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Abstract: Rate constants and activations parameters are reported for solvolyses of  

p-Z-substituted benzoyl chlorides (1, Z = OMe, Me, H, and Cl) in 97% w/w  

hexafluoroisopropanol-water (97H). Additional kinetic data are reported for solvolyses in 

acetic and formic acids. Plots of log k vs. σp in 97H are consistent with previous research 

showing that a cationic reaction channel is dominant, even for solvolyses of 1, Z = NO2.  

A benzoyl cation intermediate was trapped by Friedel-Crafts reaction with  

1,3,5-trimethoxybenzene in hexafluoroisopropanol. The results are explained by an  

SN2-SN1 spectrum of mechanisms with variations in nucleophilic solvent assistance.  

Ab initio calculations of heterolytic bond dissociation energies of various chloro- and  

fluoro-substituted and other benzoyl chlorides are correlated with log k for solvolyses. 

Keywords: solvolysis; substituent effects; solvent effects; acylium cations 

 

1. Introduction  

As well as the expected initial addition to the carbonyl group, solvolyses of carboxylic acid halides 

can occur via cationic processes in weakly nucleophilic solvents (e.g., fluorinated alcohols [1]). 

Cationic processes can also occur in relatively nucleophilic aqueous solvents, if electron-donating 

groups are present (e.g., in p-methoxybenzoyl chloride (1, Z = OMe) [2] or p-dimethylaminobenzoyl  

fluoride (2) [3]) or if nucleophilic attack at the carbonyl group is sufficiently sterically hindered  

(e.g., by 2,6-substituents in benzoyl chloride derivatives 3 [4,5] and 4 [6]. 
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Correlation analysis based on the extended Grunwald-Winstein (GW) equation has played a major 

role in providing quantitative evidence for the simultaneous operation of both cationic and addition 

reaction channels for solvolyses of a single substrate (e.g., benzoyl chloride, 1, Z = H) [2,7],  

2,4-dichlorobenzoyl chloride (5) [6] and 2,6-difluorobenzoyl chloride (6) [8], as the polarity and/or 

nucleophilicity of the solvent is varied. Mechanistic changes also make benzoyl chlorides suitable as 

molecular probes for determining the polarity of the cavity of cyclodextrins [9]. 

The spectrum of mechanisms is well characterized only at the extremes. The carbonyl addition 

pathway is exemplified by p-nitrobenzoyl chloride (1, Z = NO2), and shows a high response to changes 

in solvent nucleophilicity, a low response to changes in solvent ionizing power, and a high solvent 

kinetic isotope effect [3,10]. 

The cationic reaction channel is best exemplified by solvolyses of 2, which shows common ion rate 

depression in water, characteristic of an SN1 pathway via a “free” cation intermediate, even in a 

nucleophilic solvent [3]. Other substrates including 1, Z = OMe [2,5] and carbamoyl chlorides (e.g., 

Ph2NCOCl [11]; Me2NCOCl [12]) show product ratios in mixed alcohol-water solvents, characteristic 

of reactions via solvent separated ion pairs. 

The main purpose of the research now reported was to obtain further information about the cationic 

reaction channel by studying solvolyses of p-substituted benzoyl chlorides (1) in weakly nucleophilic 

solvents. The data lead to an analysis of both solvent and substituent effects. Also included are 

experiments designed to trap cationic intermediates, and ab initio calculations of substituent effects. 

2. Results and Discussion  

2.1. Reliability of Rate Constants 

The rapid response conductimetric method was employed, collecting data at preset times and 

storing the readings in a digital voltmeter before processing [10]. In general, fluorinated alcohols 

containing small amount of added water perform well in conductimetric studies, but substrates must be 

dissolved rapidly. Typically, reactions were initiated by injecting a few μL of a 1% solution of 

substrate in dry acetone into ca. 3 mL of solvent, so substrate concentrations are <10−3 M. Consistent 

trends in activation parameters were observed (Table 1). Some of the results for solvolyses in  

97% w/w hexafluoroisopropanol-water (97H, Table 1) required extrapolations from data at lower 

temperatures to 25 °C. For solvolyses of 1, Z = H, the extrapolated value is ca. 5% lower than our 

previous measurement [13], which may be due to small variations in solvent batches.  

