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Abstract: A split plot 3 by 4 experiment was designed to characterize the relationship 

between production of gluthatione (GSH), oxidized gluthatione (GSSG), total flavonoid, 

anthocyanin, ascorbic acid and antioxidant activities (FRAP and DPPH) in three varieties 

of Labisia pumila Blume, namely the varieties alata, pumila and lanceolata, under four 

levels of nitrogen fertilization (0, 90, 180 and 270 kg N/ha) for 15 weeks. The treatment 

effects were solely contributed by nitrogen application; there was neither varietal nor 

interaction effects observed. As the nitrogen levels decreased from 270 to 0 kg N/ha, the 

production of GSH and GSSG, anthocyanin, total flavonoid and ascorbic acid increased 

steadily. At the highest nitrogen treatment level, L. pumila exhibited significantly lower 

antioxidant activities (DPPH and FRAP) than those exposed to limited nitrogen growing 

conditions. Significant positive correlation was obtained between antioxidant activities 

(DPPH and FRAP), total flavonoid, GSH, GSSG, anthocyanin and ascorbic acid 

suggesting that an increase in the antioxidative activities in L. pumila under low nitrogen 

fertilization could be attributed to higher contents of these compounds. From this 

observation, it could be concluded that in order to avoid negative effects on the quality of L. 
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pumila, it is advisable to avoid excessive application of nitrogen fertilizer when cultivating 

the herb for its medicinal use.  

Keywords: Labisia pumila Blume; nitrogen fertilization; plant secondary metabolites; 

gluthatione; DPPH radical scavenging; ferric reducing antioxidant power  

 

1. Introduction 

Epidemiology studies increasingly recommend that eating of a diet rich in plant foods acts as a 

defense against cardiovascular disease and certain forms of cancer [1]. Although a variety of plant 

components including proteins, amino acids, vitamins, and fiber may lead to overall health benefits, 

recent research has focused on the role of secondary plant metabolites, particularly flavonoid 

compounds, in disease prevention [2]. These plant carbon based secondary metabolites (CBSM) can 

vary widely in their structure and general classification, but they all share the common feature of 

containing at least one aromatic ring and one or more hydroxyl groups [3].  

Flavonoid compounds in plants are naturally occurring antioxidants, and their radical scavenging 

capabilities are thought to play an important function in preventing many chronic illnesses [3,4]. They 

have been shown to inhibit metastasis and tumorigenesis [5,6], and many are known to have  

anti-inflammatory, antibacterial and antifungal capabilities [7]. These effects are mainly attributed to 

their antioxidant activity. Antioxidants are substances that delay or inhibit oxidative damage when 

present in small quantities compared to an oxidizable substrate [8]. Antioxidants affect the process of 

lipid peroxidation due to the differences in their form of action. Hence, antioxidants can help in disease 

prevention by effectively neutralizing the free radicals or inhibiting damage created by them [9].  

Plant antioxidants are believed to play a role in protection against a variety of diseases and to delay 

ageing processes. The health promoting effect of antioxidants from plants could be due to their 

protective effects by counteracting reactive oxygen species (ROS) [10]. There are several compounds 

which contribute to the antioxidative properties; these include polyphenols [11], vitamin C [12], 

anthocyanins [13] and flavonoids [14]. 

Research is uncovering the fact that the availability of plant nutrients can be important factors in 

determining secondary metabolism and antioxidant within plants [15,16]. Nitrogen is one of the most 

important growth factors in controlling yield and quality of plants. Moreover, nitrogen modulates the 

biosynthesis of secondary metabolites (e.g., flavonoid compounds, glucosinate, carotenoid, etc.) [17]. 

Nitrogen (N) supply has a negative effect on the biosynthesis of flavonoids and chlorogenic acid in 

plants. Bongue and Phillips [18] reported that nitrogen (N) deficit increased the level of total 

flavonoids by 14% in tomato. However, in grapefruit, the concentration of the flavonoids naringin and 

rutinoside decreased in the fruit with increased N supply [19]. Furthermore, Awad and de Jager [20] 

found that the total flavonoids and chlorogenic acid concentrations in apple skin decreased with 

increasing of N supply. While N is an essential nutrient element for crop growth and quality, little is 

known about the effect of N supply on the antioxidant activity of medicinal plants. 

