cancers.  

ER was found in two isoform subtypes, i.e., ERα and ERβ. Studies have shown the two subtypes 

have different functions and distributions in certain tissues [4,5]. Molecules that selectively activate 

ERβ not only hold promise for the treatment of certain cancers, endometriosis and inflammatory 

diseases and cardiovascular and CNS conditions [6], but also have a profound effect in regulating brain 

development and estrogen-induced promotion of neurogenesis and memory, in conjunction with its 

reduced feminizing effects [7]. In addition, there are unexpected adverse effects of the ER ligands 

already used as clinical agents. Extensive efforts are being made to develop subtype-specific ligands 

which selectively antagonize undesirable estrogenic effects, while promoting positive estrogen effects 

for therapeutic purposes.  

The mobility and plasticity of the ER ligand binding domain (LBD) allow compounds of 

extraordinary structural diversity mimicking natural estrogen agonists or antagonist to bind to ER 

subtypes. Remarkably, the smaller LBD volume for ERβ comparing to that for ERα and differences in 

the amino acids hold promise of discover and design ligands with a degree of subtype-selective 

agonist/antagonist character. Nevertheless, the similarity of the binding pocket between ERα and ERβ 

increases the difficulty of developing ligands having sufficient levels of ERβ selectivity and binding 

affinity. The key issue in the design of new selective ER ligands is to explore the properties of the 

chemical structure in combination with its ability of inducing a pharmacological response as a 

consequence of receptor-binding. Great advances have been made in recent years because of multiple 

structurally diverse compounds were synthesized and have been shown to exhibit unprecedented 

estrogen receptor subtype selectivity [8–11].  
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Most of these synthesized compounds are based on the scaffolds of the known ER subtype selective 

compounds. However, this cannot avoid the risk that non selective or low binding affinity compounds 

will be synthesized and tested experimental, which may result in a tremendous financial cost and waste 

of time. Thus, the need for rapid and cost-effective screening tools to detect and characterize the 

agents with selective ER subtype binding affinity is urgent. Since compounds already confirmed by 

experimental assays provide an opportunity to understand the basis of subtype selectivity, the 

development of models for predicting the subtype selectivity would allow for the development of more 

potent and selective compounds for these important pharmaceutical targets. In this context, QSARs 

can be of valuable assistance in predicting the estrogenic activity of certain molecules [12].  

Numerous QSARs have been developed to predict hormone relative binding affinity and to indicate 

potential estrogenicty, such as CoMFA [13], KNN [14], HQSAR [15]. However, for studying the 

structural information relating to the binding affinity for ERα and ERβ, finding the subtype selective 

ligands with proper binding affinity, counTable QSAR models are available. Peter [16] constructed 

CoMFA models to both isoforms of the ERs. When validated by the most predictive models, the most 

selective ligands were ranked correctly. ANNs (artificial neural networks) were used to model 

selective binding of 48 phytoestrogens and structurally related compounds at ERα and ERβ by 

Agatonovic-Kustrin [17] and some structural characteristics responsible for the selective binding to 

ERα and ERβ were identified. Barrett et al. [18] synthesized a group of benzoxepin-derived ER 

ligands and investigated the subtype selectivity using a PLS model combining different descriptors 

with the endpoint LogIC50 (ERβ/α).  

3D-QSAR techniques are generally considered to be the most effective means of predicting 

biological activity. However, they usually require an accurate superposition of structures, which has 

proven to be the major bottleneck [19,20]. Classical linear QSAR methods relay on a higher number 

and better quality of molecular descriptors that cover a broader range of structural characteristics, 

providing an alternative perspective on the ligand binding properties of the ERs that might be 

important for the activity [21]. Compared with the linear QSAR models, Bayesian regularized neural 

networks (BRNNs) have the advantage of managing data containing non-linear relationships for 

modeling and predictive purpose avoiding the overtraining and overfitting problems that perplex the 

NN (neural network) applications in generating QSAR models, compared with conventional  

networks [22,23].  

The aim of this paper was to investigate the structural features contributing to the binding affinity of 

a series of 2-arylnaphthalene and 2-arylquinoline derivatives to ERα and ERβ receptors. More 

importantly, we are very interested in investigating the structural characteristics contributing to the 

subtype selectivity profile and to try to discover new selective ERβ-agonists with proper binding 

affinity. To this end, MLR and PLS regression (PLSR), in combination with a Bayesian method, i.e., 

BRNN, were used for the investigation. In addition, as an alternative and supplemental approach to 

QSAR methods, Surflex-Docking procedure was undertaken, which shed further light on the QSAR 

models built and searching the putative binding modes for the screening purpose. This should be useful 

for guiding future medicinal chemistry efforts designed to discover selective ligands of ERβ having 

increased binding affinity and higher selectivity.  
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2. Material and Methods 

2.1. The Data Set 

The data set used in the investigation contains 82 ER ligands, mainly represented by  

2-arylnaphthalene and 2-arylquinoline derivatives, which were collected from the literature [9,24]. 

These compounds were designed specifically to mimic the genistein framework producing new ER 

ligands with improved binding affinity. The affinity as measured by IC50s for human ERα or ERβ of all 

the compounds was determined by a competitive radioligand binding assay [9,24]. For QSAR analysis, 

negative logarithm of IC50 values, i.e., pIC50 (M), were generated. Further, molecular descriptors 

correlating with the selectivity (S) of binding affinity of ligands between ERα and ERβ were 

investigated, which can greatly beneficial the modulator screen and drug design. Herein we developed 

the following equation at the premise of the αIC50 is larger than βIC50 of the ligands: 

10

50 50

50

IC IC
S log

IC

 



 
  

 
      (1) 

where a high S value indicates a priority to bind the LBD of ERβ. The S value increases, the selectivity 

power between the two ER subtypes increases, and when S > 1, corresponding ligands have, at least, a 

10-fold binding affinity with ERβ than ERα and are recommended for the SERM screen process.  

Detailed information of the compounds in the data set (SIMLE strings, corresponding pIC50 values for 

both ERα and ERβ, the S values) is presented in Table 1 as supplementary information. 

Table 1. The SMILEs and pIC50 information of the compounds studied herein. 