For solvolyses of 1, Z = Cl in 97H (Table 1) continuous monitoring of changes in absorbance in a 

thermostatted UV cell at 25 °C led to rate constants in good agreement with the conductimetric result; 

this establishes the validity of the UV spectrophotometric method, which we had not previously used 

for acid chlorides. However, our data are ca. 40% greater than the previously published value, obtained 

titrimetrically [7]. Titrimetric analyses require higher substrate concentrations, and as shown below 

spectrophotometric and titrimetric methods may be more susceptible to problems of dissolving  

the substrate. 
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Table 1. Rate constants (k) and activation parameters for solvolyses of p-substituted 

benzoyl chlorides (1) in 97% w/w hexafluoroisopropanol-water (97H) a. 

Substrate b Temperature/°C k/s−1 △H≠/kcal mol−1 △S≠/cal mol−1 K−1 

1, Z = OMe −20.15 (3.15 ± 0.03) × 10−1   

 −9.90 (9.87 ± 0.02) × 10−1 14.2 −4.3 

 25.0 c 27   

1, Z = Me −10.0 d (4.08 ± 0.06) × 10−2   

 0.1 (1.14 ± 0.01) × 10−1 14.0 −11.4 

 25.0 c 1.07   

1, Z = H 0.0 d (5.45 ± 0.13) × 10−3   

 10.0 (1.49 ± 0.02) × 10−2 14.9 −14.2 

 25.0 c,e 5.95 × 10−2   

1, Z = Cl 5.1 (6.67 ± 0.07) × 10−4   

 25.0 f (4.65 ± 0.01) × 10−3 15.5 −17.2 

 25.0 f,g (4.54 ± 0.07) × 10−3   

1, Z = NO2 25.0 h (1.77 ± 0.08) × 10−6   
 

a Determined conductimetrically in duplicate except where state otherwise; errors are average 

deviations; b Structures are given in Figure 1; c Calculated from data at other temperatures;  
d Triplicate measurements of rate constant; e Additional single measurements in different solvent 

batches gave k = (5.98 ± 0.04) × 10−2 s−1 and (5.54 ± 0.04) × 10−2 s−1, and a value of  

(6.28 ± 0.07) × 10−2 was determined by G. E. Carter [13]; f Literature value = (3.21 ± 0.08) × 10−3 [7], 

determined titrimetrically; g Determined in duplicate by UV monitoring; h Literature value [7]. 

Figure 1. Halides (1–7) are named as follows: (1) p-Z-substituted benzoyl chorides;  

(2) p-dimethyaminobenzoyl fluoride; (3) 2,6-dimethylbenzoyl chloride; (4) 2,6-dichloro-

benzoyl chloride; (5) 2,4-dichlorobenzoyl chloride; (6) 2,6-difluorobenzoyl chloride. 
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For formolyses, the conductimetric method was checked by investigating solvolyses of t-butyl 

chloride, which gave k = (1.07 ± 0.07) × 10−3 s−1, in agreement with the literature value of  

1.05 × 10−3 [14]. Formolyses of benzoyl chloride (1, Z = H) were initiated either by injecting neat 

substrate or a 10% solution in dry acetone, and the latter gave ca. 5% higher values, indicating that 

dissolution rates may be contributing. For formolyses of 1, Z = Cl, we employed both conductimetric 

and UV spectrophotometric methods (Tables 2 and 3). Rate constants obtained from UV data were 

significantly lower than the conductimetric results; the differences may be due to problems dissolving 

the substrate, although ultrasonication prior to conductimetric measurements and injections with a 

spring-loaded syringe into the UV cell did not lead to significantly different results. 
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Table 2. Rate constants (k/s−1) and activation parameters for solvolyses of p-methoxy 

benzoyl chloride (1, Z = OMe) in formic acid a. 

Substrate b Temperature/°C k/s−1 △H≠/kcal mol−1 △S≠/cal mol−1 K−1 

1, Z = OMe 5.0 d (2.53 ± 0.21) × 10−1   

 10.0 (4.57 ± 0.10) × 10−1 18.0 3.4 

 25.0 c 2.4   
a–d As for Table 1. 

Table 3. Rate constants (k/s−1) for acetolysis and formolysis of p-substituted benzoyl 

chlorides (1) at 25 °C a. 