Among these medicinal plant species, Labisia pumila Blume (Myrsinacea family), or known locally 

as Kacip Fatimah in Malaysia, has been given particular attention. It is a popular herb that has been 
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recognized to contain high flavonoids contents [21,22]. Both phenolic acids and flavonoids are 

believed to be responsible for the wide spectrum of pharmacological activities attributed to this  

herb [23]. The plant has been used as a medicinal treatment for dysentry, flatulance, dysmonorrhea and 

gonorrhoea [24]. Previous studies on L. pumila performed with different nitrogen fertilizations have 

shown that high nitrogen can reduce the production of secondary metabolites in this herb due to 

reduced phenyl alanine lyase (PAL) activity that was correlated with low C/N ratio, photosynthetic 

rates and total non structural carbohydrate (TNC) [25]. However, documentation of the phytochemical 

properties of L. pumila is still lacking, especially the antioxidative capacities of L. pumila to different 

nitrogen fertilization has not been reported. This information is important and will be useful in the 

cultivation as well as in the preparation of herbal formulations for health supplements. Therefore, a 

study was carried out to determine antioxidant activity, antioxidant scavenger (GSH, GSSG), total 

flavonoid, antocyanin and vitamin C of methanolic extracts from three varieties of L. pumila, namely L. 

pumila var. alata, L. pumila var. pumila and L. pumila var. lanceolata under different N fertilization. 

The relationships among the parameters of GSH, GSSG, antocyanin, vitamin C and antioxidant 

activities were also investigated. 

2. Results and Discussion 

2.1. Total Flavonoid Profiling 

Nitrogen fertilization had a significant (P ≤ 0.01) impact on the production of total flavonoids 

(Table 1). There were no varietal and interaction effects observed. As more nitrogen was invested from 

0 to 270 kg N/ha, the amount of total flavonoids produced decreased. This plant accumulated more 

secondary metabolites in the leaves, followed by the stem and then roots. In the leaves, as nitrogen 

fertilization decreased from 180 to 90 and 0 kg N/ha, the total flavonoid content was enhanced by 3, 13 

and 32%, respectively, compared to 270 kg N/ha. The increase of total plant flavonoids and phenolics 

under limited N fertilization was also reported in previous studies by Felgines et al. [26] and 

Koricheva et al. [27]. Increase in carbon based secondary metabolites (CBSM) under low N 

fertilization was in agreement with the Carbon Nutrient Balance (CNB) theory by Bryant et al. [28], 

who predicted the increase in production of flavonoids under low N fertilization. The increase in 

flavonoids under low N fertilization might be attributed to increase in phenylalanine (phe) availability 

due to restriction of protein synthesis under N deficiency [20]. The enhanced phe would substantially 

enhance the production of flavonoids as phe is also a precursor for the formation of flavonoids [29]. 

Previous studies have shown that flavonoids content such as quercetin had anticancer activities and 

were able to inhibit cancer cell growth [30,31]. Quercetin was reported to have high scavenging activities 

and act as a treatment for hayfever, hives, sinusitis, asthma, and inflammation disorders [32,33]. Some 

studies also reported that quercetin plays an important role in the prevention of atherosclerosis [34]. 

The present result showed that quercetin content could be enhanced by low nitrogen fertilization to  

L. pumila. 
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Table 1. Accumulation and partitioning of total flavonoids (TF) in different plant parts of 

Labisia pumila Blume under different nitrogen levels.  

Nitrogen 
levels 

Plant 
parts 

Total flavonoids (TF) 
(mg quercetin/g dry weight) 

 Leaf 0.90 ± 0.02 a 
0 kg N/ha Stem 0.77 ± 0.12 a 

 Root 0.55 ± 0.02 c 
 Leaf 0.77 ± 0.03 a 

90 kg N/ha Stem 0.67 ± 0.04 b 
 Root 0.52 ± 0.06 c 
 Leaf 0.70 ± 0.07 b 

180 kg N/ha Stem 0.63 ± 0.05 b 
 Root 0.50 ± 0.02 c 
 Leaf 0.68 ± 0.04 b 

270 kg N/ha Stem 0.44 ± 0.08 d 
 Root 0.34 ± 0.01 e 

All analyses are mean ± standard error of mean (SEM). N = 18. Means not sharing a common letter 
are significantly different at P ≤ 0.05. 