NO. SMILES pIC50(α) pIC50(β) S 

compound1 OC1=CC=C(C2=CC(F)=C(C(Cl)=C(O)C=C3)C3=C2)C=C1 6.40 7.96 1.55 

compound2 OC1=C(F)C=C(C2=CC=C(C=C(O)C=C3C#C)C3=C2)C=C1 6.14 7.92 1.78 

compound3 OC1=C(F)C=C(C2=CC=C(C=C(O)C=C3F)C3=C2)C=C1 6.68 7.82 1.11 

compound4 OC1=CC=C(C2=CC=C(C=C(O)C=C3C#N)C3=C2)C=C1 6.08 7.70 1.61 

compound5 OC1=CC(F)=C(C2=CC=C(C=C(O)C=C3C#N)C3=C2)C(F)=C1 6.35 7.66 1.29 

compound6 OC1=CC=C(C2=CC(C#N)=C(C=C(O)C=C3)C3=C2)C=C1 5.98 7.64 1.65 

compound7 OC1=CC=C(C2=CC(CC)=C(C=C(O)C=C3)C3=C2)C=C1F 5.95 7.60 1.65 

compound8 OC1=CC=C(C2=CC(C#N)=C(C=C(O)C=C3)C3=C2)C=C1F 5.68 7.57 1.89 

compound9 OC1=CC=C(C2=CC=C3C(Cl)=C(O)C=CC3=C2)C(Cl)=C1 6.44 7.48 1.00 

compound10 BrC2=CC(C3=CC=C(O)C(F)=C3)=NC1=CC=C(O)C=C12 5.55 7.47 1.92 

compound11 BrC2=CC(C3=CC=C(O)C=C3)=NC1=CC=C(O)C=C12 5.67 7.37 1.68 

compound12 ClC2=CC(C3=CC=C(O)C=C3)=NC1=CC=C(O)C=C12 5.67 7.34 1.66 

compound13 ClC2=CC(C3=CC=C(O)C(F)=C3)=NC1=CC=C(O)C=C12 5.61 7.28 1.66 

compound14 OC3=CC=C(C=C3F)C2=CC=C(C1=C2)C(C)=C(C=C1C#N)O 5.39 7.22 1.82 

compound15 OC3=CC=C(C=C3)C2=CC=C1C(F)=C(C=CC1=C2)O 6.11 7.15 1.00 

compound16 OC3=C(F)C=C(C=C3F)C2=CC=C1C=C(C=CC1=C2)O 6.04 7.08 1.00 

compound17 OC1=C(C=C(C3=CC=C2C=C(O)C=C(C2=C3)C=O)C=C1)F 6.14 7.96 1.82 

compound18 OC1=CC=C(C2=CC=C3C=C(O)C=CC3=C2)C(Cl)=C1 7.00 7.85 0.79 

compound19 OC3=CC=C(C=C3)C2=CC(F)=C1C=C(C=CC1=C2)O 6.66 7.80 1.11 

compound20 OC3=C(F)C=C(C=C3)C2=CC=C1C=C(C=C(C#N)C1=C2)O 6.02 7.68 1.65 
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Table 1. Cont. 