Substrate Acetic acid Note b Formic acid Note b 

1, Z = OMe (1.23 ± 0.11) × 10−4 UV c,d 2.4 Table 2 

 (1.18 ± 0.07) × 10−4 Titr   

1, Z = Me 
 

3.98 × 10−5 [15] (1.53 ± 0.03) × 10−1 Cond c 

1, Z = H (6.7 ± 0.3) × 10−6 Titr e (2.11 ± 0.14) × 10−2 Cond f,g 

1, Z = F   (7.3 ± 0.2) × 10−3 Cond c 

1, Z = Cl (1.42 ± 0.12) × 10−6 Titr (2.74 ± 0.16) × 10−3 Cond h,i 

   (1.71 ± 0.05) × 10−3 UV h,j 

1, Z = NO2 1.05 × 10−6 [15] 2.09 × 10−5 [15] 
a Determined in duplicate, except where state otherwise; errors shown are average deviations; b UV 

refers to continuous spectrophotometric monitoring; Titr refers to titrimetric analysis of aliquots at 

set times; [#] is a reference number; c Triplicate measurement of k; d Added 2% acetic anhydride to 

remove traces of water; higher values (2.1 ± 0.1 × 10−4) were obtained in the absence of anhydride; 
e Literature 1.05 × 10−5 [15]; f Five measurements of k; g A single measurement of k by UV 

monitoring gave k = (1.66 ± 0.03) × 10–2 s−1; previously estimated [13] from data [16] at 9 °C,  

k = 2.0 × 10−2; h Six measurements of k; i Additional measurements in a solution containing  

pre-reacted 10−2 M acid chloride (giving HCl) gave a slightly higher result of k = (3.2 ± 0.1) × 10−3 s−1; 
j An additional measurement in the presence of 2% acetic anhydride gave k = 1.47 × 10–3 s−1.  

Acetolyses are typically investigated titrimetrically in the presence of carboxylate buffer [14], but 

under these conditions reactions of benzoyl chloride (1, Z = H) were very rapid. Presumably there is 

base catalysis, unlike formolyses of 1, Z = H which have been found not to be catalysed by added 

formate [16]. In the absence of buffer, acetolyses did not go to completion, and our value is based on 

monitoring <50% reaction is significantly lower than the published value (Table 3, footnote d). For 

acetolyses of of 1, Z = OMe, the UV method gave higher rate constants than the titrimetric results, 

unless acetic anhydride was added (Table 3, footnote d). Monitoring the reaction by HPLC as it 

proceeded showed that there was an unstable intermediate product, presumably the mixed anhydride 

which reacts with traces of water to give 4-methoxybenzoic acid (the only product detected by HPLC 

after long reaction times). Titrimetric data require ca. 50-fold higher concentrations of substrate than 

UV or HPLC, so traces of water could be removed in the early stages of the reaction. 
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2.2. Kinetic Data (Substituent Effects)  

Plots of log k vs. a substituent parameter such as σ [16,17] or σ+ [1,3,18], depend on the solvent and 

substituent. In 50% acetone-water [17] and 50% ethanol-water [18], the plots are U-shaped; the 

carbonyl addition pathway is aided by electron-withdrawing substituents (positive slope), whereas the 

cationic pathway is aided electron-donating substituents (negative slope). 

Our results (Figure 2) refer to solvents of greater ionizing power and/or lower nucleophilicity, so 

the cationic pathway is usually (but not always) dominant; the plots are approximately linear but slopes 

vary significantly. Logarithms of rate constants in 97H, plotted vs. both σp and σp
+ (Figure 2a), show 

the unexpected result that the data fit σp better than σp
+. Data for 1, Z = NO2 fit the plot, whereas it was 

excluded from the correlation line using the GW equation for the addition reaction channel because it 

reacted significantly faster than predicted [7]. These results can be explained consistently if it is 

assumed that the cationic reaction channel is now dominant, even for solvolyses of 1, Z = NO2. 

A plot of log k vs. σp
+ for reactions in 97% w/w trifluoroethanol-water (97T) is close to linear 

(Figure 1 of reference [1], open squares in Figure 2b, σp = σp
+ for H and NO2), suggesting the operation 

of a cationic process throughout the series 1, Z = OMe to NO2. However, rates of solvolyses of 1,  

Z = NO2 in 97T fit the extended Grunwald-Winstein (GW) equation for the addition channel [7]. The 

new correlation line of log k vs. σp instead of σp
+ supports the alternative viewpoint [7] that 1,  

Z = NO2 deviates from Figure 2b because of a change to the addition reaction channel.  