2.2. Glutathione (GSH), Oxidised Glutathione (GSSG) and Ratio of GSH/GSSG Profiling 

The GSH, GSSG and GSH/GSSG in L. pumila were influenced by Nitrogen levels (P ≤ 0.01; Table 2). 

The GSH, GSSG and GSH/GSSG ratio were found to have similar trend with flavonoids accumulation. 

The highest accumulation of GSH was found to be in the leaf at 0 kg N/ha that recorded 876.23 nmol 

gluthathione/g dry weight where the lowest was observed in the root at 270 kg N/ha that recorded 

398.56 nmol glutathione/g dry weight. In GSSG, leaf—0 kg N/ha and root—270 kg N/ha recorded 

200.76 and 54.67 nmol oxidised glutathione/g dry weight, respectively. For the GSH/GSSG ratio the 

root—270 kg N/ha recorded the highest GSH/GSSG (7.29) while leaf—180 kg N/ha depicted the 

lowest GSH/GSSG that only recorded 3.95. GSH is a tripeptide composed of cysteine, glutamic acid 

and glycine and is the most abundant nonprotein thiol in the cells. Its active group is the thiol (–SH) of 

cysteine. GSH is maintained in the reduced state. The GSH plays an imperative role in the stabilization 

of many enzymes. Additionally, as an antioxidant scavenger it serves as a substrate for 

Dehydroascorbate (DHAsA) reductase and is also directly reactive with free radicals including the 

hydroxyl radical to prevent the inactivation of enzymes by oxidation of an essential thiol group [35]. 

GSSG consists of two GSH molecules joined by their –SH group into a disulfide bridge and was found 

to be present in low quantities compared to GSH [36]. In the present study, we found that reduced  

N fertilization increased GSH and GSSG content. The high GSH and GSSG are necessary for several 

physiological functions. These include activation and inactivation of redox-dependent enzyme systems 

and regeneration of cellular antioxidant ascorbic acid under oxidative conditions [37,38]. Usually, the 

increase in GSH and GSSG in reduced N fertilization is associated with an increase in antioxidant 

properties [36]. In the current study, it was shown that GSH and GSSG have a strong positive 

relationship with total flavonoids, vitamin C and antocyanin content (Table 3). The result showed that 

the increase in antioxidative properties of L. pumila under low nitrogen fertilization might be due to an 
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increase in production of total flavonoids, GSH and GSSG activity that can increase the antioxidant 

capacity of this plant under these condition [39,40]. 

Table 2. Gluthathione (GSH), Oxidised Gluthatione (GSHO) and GSH/GSSG ratio in 

different part of L. pumila under different nitrogen levels. 

Nitrogen 
levels 

Plant parts 
GSH 

(nmol/g dry wt)
GSSG  

(nmol/g dry weight) 
GSH/GSSG 

 Leaf 876.2 ± 11.2 a 200.6 ± 9.8 a 4.4 ± 0.6 d 
0 kg N/ha Stem 766.5 ± 9.8 b 145.2 ± 9.8 b 5.3 ± 0.1 b 

 Root 435.2 ± 11.2 d 87.7 ± 7.6 d 5.0 ± 0.9 c 
 Leaf 778.2 ± 8.6 b 187.5 ± 8.7 a 4.2 ± 0.4 d 

90 kg N/ha Stem 665.3 ± 13.5 c 123.6 ± 9.5 c 5.4 ± 0.7 b 
 Root 412.3 ± 6.8 d 76.6 ± 6.7 e 5.4 ± 0.6 b 
 Leaf 700.3 ± 7.8 b 178.6 ± 7.3 a 4.0 ± 0.1 e 

180 kg N/ha Stem 612.3 ± 9.8 c 121.5 ± 7.2 c 5.0 ± 0.2 c 
 Root 399.6 ± 10.3 d 65.7 ± 9.3 e 6.0 ± 0.1 a 
 Leaf 689.5 ± 11.3 c 156.7 ± 5.6 b 4.4 ± 0.2 d 

270 kg N/ha Stem 598.6 ± 9.8 c 112.3 ± 6.8 d 5.3 ± 0.3 b 
 Root 398.5 ± 13.3 d 54.6 ± 7.3 d 7.3 ± 0.2 a 

All analyses are mean ± standard error of mean (SEM). N = 18. Means not sharing a common letter 
are significantly different at P ≤ 0.05. 

Table 3. Correlations among the measured parameters in the experiments. 