NO. SMILES pIC50(α) pIC50(β) S 

compound21 OC3=CC=C(C=C3)C2=CC(Cl)=C1C=C(C=CC1=C2)O 6.52 7.64 1.08 

compound22 OC3=CC=C(C=C3F)C2=CC(CC)=C1C=C(C=CC1=C2)O 5.63 7.62 1.99 

compound23 OC3=CC=C(C=C3)C2=CC=C1C(Cl)=C(C=CC1=C2)O 6.04 7.60 1.55 

compound24 OC3=C(F)C=C(C(F)=C3)C2=CC=C1C=C(C=CC1=C2)O 6.57 7.55 0.94 

compound25 OC3=CC(F)=C(C(F)=C3)C2=CC=C1C(Cl)=C(C=CC1=C2)O 6.46 7.47 0.97 

compound26 OC3=CC=C(C=C3F)C2=CC=C1C(Cl)=C(C=CC1=C2)O 5.84 7.40 1.54 

compound27 OC3=C(F)C=C(C=C3)C2=CC=C1C(Br)=C(C=C(C#N)C1=C2)O 5.94 7.35 1.39 

compound28 OC3=CC=C(C=C3F)C2=CC=C1C=C(C=CC1=C2)O 6.04 7.30 1.24 

compound29 OC3=C(F)C=C(C=C3)C2=CC=C1C=C(C=C(C#CC)C1=C2)O 5.74 7.26 1.50 

compound30 OC3=C(F)C=C(C(F)=C3)C2=CC(C#N)=C1C=C(C=CC1=C2)O 5.73 7.16 1.41 

compound31 OC3=C(F)C=C(C=C3)C2=CC=C1C=C(C=C(C=C)C1=C2)O 5.28 7.14 1.85 

compound32 OC3=C(F)C=C(C(F)=C3)C2=CC=C1C(Cl)=C(C=CC1=C2)O 5.93 7.07 1.11 

compound33 OC3=CC=C(C(C)=C3)C2=CC=C1C=C(C=CC1=C2)O 6.40 7.00 0.48 

compound34 OC3=C(F)C=C(C=C3F)C2=CC=C1C(Cl)=C(C=CC1=C2)O 5.28 6.97 1.68 

compound35 OC3=CC=C(C=C3)C2=CC(C#N)=C1C(Br)=C(C=CC1=C2)O 5.88 6.92 1.00 

compound36 OC3=CC=C(C=C3)C2=CC=C1C=C(C=CC1=C2)O 5.68 6.79 1.08 

compound37 OC1=CC=C2C(C(C#N)=CC(C3=CC=C(O)C(F)=C3)=N2)=C1 4.98 6.64 1.65 

compound38 OC3=CC=C(C=C3Cl)C2=CC=C1C(Cl)=C(C=CC1=C2)O 5.45 6.49 1.01 

compound39 OC1=CC=C2C(C(C=C)=CC(C3=CC=C(O)C(F)=C3)=N2)=C1 5.41 6.36 0.89 

compound40 OC3=C(F)C=C(C=C3F)C2=CC(C#N)=C1C=C(C=CC1=C2)O 5.26 6.24 0.93 

compound41 OC1=CC=C2C(C(C#C)=CC(C3=CC=C(O)C=C3)=N2)=C1 4.82 6.12 1.28 

compound42 OC1=CC=C2C(C=CC(C3=CC=C(O)C=C3)=N2)=C1Br 4.94 6.06 1.08 

compound43 OC1=CC=C2C(C=CC(C3=CC=C(O)C=C3)=N2)=C1 4.75 5.77 0.97 

compound44 OC1=CC=CC2=CC(C3=CC=CC(O)=C3)=CC=C12 4.84 5.69 0.78 

compound45 OC1=CC=C2C(C(C(C)=O)=CC(C3=CC=C(O)C=C3)=N2)=C1 4.50 5.66 1.12 

compound46 OC(C=CC2=C3)=CC2=CC=C3C1=CC=CC=C1 4.87 5.43 0.41 

compound47 OC(C=CC2=C3)=CC2=C(C#CC)C=C3C1=CC=C(O)C(F)=C1 5.46 7.00 1.52 

compound48 OC(C=CC2=C3)=C(Cl)C2=C(C#N)C=C3C1=CC=C(O)C(F)=C1 5.52 6.96 1.42 

compound49 OC(C=CC2=C3)=C(Br)C2=CC=C3C1=CC=C(O)C=C1 5.58 6.89 1.29 

compound50 OC(C=CC2=C3)=C(C)C2=CC=C3C1=CC=C(O)C=C1 5.55 6.77 1.19 

compound51 OC1=CC=C2C(C=CC(C3=CC=C(O)C=C3)=N2)=C1 5.20 6.52 1.30 

compound52 OC1=CC=C2C(C(Br)=CC(C3=CC(F)=C(O)C(F)=C3)=N2)=C1 5.11 6.44 1.32 

compound53 OC1=CC=C2C(C(CC)=CC(C3=CC=C(O)C=C3)=N2)=C1 5.20 6.28 1.05 

compound54 OC1=CC=C2C(C(C=C)=CC(C3=CC=C(O)C=C3)=N2)=C1 5.30 6.22 0.87 

compound55 OC1=CC=C2C(C(CC)=CC(C3=CC=C(O)C(F)=C3)=N2)=C1 4.76 6.10 1.33 

compound56 OC(C=CC2=C3)=C(OC)C2=CC=C3C1=CC=C(O)C=C1 5.05 5.94 0.83 

compound57 OC(C=CC2=C3)=C( [N+]( [O-])=O)C2=CC=C3C1=CC=C(O)C=C1 5.15 5.70 0.41 

compound58 OC1=CC=C2C(C(C4=CC=CC=C4)=CC(C3=CC=C(O)C(F)=C3)=N2)=C1 4.74 5.68 0.88 

compound59 OC3=CC=C(C=C3)C2=CC=C1C=CC=CC1=C2 5.20 5.61 0.21 

compound60 OC1=CC(C3=CC=C2C=CC(O)=CC2=C3)=CC=C1 4.58 5.25 0.56 

compound61 OC3=CC=C(C=C3)C2=CC=C1C(C4=CC=CC=C4)=C(O)C=CC1=C2 4.91 5.13 -0.19 

compound62 OC1=CC=C2C(C(OC)=CC(C3=CC=C(O)C=C3)=N2)=C1 4.18 4.92 0.66 

compound63 OC1=CC=C2C(C(C(O)C)=CC(C3=CC=C(O)C(O)=C3)=N2)=C1 4.30 4.30 - 

--mpound64 OC3=CC=C(C(F)=C3)C2=CC=C1C(Cl)=C(O)C=CC1=C2 6.24 7.92 1.68 
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Table 1. Cont. 

NO. SMILES pIC50(α) pIC50(β) S 

compound65 OC3=CC(F)=C(C(F)=C3)C2=CC=C1C=C(O)C=CC1=C2 6.99 7.64 0.54 

compound66 OC3=CC=C(C=C3)C2=CC=C1C(Cl)=C(O)C=C(C#N)C1=C2 6.01 7.52 1.50 

compound67 OC3=CC=C(C=C3F)C2=CC(C=C)=C1C=C(O)C=CC1=C2 5.60 7.36 1.75 

compound68 OC3=CC=C(C=C3)C2=CC(C#N)=C1C(Cl)=C(O)C=CC1=C2 5.96 7.22 1.23 

compound69 OC3=CC=C(C=C3Cl)C2=CC=C1C=C(O)C=CC1=C2 5.97 6.96 0.94 

compound70 OC3=CC=C(C(OC)=C3)C2=CC=C1C=C(O)C=CC1=C2 5.76 6.57 0.74 

compound71 OC1=CC=C2C(C(C(C)=O)=CC(C3=CC=C(O)C(F)=C3)=N2)=C1 4.47 6.03 1.55 

compound72 OC1=CC=C2C(C(C#C)=CC(C3=CC(F)=C(O)C(F)=C3)=N2)=C1 4.32 5.12 0.73 

compound73 OC(C=CC2=C3)=CC2=CC=C3C1=CC=CC=C1O 4.30 4.70 0.18 

compound74 OC(C=CC2=C3)=CC2=CC=C3C1=CC=C(O)C=C1F 6.62 7.70 1.04 

compound75 OC(C=C(CC)C2=C3)=CC2=CC=C3C1=CC(F)=C(O)C=C1 5.95 7.60 1.65 

compound76 OC(C=CC2=C3)=CC2=C(C=O)C=C3C1=CC=C(O)C(F)=C1 5.64 7.47 1.83 

compound77 OC(C=CC2=C3)=C(F)C2=C(C#N)C=C3C1=CC=C(O)C(F)=C1 5.51 7.25 1.74 

compound78 OC(C=CC2=C3)=CC2=C(C#C)C=C3C1=CC=C(O)C(F)=C1 5.61 7.20 1.58 

compound79 OC(C=CC2=C3)=C(Cl)C2=CC=C3C1=CC=C(O)C=C1C 6.40 6.89 0.32 

compound80 OC1=CC=C2C(C(C#N)=CC(C3=CC=C(O)C=C3)=N2)=C1 5.34 6.55 1.18 

compound81 OC1=CC2=CC(C3=CC=CC=C3)=CC=C2C=C1 4.47 5.28 0.74 

compound82 OC1=CC(O)=CC2=C1C(C(C3=CC=C(O)C=C3)=CO2)=O 5.40 7.01 1.60 

2.2. Molecular Descriptors 

The molecular descriptors were calculated with the DRAGON program packages which were 

originally developed by the Milano Chemometrics and QSAR Research Group 

(www.disat.unimib.it/chm/). DRAGON provides more than 1,600 molecular descriptors that are 

divided into 20 logical blocks, which contain not only the simplest atom type, functional group and 

fragment counts, but also several topological and geometrical descriptors. Some molecular properties 

such as logP, molar refractivity, and number of rotaTable bonds, H-donors, H-acceptors, and 

topological surface area (TPSA) are also calculated. According to the energy minimized 3D 

conformation of each compound, 1,664 2D and 3D molecular descriptors were computed with 

DRAGON packages based on the structure of a compound. Constant or near constant values and 

descriptors with zero standard deviations were excluded in order to reduce redundant and non useful 

information. Finally 1,333 DRAGON descriptors were retained.  

2.3. Statistical Methods  

For data analysis and modeling, multiple Linear Regression (MLR), partial least squares regression 

(PLSR) and Bayesian regularized neural network (BRNN) investigations were performed. MLR 

attempts to model the relationship between two or more explanatory variables and a response variable 

by fitting a linear equation to the observed was employed to correlate the binding affinity and 

molecular descriptors. This method has been widely applied in many QSAR studies, and has proven to 

be a useful linear regression method to build QSAR models that may explore straightforward the 

properties of the chemical structure in combination with its ability of inducing a pharmacological 

http://www.disat.unimib.it/chm/
http://www.disat.unimib.it/chm/
http://www.disat.unimib.it/chm/
http://www.disat.unimib.it/chm/
http://www.disat.unimib.it/chm/
http://www.disat.unimib.it/chm/
http://www.disat.unimib.it/chm/
http://www.disat.unimib.it/chm/
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response [25]. In the procedure, stepwise method was introduced to extract the most correlate 

descriptors.  