A more complete account would be based on a dissection of substituent effects into resonance and 

non-resonance contributions, based on the Yukawa-Tsuno (Y-T) Equation 1 [20]; r = 1 corresponds to 

a σ+ plot, so the results (Figure 2) indicate that resonance demand (r) is smaller for acylium ions than 

for cumyl cations (the reference substrates for σ+). 

log k/k0 = ρ[σ + r (σ+ − σ)] (1) 

Significantly, formolyses of 1, Z = F are slower than for 1, Z = H, in agreement with respective 

values of σp (+0.062 and 0.0) and in contrast to values of σp
+ (−0.073 and 0.0). A linear σp plot for 

formic acid is shown (Figure 2c), but as in Figure 2a,b, a curve could be drawn. The point for  

Z = OMe deviates most from a linear plot, and Equation 1 would remedy this. 

More convincingly, the σp plot for acetolyses (Figure 2c) shows a large deviation for 1, Z = NO2, 

whereas log k for acetolysis fits the GW equation [7] for the addition reaction channel. Consequently, 

these two independent types of correlation analysis support the assignment of acetolyses of 1, Z = NO2 

to the addition reaction channel. Acetolyses of 1, Z = Cl may deviate slightly from Figure 2c,  

and the predictions of the published GW equations [7] are ambiguous: log k = −5.21 for the  

cationic channel and −6.45 for the addition channel [21,22], midway between the observed value  

(log k = −5.85, Table 3).  

The following theoretical calculations provide some support for the choice of σp over σp
+, in the 

absence of sufficient data for Equation 1.  
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Figure 2. Plots of logarithms of rate constants for solvolyses in various solvents  

vs. σ and σ+ (substituent parameters from reference [19]): (a) solvent 97% 

hexafluoroisopropanol-water (97H), ρ = −6.5 ± 0.5, data from Table 1; (b) solvent 97% 

trifluoroethanol-water (97T), ρ = −6.0 ± 1.0, data from reference 1; (c) solvents acetic  

(ρ = −3.9 ± 0.3) and formic acids (ρ = −4.5 ± 0.5), data from Table 3.  
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2.3. Theoretical Calculations of Substituent Effects  

Results of correlation analysis (Figure 2) can be compared with expectations based on calculations 

for acylium ions in the gas phase. A recent reassessment of gas phase data for the benzoyl cation, 

supported by high level ab initio calculations [23], gives a value of 738.8 ± 3.3 kJ/mol for the heat of 

formation at 298 K; this gives a heterolytic bond dissociation energy (HBDE) for benzoyl chloride  

(1, Z = H) of 148 kcal/mol in satisfactory agreement with the calculated value of 150.1 kcal/mol [24].  

Much lower level calculations give satisfactory results for substituent effects for hydride transfers in 

cumyl cations [20] and for transfer of chloride ion from a substituted benzoyl chloride to the benzoyl 

cation (Equation 2) [25], because the reactions are homodesmotic [26].  

Z
Cl

O

Cl

O
CO

+
CO

+
Z ++

 
(2)  

In contrast to expectations based on σp
+, the results (Table 4) confirm that a p-fluoro substituent 

destabilises the benzoyl cation, as shown by a positive sign for the stabilisation energy  

(SE, Equation 2); interestingly, theoretical calculations also showed that a p-fluoro substituent 

destabilised cumyl cations in the gas phase [20]. Also, destabilisation by p-nitro is larger than the 

stabilisation by p-methoxy, again contrary to expectations based on σp
+ [19]. 

The correlation vs. σp (Figure 3) is good and includes the point for NMe2, so the range of  

HF/6–31G(d) stabilisation energies is 34 kcal/mol; the hatched line is a plot vs. σp
+ and shows 

significant deviations for H and NO2 (the open square symbols are hidden because σp = σp
+). The 

B3LYP data (Table 4) give a better correlation with σp
+ than σp, and much more data fitted to the Y-T 

Equation 1 are needed to clarify the situation. 

Figure 3. Correlations of HF/6–31G stablisation energies (Equation 2, Table 4) with σp 

and σp
+; slope: 21.7 ± 1.1; intercept: −0.56 ± 0.50; r = 0.994. 
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Table 4. Calculated energies, stabilisation energies (SE, Equation 2) and heterolytic bond 

dissociation energies (HBDE) for benzoyl chlorides a. 