Parameters 1 2 3 4 5 6 7 
1 Flavonoid 1.000       
2.GSSG 0.823 ** 1.000      
3.GSH 0.715 0.812 * 1.000     
4.Antocyanin 0.845 * 0.749 * 0.771 * 1.000    
5. Vitamin C 0.816 * 0.864 * 0.749 * 0.736 * 1.000   
6. DPPH 0.923 * 0.940 * 0.849 * 0.711 * 0.756 * 1.000  
7. FRAP 0.912 * 0.826 * 0.546 0.726 * 0.745 * 0.918 ** 1.000

* and ** respectively significant at P ≤ 0.05 or P ≤ 0.01. 

2.3. Anthocyanin and Their Profiling 

Anthocyanin content was found to be influenced by the application of nitrogen (P ≤ 0.01). The 

accumulation of anthocyanin was found to be highest in the leaves followed by the stems and lowest in 

roots. In the leaves, N fertilization at 0 kg N/ha (0.71 mg/g fresh weight), 90 kg N/ha (0.58 mg/g fresh 

weight) and 180 kg N/ha (0.38 mg/g fresh weight) had produced more antocyanin than at 270 kg N/ha, 

which registered a meager 0.19 mg/g fresh weight by the end of 15 weeks of experiment (Table 4). 

Also, in the roots there was only 0.11 mg/g fresh weight produced under 270 kg N/ha compared to 

0.31 mg/g fresh weight at 180 kg N/ha, 0.47 mg/g fresh weight at 90 kg N/ha and 0.60 mg/g fresh 

weight at 0 kg N/ha. Similar findings were observed by Brunetto et al. [41] and Delgrado et al. [42] on 

grapevines. Usually anthocyanins accumulate under low N fertilization [43]. Bongue-Bartelsman and 

Phillips [18] demonstrated that N stress produces effects on expression of genes encoding enzymes 
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associated with anthocyanin biosynthesis. Anthocyanins are the naturally occurring phenolic 

compounds responsible for the color of many flowers, fruits, and berries [43]. It is the most important 

group of water soluble pigments in plants and has beneficial health effects as antioxidant and 

antiinflammatory agents [44]. Anthocyanins are probably the largest group of phenolic compounds in 

the human diet, and their strong antioxidant activities suggest their importance in maintaining health. 

Anthocyanins are also important as antioxidants, which have roles in promoting good health and 

reducing the risk of chronic disease and also as anti-inflammatory agents. It was reported by Tamura 

and Yamagami [45] that anthocyanins possess some positive therapeutic effects, mainly associated 

with their antioxidant activities. In the current study, it was found that enhanced N fertilization can 

reduce the anthocyanin content, thus suggesting a decrease in the quality of L. pumila under excessive  

N fertilization. 

Table 4. Accumulation and partitioning of Antocyanin and Ascorbic Acid in different 

plant parts of Labisia pumila Blume under different Nitrogen levels. 

Nitrogen levels 
Plant 
parts 

Anthocyanin (mg/g 
fresh weight) 

Ascorbic acid 
(mg/g fresh weight) 

 Leaf 0.71 ± 0.01 a 0.061 ± 0.001 a 
0 kg N/ha Stem 0.67 ± 0.02 a 0.060 ± 0.021 a 

 Root 0.60 ± 0.03 a 0.057 ± 0.012 a 
 Leaf 0.58 ± 0.12 b 0.049 ± 0.021 b 

90 kg N/ha Stem 0.51 ± 0.23 b 0.045 ± 0.011 b 
 Root 0.47 ± 0.12 b 0.041 ± 0.017 b 
 Leaf 0.38 ± 0.03 c 0.029 ± 0.024 c 

180 kg N/ha Stem 0.37 ± 0.03 c 0.027 ± 0.009 c 
 Root 0.31 ± 0.02 c 0.021 ± 0.013 c 
 Leaf 0.19 ± 0.04 d 0.017 ± 0.027 d 

270 kg N/ha Stem 0.16 ± 0.04 d 0.015 ± 0.012 d 
 Root 0.11 ± 0.02 d 0.013 ± 0.007 d 

All analyses are mean ± standard error of mean (SEM). N = 18. Means not sharing a common letter 
were significantly different at P ≤ 0.05. 