PLSR is a statistical method that bears some relation to principal components regression; instead of 

finding hyperplanes of maximum variance between the response and independent variables, it finds a 

linear regression model by projecting the predicted variables and the observable variables to a new 

space and is used to find the fundamental relations between two matrices (X and Y), i.e., a latent 

variable approach to modeling the covariance structures in these two spaces. A PLS model will try to 

find the multidimensional direction in the X space that explains the maximum multidimensional 

variance direction in the Y space. PLS-regression is particularly suited when the matrix of predictors 

has more variables than observations, and when there is multi-collinearity among X values. The 

detailed algorithm of this method can refer [26,27].  

Backpropagated artificial neural networks (ANNs) have been widely used for molecular modeling 

due to their computational efficiency and their ability for approximating any mapping between 

independent and response variables. However, their inherent unstability and the existence of overfitted 

solutions increase when the number of parameters is increased [28]. The Bayesian regularization 

overcomes the deficiencies of ANNs by modifying the ANNs performance. The Bayesian framework 

deals with uncertainly by applying probabilities to each possible event [29,30]. In contrast to 

conventional network training, where an optimal set of weight is chosen by minimizing an error 

function, Bayesion approach involves a probability distribution of the network weight. After the data is 

taken, the density function for the weights can be updated according to Bayes’ rule: 

 
   

 

, , ,
, , ,

, ,

P D M P M
P D M

P D M

   
  

 
      (2) 

where D is the data set, M is the particular neural network model used and ω is the vector of net work 

weights. P(ω|D,α,β,M) is the posterior probability, that is the plausibility of a weight distribution 

considering the information of the data set used. P(ω|D,α,M) is the prior density, which represents our 

knowledge of the weights before any data are collected. P(D|ω,β,M) is the probability of the data 

occurring, given the weights. P(D|α,β,M) is a normalization factor, which guarantees that the total 

probability is 1. Gauss-Newton approximation [31] to Hessian matrix of the objective function F(ω) 

has been developed to effectively calculate the regularization. Bayesian methods produce predictors 

that are robust and well matched to the data which make optimal predictions. 

In this work, two-layer networks were fully connected, with a hyperbolic tangent function 

employed in the hidden layer and a linear transfer function in the output layer. The Levenberg-

Marquardt training algorithm [32] was introduced to accelerate the convergence of the targets. The 

starting-values for the BRNN model parameters were selected according to Nguyen-Widrow rules 

[33]. The training is stopped at the maximum of the evidence for the hyperparameters α and β [34].  

2.4. Construction of Training and Test Set 

As external validation can provide a more rigorous evaluation of a model's predictive capability for 

untested chemicals, the best proof of an already developed model’s accuracy is to test model 

performance on these additional data. For this purpose, before the models were built the whole data set 
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was split into two subsets, i.e., the training set used to build the model and the independent test set to 

validate the model's accuracy. In this investigation, we performed this splitting on the basis of their 

distribution in the chemical space which is defined by the Kohonen neural network [35].  

A self-organizing map (SOM) creates a set of prototype vectors representing the dataset and carries 

out a topology preserving projection of the prototypes form the d-dimensional grid. This grid is a 

convenient visualization space for showing the cluster structure of the data. Thus, similar objects were 

mapped into the same position(x, y coordinates in a Kohonen map). In this work, only a part of 

representative object form each position in the map was chosen for the training set, respecting the 

original proportion among the different classes.  

2.5. Docking 

Structurally, the C-terminal LBD of the ERs forms a 3D wedge-shaped binding pocket composed of 

non-polar residues in the active site, resulting in a largely hydrophobic pocket. This pocket displays 

specific binding features, allowing it to accommodate a varied set of steroid-like ligands. Basically, we 

believe that a compound enters the active site of ER in a penetration manner, since this pocket is a 

narrow-long channel with different hydrophobicity in the two terminals of the channel. Therefore, a 

hydrophobic compound with different structural ends revealing the hydrophobic variations can easily 

penetrate into the pocket and bind to a hydrophobic area in the protein [36]. The mechanism might 

explain the binding characteristics of most ligands in the ER ligand binding domain. In this work, in 

order to probe the possible binding conformations of ligands in the ER LBD and further rationalize ER 

subtype selectivity of these compounds, a molecular docking method was also employed.  

Surflex-Dock docks ligands automatically into a receptor’s ligand binding cavity using a protomol-

based method and an empirically derived scoring function. The protomol is a unique and important 

factor of the docking algorithm and is a computational representation of assumed ligands that interact 

with the binding cavity. In addition to the automated docking process, the function in Surflex-Dock 

has been improved by incorporating a base portion matching algorithm that allows a fragment of the 

ligand to be prepositioned as it docks in the binding site. The scoring function based on the binding 

affinities of protein-ligand complexes and on their X-ray structures contains hydrophobic, polar, 

repulsive, entropic and solvation terms [37,38]. The Cscore functions are also available in the Sybyl  

software package.  

Crystal structures of human ERα and ERβ with same ligands co-crystallized can enhance the 

accuracy when comparing a ligand docking poses in ERα and ERβ. In this work, six ligand-  

co-crystallized ER structures were used and the X-ray crystallographic data were retrieved from the 

Protein Data Bank (PDB ID 1X7R and 1X7E for ERα; 1QKM, 1X78, 1YYE and 1YY4 for ERβ). As 

listed in Table 2, 1X7R and 1QKM, 1X7E and 1X78 have the same co-crystallized ligands. 1YYE and 

1YY4 were chosen because the co-crystallized ligands are also within the studied compound sets 

(compound6 and compound23).  

Prior to docking, in the protein preparation procedure all waters were removed and the hydrogen 

atoms were added in predicted models using the Biopolymer module in a random way. Protomol for 

Surflex-Dock was generated according to the software protocol. Two important factors bloat and 

threshold that can significantly affect the size and extent of the protomol were adjusted in order to get 
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the best docking results. For 1X7R, 1QKM, 1X78, 1YYE and 1YY4, bloat was set to 0.0 and threshold 

was set to 0.50. For 1X7E, these parameters were set to 0.0 (bloat) and 0.70 (threshold). Before 

employed to the docking stimulation, all the ligands were energetically minimized employing the 

Tripos force field and Gasteiger-Huckel charges. Besides, other parameters with default setting and 

Cscore functions were employed in all runs.  

Table 2. The crystals used in the docking process and 2D structures of their co-crystallized 

ligand. 