Substrate E(ArCOCl)/ E(ArCO+)/ Stabilisation energies/kcal mol−1 HBDE/ 

 Hartrees b Hartrees b HF/6−31G(d) B3LYP/6−31G(d) 6−311G(d,p) kcal mol−1 

1, Z = H −802.34371 c −342.59639 c 0.0 d 0.0 d 0.0 d 150.1 e 

1, Z = F −901.19505 −441.44325 2.8 1.6 2.07 f 152.3 

1, Z = Cl −1261.24202 c −801.48796 c 4.2 2.3 2.11 f 153.3 

1, Z = NO2 −1005.80911 g −546.03707 g 15.5  12.05 f 163.9 

1, Z = NMe2 −935.42722 −475.70965 −18.7 h −20.2 h  130.7 h 

1, Z = OMe −916.22720 c −456.49301 c −8.2 −9.6 −9.54 f 141.2 

1, Z = Me −841.38219 g −381.64104 g −3.9  −4.54 f 145.9 

2,6-diMe (3) −880.40699 c −420.68210 c −14.1 h −14.5 h  135.8 h 

2,6-diCl (4) −1720.12086 −1260.37391 −0.2 −2.7 −1.8 148.9 

2,4-diCl (5) −1720.12652 −1260.37638 1.8 −0.1  151.0 

3,4-diCl −1720.13317 −1260.37130 9.1 6.0  157.6 

3,5-diCl −1720.13634 −1260.37021 11.8 9.5  160.8 

2,6-diF (6) −1000.03037 −540.28117 1.2 0.0  150.7 

3-OMe i −916.22245 −456.47692 −1.1 −3.3  147.9 
a Data either from literature quoted, or calculated using Gaussian 03; HBDEs are obtained by adding the 

average of two stabilisation energies to the value of 150.1; b These values refer to HF/6–31G(d) calculations;  
c In agreement with published values [18]; d By definition; e Calculated value from reference [24];  
f Includes a small correction for differences in zero point energies; data from reference [26]; g Reference [18]; 
h Reference [24]; i 3-Methoxybenzoyl chloride. 

The ortho-substituted compounds were calculated to be twisted out of plane, with a resulting loss of 

conjugation. The preferred conformations of 2,6-dichlorobenzoyl chloride (4) was calculated to be 

perpendicular (Figure 4). Conjugative effects are significant in planar neutral substrates (1), and 

electron donors (Z) elongate the C–Cl bond [26], so there must be a large increase in conjugation when 

an acylium ion is formed from a non-conjugated perpendicular conformation. Despite the presence of 

electron withdrawing halogen groups HBDEs for 4 are about the same as for the parent benzoyl 

chloride. The preferred conformation of the 2,6-dimethyl derivative (3) is close to perpendicular, and a 

high stabilisation energy is predicted (Table 4). 

Figure 4. Preferred conformations of benzoyl chloride (planar) and 2,6-dichlorobenzoyl 

chloride (4, perpendicular); barriers to rotation are shown (from HF/6−31G(d) 

calculations); the higher energy species of each pair were characterized as transition 

structures, having one negative frequency. 
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Extensions and improvements to previous work [24] on relating HBDEs to reactivity of seven acid 

chlorides in 97T at 25 °C can now be made. Equation 3 applies to five substrates (1, Z = OMe, Me, H, 

Cl and NO2) in 97H at 25 °C (Table 1), and is more precise than the one published earlier [24]; the 

error in the intercept is due to a long extrapolation, but the standard error in log k is only 0.074. 

Predictions based on Equation 3 are shown in Table 5. 

log k = (−0.318 ± 0.004) × HBDE + 46.4 ± 0.7 (n = 5, r = 0.9997) (3)  

Hammett correlations could be applied to reactions of both 3,4-dichloro- and 3,5-dichlorobenzoyl 

chloride, and these also fit Equation 3 well (within log k = 0.4). All of the “experimental data” for 

remaining substrates (Table 5) required extrapolations (see footnotes). Reactions of ortho-substituted 

substrates are excluded from Hammett correlations, but Equation 3 is moderately successful and also 

provides useful insights. Substrates 3 and 4 have perpendicular conformations, and errors in 

predictions are about one order of magnitude in k (3 is predicted to be slower and 4 is predicted to be 

faster than observed). The worst predictions are for 5 and 6, and it may be significant that 

conformations of these two less sterically-hindered substrates are predicted to be twisted but not 

perpendicular; then the solvent may have a greater influence on the conformation and hence on 

changes in conjugation energy during ionization. There may also be steric hindrance on solvation [27].  