2.4. Ascorbic Acid and Their Profiling 

Ascorbic acid, also known as vitamin C, is one of the most abundant antioxidants in plant where the 

role of ascorbate is to protect plants against oxidative stress [46]. It is a powerful water soluble 

antioxidant and its established role is to prevent scurvy [47]. The profiling of ascorbic acid in  

L. pumila plants followed the same trend as the total flavonoids, gluthatione and anthocyanin content, 

where the availability of vitamin C was found to be higher in the leaves and lowest in roots (Table 4). 

The imposition of lower N levels has resulted in significantly higher ascorbic acid contents in the 

leaves, stems and roots of L. pumila. By the end of week 15 after start of treatments, the ascorbic acid 

contents in the leaves of plants receiving 0, 90 and 180 kg N/ha were 0.061, 0.049 and 0.029 mg/g  

L-ascorbic acid fresh weight, respectively, compared to only 0.017 mg/g L-ascorbic acid fresh weight 

achieved with 270 kg N/ha application. The same observation was found by Salomez and Hofman [48] 

and Staugaitis et al. [49] when they observed vitamin C content in lettuce and Chinese cabbage was 
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substantially reduced with application of high N fertilizer. The increase in vitamin C content under low 

N application levels in L. pumila seedlings might possibly be attributed to low vegetative growth that 

decreased self-shading while increasing exposure to irradiance, hence, improving the production of 

vitamin C in the plant. According to Seung and Adel [50], vitamin C tends to accumulate more in plant 

parts that are exposed to sunlight; this justifies why there was increased production of vitamin C under 

low N fertilization.  

2.5. Radical Scavenging Activity 

Generally, DPPH antioxidant activity was highest in the leaves followed by stems and roots in all 

nitrogen application treatments. The treatment effects of DPPH were contributed by nitrogen levels  

(P ≤ 0.05; Table 5). At 350 µg/mL, the DPPH antioxidant activity recorded the highest value  

(61.32–51.21%) at 0 kg N/ha followed by the 90 kg N/ha (50.83–46.73%), 180 kg N/ha (46.43–40.21%), 

and the least in the 270 kg N/ha treatment (37.21–30.65%). However, DPPH radical scavenging 

abilities of the extracts of the plants were lower than those of butylated hydroxyl toluene (BHT; 61%) 

and α-tocopherol (76.31%) registered at 350 µg/mL. This study showed that L. pumila methanolic 

extract has a good free radical scavenging activity and, hence, it can be used as a radical scavenger, 

acting possibly as the primary antioxidant. This result also implies that high N supply could significantly 

reduce the DPPH radical scavenging activity of a medicinal plant. It is noteworthy that DPPH assay 

principally measures the activity of the water-soluble antioxidants [51].  

Table 5. DPPH scavenging activities in different parts of L. pumila under different nitrogen 

levels. BHT and α-tocopherol were used as positive controls. 

Nitrogen levels Extract source Inhibition % a 
 Leaves 61.3 ± 1.6 c 

0 kg N/ha Stems 57.1 ± 1.1 c 
 Roots 51.2 ± 1.0 c 
 Leaves 50.8 ± 1.0 d 

90 kg N/ha Stems 48.1 ± 0.9 d 
 Roots 46.7 ± 0.4 d 
 Leaves 46.4 ± 0.2 e 

180 kg N/ha Stems 42.7 ± 0.9 e 
 Roots 40.2 ± 1.2 e 
 Leaves 37.2 ± 2.2 f 

270 kg N/ha Stems 32.1 ± 1.2 f 
 Roots 30.6 ± 3.2 f 

Controls BHT 65.6 ± 1.3 b 
 α-tocopherol 76.3 ± 1.2 a 

All analyses are mean ± standard error of mean (SEM); N = 18. Means not sharing a common 
single letter are significantly different at P ≤ 0.05. a Results expressed in percent of free  
radical inhibition. 

The principle of this method is that in the presence of a molecule consisting of a stable free  

radical (DPPH), an antioxidant with the ability to donate a hydrogen atom will quench the stable  
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free radical, a process which is associated with a change in the absorption and can be translated 

spectrophotometrically. To date, more than 8000 phenolic compounds are known in plants, of which 

almost two-thirds belong to the predominantly water soluble flavonoids antioxidant family. Results of 

the current work also suggest that high N supply was disadvantageous to L. pumila in the improvement 

of the antioxidant activity of water-soluble antioxidants. In our study, besides flavonoid compounds, 

other water-soluble antioxidants of the extracts such as ascorbic acid and anthocyanin could also exert 

an additive effect on DPPH radical scavenging activity. Many studies have shown that a combination 

of flavonoids compounds with anthocyanin and ascorbic acid produced a synergistic effect on DPPH 

radical scavenging activity [52]. 