Crystal ligand Crystal ligand 

1X7R 
 

1QKM 
 

1X7E 

 

1X78 

 

1YYE 

 

1YY4 

 

3. Results 

Self-organizing maps are a special kind of neural network that can be used for clustering, 

visualization and abstraction tasks. SOM is especially suitable for data surveys because of its 

prominent visualization properties. We used a small Kohonen network with 5 × 5 = 25 neurons 

producing a map with 25 points for the ERα and ERβ sets, while for the Selectivity set, a map with  

4 × 4 = 16 points was applied. The SOM built for all the data sets is shown in Figure 1. Compounds in 

the training and test sets, as well as the validation sets for the BRNN models are clearly marked. 

Figure 1. The distribution the 82 compounds in the 5 × 5 top-map of the Kohonen neural 

network: (A) is for the ERα set and (B) is for the ERβ set. (C) is the distribution of  

81 compounds in the 4 × 4 top-map Kohonen neural network for the Selectivity set. Those 

numbers with grey circle background are compounds of the test set, while the others are 

the ones of the training set. Numbers in blue rectangles are compounds further split for the 

validation of the BRNN models. 
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Figure 1. Cont. 

 

 

3.1. ERα 

3.1.1. MLR 

A stepwise MLR method was employed to extract the descriptors most correlated with the relative 

bioactivity and the following optimal MLR model was arrived at: 

     

   

50 2 181 0 996 44 287 11 238

0 397 0 090 96

pIC . . . . JGI10-9.883 2.266 E1p

+2.998 . R4u-0.577 . BELTA

      

      

(3) 

ntr = 61, nte = 21, R
2
 = 0.72, SEE = 0.36, F = 36.01, Q

2
 = 0.63, SEP = 0.44 

where, ntr and nte are the number of compounds in the training set and the test set, respectively. R
2
 is 

the conventional correlation coefficient; Q
2
 is the external-validated correlation coefficient; F is the  

F-test value; SEE is the standard error of estimation for the training set; SEP is the standard error of 

prediction for independent test set. The experimental pIC50 values versus predicted pIC50 values are 

shown in Figure 2(A). From the figure, we can get the information the predicted pIC50 values for most 

of the compounds are well consistent with the experimental results, indicating the good performance of 

the built MLR model. 
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Figure 2. Experimental vs predicted pIC50 values of ligands for the ER alpha (left), ER 

beta (middle) and experimental vs predicted S values of ligands for Selectivity (right) by 

the MLR models (A) for the training and test sets, by the PLSR models (the pIC50 and 

descriptor values were normalized) (B). (C) Experimental and predicted values by 

Baysian-regularized neural network for the training, validation and independent test sets 

for ER alpha (left), ER beta (middle), and the Selectivity (right). The empty circles 

represent the outliers present. 

 

3.1.2. PLSR  

PLSR is based on linear transition from a larger number of original descriptors to a small number of 

orthogonal factors (latent variables) providing the optimal linear model in terms of predictivity [3440]. 

All the variables were normalized before the PLSR procedure was taken by x = [x – mea (x)]/std(x). 
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Herein x represents a variable and std(x) is the standard deviation. The resultant PLSR model with six 

latent variables outweighs others as shown in Figure 3(A). The corresponding statistical correlation 

coefficients (Rtr
2
 and Qte

2
) are 0.92 and 0.84 respectively for the training and test set; while the  

Leave-One-Out (LOO) cross-validated coefficient of determination Qcv
2
 is 0.43. And the 

corresponding standard error is 0.28 for the model built and 0.44 for independent test data. The 6 latent 

factors totally explained 63.87% of the independent variances and 92.08% of the dependent variance. 

According to the Variable Importance in Projection (VIP), which summarizes the importance of X 

variables in the model, R4u, R4e, R5e, HATS5e, nPyridines, C-028, N-075, E1v, JGI10, E1p, R1e
+
 

and RTe
+
 are ones among the most relevant descriptors. The experimental (normalized) versus 

predicted pIC50 values for both training and test sets were plotted in Figure 2(B). The model’s 

performance is good as most of the compounds are well distributed along the trend line. 

Figure 3. Trend of the statistical results of the PLSR models with vary latent factors based 

on the data sets for ER alpha (A), ER beta (B) and Selectivity (C).  

 

3.1.3. BRNN 

The 61 compounds in the training set for the MLR and PLS models were further randomly split into 

one training set and one validation set with a ratio of 2:1 (Figure 1) for building the BRNN models. 

The simulation was iterated 50 times and the average predictive values were taken as the final result, 

in order to minimize the differences and random error. The optimal PCA-BRNN model has five hidden 

neurons, using five input neurons for the PCs, as displayed in Figure 2(C), with the statistical 

coefficient Rtraining is 0.87, Rvalidation is 0.76 and Rtest is 0.73, while the sse(sum squared error) are 0.19, 

0.09 and 0.10, for the training, internal validation and independent test sets, respectively. 
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3.1.4. Surflex-Docking 

We implemented the docking process with prior minimized ligands and X-ray crystallographic data 

1X7R and 1X7E retrieved from PDB. After running the Surflex-Dock, the scores of 10 docked 

conformers were ranked in a molecular spreadsheet. The crystallized ER structures with different 

resolutions and binding ligands greatly impact the docking accuracy and poses ranking. No precise 

correlation could be found between the top rank docking poses scores and pIC50 values when 

employing these two crystallized ER structures as the pIC50 values relate to number of events. In this 

study, we also docked the compounds into the crystallographic protein structures without water 

removing and no significant difference presents. In order to illustrate the interaction mechanism, 

compound18, the most potent ERα ligand among the 82 compounds, for more detailed analysis.  

Figure 4 generally represents the interacting model of compound18 with ERα when docked into 1X7R  

and 1X7E.  

Figure 4. (A) Superpositon of Docking conformations of Compound 18 in 1X7R (green) 

and 1X7E (cyans).The interacting modes of compound18 with 1X7R (B) and 1X7E  

(C). Compound18 and the important residues for binding interaction are represented by 

stick and line models, respectively. The magentas dash lines denote the hydrogen bonds. 

 

 

The binding conformation docked in the two crystal ERα structures are almost at the same position 

in the active site [Figure 4(A)] with the chloro substituent directing towards the hydrophobic group of 

PHE404, PHE425 and LEU346. As previous work proved, the hydroxyl of the phenyl ring has a  

H-bond with GLU353 and ARG394, and the hydroxyl of the naphthyl moiety may form a H-bond with 

HIS524 [9]. However, in our work, GlY521 and LEU525 can also form H-bond interactions with 

compound18, as shown in Figure 4(B),(C).  
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These H-bonds form the basis of the favorable binding interaction of the ligand with ERα. Still, the 

interactions caused by lipophilic features of the molecules play an important role in determining the 

binding affinity since a linear correlation between the ClogP and pIC50 was attained for these studied 

compounds (R = 0.32). Notably, the docking conformations of compound18 are totally different from 

the compounds bound to 1X7R and 1X7E (Table 2), as shown by their structural skeletons in the two 

X-ray structures. The binding orientations are different, but the H-bonding which plays a key role in 

the ligand-enzyme interaction are similar, i.e., two similar H-bonds formed between the ligand with 

HIS524, GLU353 or ARG394. Therefore, the predicted conformation by this Docking method is 

reasonable.  