Table 5. Rate constants (k) and calculations of log k at 25 °C for benzoyl chlorides in  

97% w/w hexafluoroisopropanol-water (97H). 

Substrate a k/s−1 (55 °C) b k/s−1 (25 °C) log kobs 
c log kcalc 

d △log k e 

3,4-dichloro 1.40 × 10−3 1.12 × 10−4 −3.92 −3.7 0.2 

3,5-dichloro 1.35 × 10−4 7.43 × 10−6 b −5.13 −4.7 0.4 

2,6-diMe (3)   3.9 f 3.2 −0.7 

2,6-dichoro (4) 5.62 × 10−2 5.6 × 10−3 g −2.25 −0.95 1.3 

2,4-dichloro (5) 1.51 × 10−3 1.5 × 10−4 g −3.8 −1.6 2.2 

2,6-difluoro (6) 3.46 × 10−3 h 3.5 × 10−4 g −3.45 −1.5 1.95 
a See Figure 1; b Data from reference [6]; c At 25 °C; d From Equation 3; e △log k = log kcalc − log kobs; 
f By extrapolation of a correlation (Figure 2 of reference [5]) of log k for 3 vs. log k for 1,  

Z = OMe; g Estimated by dividing log k at 55 °C by 10; h Data from reference [8]. 

2.4. Product Studies and Reaction Mechanisms 

Reactions of benzoyl chloride with various nucleophiles were investigated in attempts to trap 

cationic intermediates. It is necessary to avoid the alternative situation where the nucleophilic “trap” 

induces a competing reaction pathway; this would lead to a rate enhancement predictable from the 

amount of new product (calc. RE), as observed in preliminary studies for amines in 97T at 25 °C  

(0.01 M p-nitroaniline gave a 5% calc. RE and 0.01 M m-nitroaniline gave a 60% calc. RE,  

in agreement with the observed RE).  

Larger concentrations of weaker nucleophiles (electron rich aromatic substrates) were then 

investigated. Conductimetric studies of the reaction of benzoyl chloride (0.0002 M) in 97T containing 

methoxybenzene (0.2 M) showed rate retardation, and 4-methoxybenzophenone was not detected in 

the resulting solution (from HPLC analysis). Numerous other attempts using HPLC monitoring 
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eventually led us to use much higher concentrations of benzoyl chloride (0.02 M) and 0.2 M  

1,3,5-trimethoxybenzene as the trap. Under these conditions, dry trifluoroethanol gave only ester 

product and 97H gave mainly benzoic acid possibly with traces of 2,4,6-trimethoxybenzophenone (9). 

However, in 100% HFIP, the yield of 9 was estimated from HPLC and NMR to be approximately 50% 

(Figure 5), and a yellow solution was obtained; in this case it is reasonable to propose a trapping 

mechanism, assuming (but not demonstrating experimentally) the absence of a rate-product correlation.  

Figure 5. Added amines lead to competing reactions of PhCOCl to give anilides (7 and 8), 

but trapping of a PhCO+
 intermediate may occur with 1,3,5-trimethoxybenzene to give (9). 
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amines PhCO+

 

In contrast to the difficulties in trapping the benzoyl cation, the 4-methoxybenzyl cation can be 

trapped by various arenes even in 97T [28]. Acylium ions are less likely to become “free”, and more 

likely to react at an earlier stage such as a solvent separated ion pair [29]. 

Correlation analysis plays a major role in mechanistic studies of acid chlorides, partly because other 

evidence such as stereochemistry or secondary deuterium kinetic isotope effects is much less readily 

applicable. The results of correlation analysis for weakly nucleophilic solvolysis media for substituent 

effects (Figure 2) and solvent effects [7] are consistent with a spectrum of mechanisms within a 

cationic reaction channel having SN2 character [13,30]; e.g., (i) ρ follows the order 97H > 97T > 

HCO2H > AcOH (Figure 2), as observed for solvolyses of secondary alkyl tosylates (Table VIII of 

reference [31]) for which an SN2-SN1 spectrum of mechanisms is more well established; (ii) when the 

extended Grunwald-Winstein equation is applied [7] to the cationic reaction channel of benzoyl 

chlorides (1), the parameter l (a measure of response to solvent nucleophilicity) increases from 0.31 for 

Z = OMe to 0.41 (Z = Me), 0.47 (Z = H), and 0.56 (Z = Cl). 