3.2. ERβ 

3.2.1. MLR 

Herein five descriptors were extracted, and with which the most predicative MLR models was built 

as shown below: 

     

     

50 41 527 5 532 47 096 16 457 10 19 060 3 445 1

10 963 1 742 6 0 592 0 159 09 0 585 0 057

pIC . . . . JGI . . E p

. . BEHe . . EEig x . . nCb

       

         
  (4) 

ntr = 61, nte = 21, R
2
 = 0.75, SEE = 0.46, F = 32.35, Q

2
 = 0.75, SEP = 0.46 

Figure 2(A) shows the regression plot of experimental vs predicted pIC50 values of the compounds. 

All compounds in the test set are well distributed among the training ones, indicating the high quality 

of this model.  

3.2.2. PLSR 

The optimal PLSR model was selected with seven latent factors, as shown in Figure 3(B) 

considering the reliability and predictive power, and totally explained 66.28% of the independent 

descriptors and 97.78% of the dependent variables. A plot of the experimental (normalized) versus 

predicted pIC50 values is shown in Figure 2(B); all the training compounds are well distributed along 

the trend line indicating its good performance (Rtr
2
 is 0.98, SEE is 0.15, LOO Qcv

2
 is 0.28). When 

extrapolated to the test set, two compounds (compound44 and compound 61, marked as blue circles) 

were out of the application domain of the model. For the rest test set, the predictive capability is 

convincing, with Qte
2
 is 0.80 and SEP is 0.43. The importance of each descriptor was evaluated by VIP 

and the most relevant variables are nCb-, SP20, DP20, SP19, DP19, SP18, DP18, E1v, E1p, SP17, 

DP17, R4v, PJI2, nPyridines. 

3.2.3. BRNN 

Same strategy was taken for the ERβ data set just as for the ERα data sets. Figure 2(C) presents the 

optimal BRNN models with five hidden neurons and 11 input neurons for PCs. The statistical results 

of the BRNN model are Rtraining is 0.91, Rvalidation is 0.70 and Rtest = 0.74 with SSEtraining is 0.29, 

SSEvalidation is 0.14 with SSEtest is 0.15. No obvious overfitting can be observed from the model, and no 
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outliers were considered. This suggests that the BRNN model can be applied to compensate for the 

deficiency of the linear models. 

3.2.4. Surflex-Dock 

Multiple crystals publicly available from the PDB were obtained and the binding mode of the 

studied compounds were generated in four crystals (1QKM, 1X78, 1YY4 and 1YYE). All the 

parameters were set as the default values in the whole process. The function scores were used to 

evaluate the binding qualities. Notably, docking into different crystal ERβ can have drastic effects on 

the ranking poses and relating scores. The first ranking pose scores failed to correlate pIC50 values 

precisely in each condition. The performance of docking for virtual screening and binding model 

investigation study should be cautiously analyzed. Figure 5 shows the putative binding mode of 

compound 17, the most potent ERβ ligand according to the experimental results, within the ligand 

binding pocket of the LBD of ERβ employing different crystal structures.  

Figure 5. Compound17 and the potent interacting residues docking into 1QKM, 1X78, 

1YY4 and 1YYE in sequence (A–D). The magenta dashed lines denote the  

hydrogen bonds. 

 

The main variation of the binding conformation is focused on the orientations of the formyl group 

attaching to the naphthyl part and the fluoro group attaching to the phenyl part. In the docking pose in 

1QKM and 1YY4, the fluoro directs at MET340 and LEU343, while in 1X78 and 1YYE, the 

orientation of the phenyl group flipped and the fluoro substituent directs towards GLU305 and PHE 

356. This further result in LEU339 instead of GLU305 forming a favorable H-bond with the hydroxyl 
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group attaching to the phenyl part. Because of the flexibility of the rotaTable bond, the oxygen atom of 

formyl group orients obviously different. The docking conformations in 1YYE and 1YY4 indicate 

electrostatic interaction between the acyl of LEU298 and formyl group of compound17. While docking 

in 1QKM and 1X78, the formyl group is directed at MET336, ILE373 and ILE376. 

3.3. Selectivity 

Except for compound63 which showed the same binding affinity for both subtypes, the rest of the 

ligands studied herein tend to experimentally bind more in the LBD of ERβ. In order to study the 

contributing structural information, we defined the selectivity of binding affinity as showen by 

Equation 1 and developed MLR PLSR and BRNN models on the basis of compound 63 being excluded 

from the data set. 

3.3.1. MLR 

A MLR model with R
2
 is 0.74 and SEE is 0.25 was reached (F = 25.56). When validated externally, 

the model well predicts all the compounds in the test set with Q
2
 is 0.80 and SEP is 0.21. Six 

molecular descriptors mostly correlating to the binding affinity property was selected as shown in 

Equation 5: 

     

   

 

22 489 3 012 7 709 1 107 6 2 602 0 552 5

2 513 0 612 03 0 280

0 804 0 142 2

S . . . . BEHe . . BEHm

. . EEig r-0.823 . DISPe

. . CIC

       

    

  

  (5) 

A plot of the experimental and predicted pIC50 values is shown in Figure 2(A). The S value mainly 

ranges from 0 to 2. If S is zero the affinity capability of the corresponding compound for ERβ will be 

two-fold of that for ERα. Its increase strengthens the Selectivity between the two subtypes remarkably. 

Compounds gathered at the right top corner have strongest binding affinity to ERβ than to ERα. These 

are SERMs for ERβ that can be further studied and screened for drug design purposes. 

3.3.2. PLSR 

A predictive QSAR model was produced using PLSR analysis to correlate variation in selective 

activity with variation in the descriptors. The optimum number of latent factors (six) corresponds to 

the highest correlation coefficient (R
2
 = 0.89) with the standard error of prediction is 0.35  

[Figure 3(C)], while for LOO cross-validation, the correlation coefficient Qcv
2
 is 0.37. The predictive 

power was evalued by an independent test set. Compound18 and compound82 (genistein) were 

removed as outliers resulting in an improvement of Qte
2
 from 0.50 to 0.65 with a standard error of 

0.61. The plot of experimental (normalized) and predicted S values for all compounds is shown in  

Figure 2(B). For the outliers (marked as blue circles) the predicted values are much lower than the 

experimental results. 
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3.3.3. BRNN 

The optimal BRNN model has five hidden neurons, with 14 input neurons for PCs. The 

performance of the BRNN model is not as good as that of the MLR and PLSR models and one outlier 

(compound57) was omitted from the validation set. For the training and test sets the conventional 

coefficients are 0.81 and 0.77, while for the validation set the cross-validation coefficient is 0.41. The 

resulting graphic model is provided in Figure 2(C). Compound57, marked with a blue circle, is 

obviously far away from the trend line and badly predicted. For all the BRNN models built for ERα, 

ERβ and Selectivity, the statistical results are summarized in Table 3.  

Table 3. The statistical results of the BRNN models. 

Data set A* B Rtraining Rvalidation Rtest SSEtraining SSEvalidation SSEtest 

alpha 5 5 0.87 0.76 0.73 0.19 0.09 0.10 

beta 5 11 0.91 0.70 0.74 0.29 0.14 0.15 

Selectivity 5 14 0.81 0.65 0.77 0.009 0.005 0.005 

* A: represents the number of hidden neurons. B: represents the number of input neurons for PCs. 

SSE is abbreviation of Sum Squared error. 

3.3.4. Docking Study 

As mentioned above, no precise correlation could be found between pIC50 values and the first rank 

docking pose scores. It is not rational to investigate the ER subtype selectivity according to the 

docking rank pose scores. However, comparing the docking binding conformations could shed light on 

the possible contributing molecular properties that determining the Selectivity. Herein, we compared 

the binding conformations of compound22 and compound10 that have the highest ERβ subtype 

selectivity docked in 1X7R(ERα) vs. 1QKM(ERβ) and 1X78ERβ) vs. 1X7E(α). 

Analysis of the X-ray co-crystal structures of ERα and ERβ complex with agonists illustrates that 

only two residue substitutions within 5Å expand the binding ligand: Met336 in ERβ replaces Leu 384 

in ERα and Ile373 replaces Met421 [39]. However, orientation and conformations of the amino acids 

could obviously vary, such as ILE424 of crystal 1X7R and ILE376 shown in Figure 6(A). Similar  

H-bond interactions were found as docking in the ERα and ERβ crystals for the compounds studied. 

For some compounds HIS521 of ERα or HIS472 of ERβ could form H-bonds with the hydroxyl group 

of the naphthyl plane. However, this determines little in the binding affinity. We speculate that the  

H-bonding interaction is not the key factor determining the high selectivity between these two  

ER subtypes.  

The most apparent difference when docking into ERα and ERβ is the naphthalene or the quinoline 

plane. The phenyl plane is inclined to adapt a similar space orientation and position in each crystal. 

The 8-ethyl substituent of compound22 and the 8-bromo substituent of compound10 directed towards 

ERβ Ile373 docking in 1QKM and 1X78, while docking into 1X7R and1X7E the 8-ethyl substituent of 

compound22 orients to Met421 or is rotated toward LEU384 and the 8-bromo substituent of 

compound10 was directed towards Met421 (Figure 6). These differences may explained by a favorable 

dispersive interaction with ERβ Ile373, relative to a less favorable interaction with ERα Met421 

because of steric constraints of the ethyl group and the protein, or both. The importance of Met336 has 
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been highlighted in determining the ERβ selectivity by other works [9,39,40]. These docking 

conformations of both compound22 and compound10 take the strategy that the naphthalene or the 

quinoline plane more apart from the Met336 than Leu384. Thus, we speculate that the naphthalene or 

the quinoline plane and the substituent in position 8 instead the hydrogen bond forms the most ER 

subtype selective pharmacophore. 

Figure 6. (A) Overlay of binding conformations of compound10 docking into 

1QKM(ERβ) vs. 1X7R(ERα) (left) and 1X78(ERβ) vs. 1X7E(ERα) (right). (B) Overlay of 

binding conformations of compound22 docking into 1QKM(ERβ) vs. 1X7R(ERα) (left) 

and 1X78(ERβ) vs. 1X7E(ERα) (right). 1QKM and 1X78 were colored green, while 1X7R 

and1X7E colored cyan. The magenta dashed lines denote the hydrogen bonds. 

 

4. Discussion 

4.1 ERα Models 

The MLR model was built with four descriptors. JGI10 is the mean topological charge index of 

order10, and the most important descriptors extracted that positively correlate with the binding affinity 

to ERα, which indicates the critical role of the overall charge dispersionh profile due to the influence 

of size and shape. E1p represents the 1st component accessibility directional WHIM index weighted 

by atomic polarizabilities. The atomic polarizability negatively contributes to the binding affinity. R4u, 

a GETAWAY descriptor, represents R autocorrelation of lag 4 (unweighted), demonstrates the positive 
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effect of the molecule geometry and size and shape properties. BLTA96 is Verhaal model of algae 

base-line toxicity from MLOGP relating to the bind affinity of the lipotropism. 

The PLSR model was built with six latent factors and successfully extrapolated to the independent 

test set. Thus, it can be used to further screen and discover new ERα ligands. According to the most 

important descriptors determined by VIP related to the MLR model, the importance of atom–centred 

fragment types, interatomic distances and the shape of molecule with polarity and electronegativites 

are highlighted. The nitrogen of the quinoline and pyridine plane is a characteristic atom type 

correlating to the binding affinity to ERα. 

The BRNN model was introduced as neural nets have the advantage of being able to explore 

nonlinear relationships between dependent and independent variables, even without prior knowledge 

of the form of the nonlinearity. In order to reduce the descriptor space and the chance of correlation 

among descriptors a principal component analysis was performed before the variables were used as the 

BRNN input data. The performance of the BRNN model compared to the MLR and PLSR models is 

not that good. The increasing PCs or hidden neurons did not improve the model quality inappreciably.  

Comparing the models built, The PLSR model outperformed the others. The MLR model also 

successfully extrapolates to the independent test set. Here we recommend they could be applied to 

virtual screening of novel ERα ligands with improved affinity simultaneously to improve the accuracy. 

4.2. ERβ Models 

Five descriptors were selected for the MLR model built in this study. JGI10, the most positive 

correlated descriptor together with E1p, the most negative correlated descriptor, contributes to binding 

affinity to both ER alpha and beta isoforms. Another three descriptors correlate distinctively with the 

pIC50 for the ERβ: BEHe6 is the highest eigenvalue no. 6 of Burden matrix weighted atomic 

Sanderson electronegativities. nCb- is the number of substituted benzene. EEig09x is the eigenvalue09 

from edges adjacency matrix weighted by edge degrees. These descriptors emphasize the importance 

of the molecule component structure characteristic.  

Although two outliers (compound44 and compound61) were omitted when evaluated by the 

independent test set, the performance of the PLSR model is still considerable, with most of the 

compounds being tightly center around the trend line as shown in Figure 2(B). According to the VIP, 

the 10 most correlated descriptors mainly belong to Randic molecular profiles and most relate to the 

global molecular 3D structures and shape profile determined by atoms on molecular periphery, WHIM 

descriptors that elate to structure-property correlations atom-centred fragments, functional group 

counts and GETAWAY descriptors that are based on the row sums of the influence(distance)matrix. 