A measure of the extent of nucleophilic solvent assistance (NSA) to heterolysis of the C–Cl bond is 

provided by comparisons of solvolyses of 1, Z = OMe (assumed to react without nucleophilic solvent 

assistance (but see [32],) with other substrates; the rate ratio k97H/kAcOH is 2.25 × 105 for 1, Z = OMe, 

and 8.9 × 103 for 1, Z = H, giving a minimum estimate of 25 for NSA. For comparison, acetolysis of 

cyclohexyl tosylate has an NSA of 28 [33], and nucleophilic attack is confirmed by the products (85% 

substitution with retention of stereochemistry in competition with 15% hydride shift [34]). 

According to correlation analysis of solvent effects, solvolyses of acetyl chloride even in aqueous 

media fit the SN2-SN1 spectrum with a high l value of 0.8 [35,36], alternatively described [36] as 

ionization “with considerable nucleophilic solvation” [36]. Estimates based on kinetic data at 0 °C 

show that acetyl chloride reacts about 5 orders of magnitude faster than predicted from Equation 3, and 

a prior hydration mechanism could not be excluded [24,37]. Recent extensive DFT calculations 

included a wide range of acid chlorides and optimized structures of assemblies including molecules of 

water and acetone. Contrary to the dual channel mechanism, a single reaction channel having extensive 
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transition state variation within a distorted tetrahedral geometry was predicted [38]. The acetyl cation 

was excluded as a possible intermediate in aqueous media, but a nucleophically solvated (weakly 

bonded covalently) acetyl cation transition state was not considered [38]. 

3. Experimental Section 

The acid chlorides (1, Z = OMe, Me, H, F, and Cl) were commercial samples checked for purity by 

HPLC analysis of methanolysis products, and shown to contain <0.3% acid. Anilides (7 and 8, Figure 4) 

were prepared by reacting benzoyl chloride with the appropriate amine in methanol [39].  

4-Methoxybenzophenone was a commercial sample (Aldrich) and 2,4,6-trimethoxybenzophenone (9) 

was prepared by heating trimethoxybenzene, benzoyl chloride and zinc chloride in benzene under 

reflux for 4 hr. After workup, the crude product was recrystallised from methanol; m.p. 113−115 °C, 

lit: 115 °C [40]; 1H NMR (CDCl3): δ, 3.6 (6H, s); 3.8 (3H, s); 6.1 (2H, s); 7.3−7.9 (5H, m).  

Solvents for kinetic studies were acetic acid (BDH Aristar), formic acid (BDH  

Analar 98–100%), and HFIP (distilled through a triple pass Widmer column). Kinetic methods,  

based on conductivity [1,10], spectrophotometric [31] and titrimetric [41] measurements, were as 

described previously.  

HPLC methods were as described earlier [5,13], with UV detection at 270 nm. and elution typically 

with 60% methanol-water. Retention times (mins) were benzoic acid (1.4), anisole (6.0),  

trimethoxy-benzene (7.4), 9 (8.8), PhCO2CH2CF3 (10.9), 4-methoxybenzophenone (12.4), PhCO2CH 

(CF3)2 (17.0).  

Calculations (Table 4) were performed using the standard Gaussian 03 [42] at the Rutherford 

Appleton laboratory on the Magellan service, using the EPSRC National Service for Computational 

Chemistry (NSCCS); all energies in Table 4 refer to structures having no negative frequencies. 

4. Conclusions  

Correlation analysis shows that substituent effects (using σ not σ+) and solvent effects (the extended 

Grunwald-Winstein equation) on solvolyses of benzoyl chlorides can be explained quantitatively by 

two competing reaction channels [7]. The independent correlations agree that solvolyses of 1, Z = NO2 

fit an addition reaction channel, except in hexafluoroisopropanol (HFIP). 

The research reported above focused on the cationic pathway, favoured in weakly nucleophilic 

media and comparable with the SN2-SN1 spectrum for simple secondary tosylates [31]. Reactions are 

favoured by electron donating groups and values of ρ increase in the order AcOH < HCO2H < TFE < 

HFIP (Figure 2) due to decreases in nucleophilic solvent assistance. Product studies indicate that 

cationic intermediates cannot be trapped efficiently (except in HFIP (Figure 5)), consistent with 

acylium cationic transition states or intermediates encumbered by solvent acting as nucleophile.  
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