This indicates the importance of atom types of molecules and atoms on the molecular periphery, the 

distance between atom pairs and the electrotopological state of the functional group.  

Compared with the MLR and PLSR models the BRNN model is not as powerful. 11 input neurons 

for PCs and five hidden neurons were used. For the test set compounds, the compounds are more 

dispersed from the trend line compared with the training and validation sets. 
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4.3. Selectivity Models 

A total of 81 compounds were studied with the QSAR models. The optimal MLR model arrived at 

six descriptors: BEHe6, BEHm5 (highest eigenvalue n. 5 of Burden matrix weighted by atomic 

masses), EEig03r (eigenvalue 03 from edge adj. matrix weighted by resonance integrals), DISPe  

(d COMMA2 value weighted by atomic Sanderson electronegativities), CIC2 [complementary 

information content (neighborhood symmetry of 2-order)]. The graphical results visually indicate the 

performance of the PLSR model is comparable to that of the MLR model with six latent factors. The 

correlated descriptors determined by VIP give a deeper insight into the structural parameters which 

influence the pIC50 based ER subtype selectivity in comparison to the MLR model, RDF015m, 

BEHm6, H5p, E1p, RDF015e, nDB, HGM, BEHp8, L1m, H5v stress the importance of topological 

information and 3-D profiles, as well as the atom types and number of double bonds. Their definitions 

of all the descriptors can be found in the Dragon user manual and for the calculation details readers 

can refer to the Handbook of Molecule Descriptors [41]. 

One outlier (compound57) was detected in the validation set. However, its removal did not improve 

the predictive quality of the BRNN models when evaluated by the test set. Considering more input 

neurons for pcs and low Qvalidation., the BRNN failed to that accurately predict the Selectivity with the 

Dragon descriptors compared with the MLR and PLSR models, which would be of great help in 

screening ER subtype selective ligands.  

4.4. The Docking Study 

Docking method is an alternate to QSAR study in the drug screen and design procedure to discover 

and optimizing new ligands by predicting binding models and affinities of small ligands to biologically 

relevant target proteins. In this work, the Surflex docking method was implemented to understand the 

pharmacological preferences from the set of 2-arylnaphthalene and 2-arylquinoline derivatives. As a 

validation of the accuracy of the docking process, the RMSD of the crystal binding ligands from the 

crystals were compared with the top 10 ranked conformations redocked with Surflex-Dock. Before 

redocking, the ligands were minimized just like all the compounds studied. The results are summarized 

in Table 4.  

Each of the energy minimized ligand exists 10 most possible conformations docked into the binding 

pocket of the ER crystals. The top ranked conformations corresponding Surflex Scores do not show 

precise correlation with pIC50 values. Besides the complexity of the pIC50 determinant factors, the 

binding conformation is influenced by multiple factors. Mikelos [42] has pointed out that the docking 

scores are highly sensitive to the source of ligand input conformations as small changes in the ligand 

input conformation can lead to large differences of the resulting docked poses. The energy minimized 

conformations were employed because the good performance of previous works studying QSAR and 

docking [40,43–46]. Differences between co-crystallized ligand proteins also lead to a large 

perturbation of the resulting docking performance as demonstrated by our study results above. It has 

been suggested that consensus scoring improves the enrichment of true positives. 
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Table 4. Summary of the RMSD information when the cocrystalized ligand redocked into 

the corresponding crystals. 

Crystal AVG_RMSD SD_RMSD MAX_RMSD/NO. of pose MIN_RMSD/NO. of pose 

1X7R 0.66 0.18 0.94/7
th*

 0.46/10
th

 

1X7E 0.32 0.03 0.36/9
th

, 10
th

 0.27/5
th 

1QKM 0.39 0.06 0.47/1
th

, 3
th 

0.32/8
th

 

1X78 0.53 0.32 1.04/5
th

,7
th

 0.14/1
th

 

1YY4 0.63 0.30 1.01/7
th

 0.14/6
th

 

1YYE 0.77 0.54 1.81/7
th

 0.34/1
th

 

* The numbers here match along with the ten plausible poses ranking with the docking score 

descending order. 

However, this must be on the base that each individual scoring function is distinct and has relatively 

high quality [47]. It is unclear how the best docking pose could be selected. This results in the 

difficulty of using the Cscores to rank the docked poses. The highest Surflex-Dock scoring solution is 

supposed to be nearest to the experimental structure, but the RMSD analysis in Table 4 shows that the 

top ranking pose is not always the case. We suggest that the docking process used to screen and design 

the positive ER ligands with 2-arylnaphthalene and 2-arylquinoline scaffolds employ multiple 

crystallographic proteins, if available, and the results be comprehensively analyzed for each solution to 

greatly improve the accuracy. For example, in the docking of compound17 into 1YY4 in Figure 5, the 

top ranking pose confronts steric conflict as the fluoro group penetyrates into the protein too much, 

resulting in direct contact with LEU343. More importantly, the docking positive compounds should be 

further studied with the robust QSAR models in order to screen out the possible outliers and false 

positive compounds  

5. Conclusions  

This work has focused on the use of QSAR models and a docking program to study the molecular 

profiles most correlated with the binding affinity of estrogenic ligands and the origin of the ER 

subtype binding selectivity. MLR, PLSR and BRNN models were built respectively for the binding 

data for ERα and ERβ and the selectivity between ER subtypes via introduction of the S (selectivity) 

dependent endpoint. All the models were tested by an independent test set, which was not used for 

building the models for their prediction capability. JGI10 and E1p are the most correlated descriptors 

to binding affinity to both ER subtypes, while BEHe6, BEHm5 and EEig03r are especially vital in 

determining the selectivity according to the robust linear models. The use of multiple crystallographic 

proteins in the docking study should further improve the docking accuracy and be helpful for to the 

efficient identification of potential pharmacological groups. Hydrogen bond interactions form the base 

of the favorable interaction of ligands with both ERα and ERβ, but the binding affinity strength is 

more correlated with the atom fragment type, polarizabilities, electronegativites and hydrophobicity. 

Compound22 and compound10 are the most ERβ selective compounds, as the docking results show 
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that the spatial orientations of naphthalene or the quinoline plane and the substituent in position 8 are 

most correlated with the ER subtype selectivity. However, the top ranking pose scores failed to 

correlate precisely with pIC50 in each case with R
2
 < 0.2. Thus, it is difficult to determine the binding 

affinity of ER ligands only by the docking scores. Our results demonstrate the applicability and 

adaptability of the QSAR models and the necessity of performing docking processes using multiple 

crystallographic proteins to accurately screen and discover potential ER subtype selective ligands.  
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