2.6. Reducing Ability 

The FRAP assay is very simple, fast and precise, and was recently developed to measure the total 

antioxidant power of biological fluids [53]. Total antioxidant power was assessed by the reduction of 

Fe3+ to Fe2+, which occurred rapidly with all reductants with half of the reaction reduction potentials 

above that of Fe3+/Fe2+. Therefore, the values express the corresponding concentration of  

electron-donating antioxidants. The Ferric reducing Antioxidant Potential (FRAP) was influenced by 

the nitrogen fertilization (P ≤ 0.01). The FRAP activity was found to be highest in 0 kg N/ha, followed 

by 90 kg N/ha, 180 kg N/ha and 270 kg N/ha (Table 6). In plant parts, the highest FRAP activity was 

observed in the leaves followed by the stems and the roots. The reducing ability of extracts from 

different parts of plants without any application of N (0 kg N/ha) was in the range of 890.32 to  

810.21 µm of Fe(II) dry weight, while at 270 kg N/ha treatment the reducing ability of the extracts 

exhibited a range of 435.23 to 399.43 µm of Fe(II) dry weight (Table 5). The result indicates that 

fertilization with low N was able to possess high abilities to reduce Ferric Ions [24]. In the leaves, 

stems and roots, the antioxidant potential of L. pumila was estimated from their ability to reduce  

2,4,6-tripyridyl-s-triazine (TPTZ)-Fe(III) complex to TPTZ-Fe(II). The FRAP values for the 

methanolics extracts of the leaves, stems and roots in all varieties were statistically and significantly 

lower than vitamin C and α-tocopherol, but higher than that of BHT.  

Table 6. Total antioxidant (FRAP) activity in different parts of L. pumila under different 

nitrogen levels. BHT, α-tocopherol and vitamin C were used as positive controls. 

Nitrogen levels Extract source FRAP a 
 Leaves 890.3 ± 11.2 c 

0 kg N/ha Stems 870.1 ± 13.5 c 
 Roots 810.2 ± 21.3 c 
 Leaves 768.0 ± 27.9 d 

90 kg N/ha Stems 713.8 ± 34.5 d 
 Roots 701.4 ± 78.1 d 
 Leaves 617.3 ± 24.7 e 

180 kg N/ha Stems 589.2 ± 11.3 e 
 Roots 534.1 ± 23.3 e 
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Table 6. Cont. 

 Leaves 435.2 ± 24.1 f 
270 kg N/ha Stems 412.3 ± 11.2 f 

 Roots 399.4 ± 24.5 f 
 BHT 81.3 ± 56.3 g 

Controls α-tocopherol 953.0 ± 45.6 b 
 Vitamin C 3301.2 ± 34.6 a 

All analyses are mean ± standard error of mean (SEM); N = 18. Means not sharing a common 
single letter are significantly different at P ≤ 0.05. a Results expressed in percent of free  
radical inhibition. 

The ferric reducing ability (FRAP assay) is widely used in the evaluation of the antioxidant 

component of dietary polyphenols [54]. The antioxidant activity is found to be linearly proportionate to 

the phenolics and flavonoids content [55]. Yen et al. [56] reported that the ferric reducing power of 

bioactive compounds was associated with antioxidant activity. Glenn et al. [57] have reported a strong 

positive relationship between total flavonoids compounds and antioxidant activity, which appears to be 

of similar trend shown by results of the current study where total flavonoids displayed significantly 

positive relationships with FRAP activity of R2 = 0.912 (P ≤ 0.05; Table 3). Furthermore, DPPH and 

FRAP had a significant positive relationship with GSH, GSSG, anthocyanin and ascorbic acid; this 

justifies that high DPPH and FRAP activity in L. pumila extract under low N levels might be due to 

high accumulation of GSH, GSSG, total flavonoids, anthocyanin and vitamin C in the plant [11–14]. 

3. Experimental 

3.1. Experimental Location, Plant Materials and Treatments 

This experiment was carried out in growth houses at Field 2, Faculty of Agriculture Glasshouse 

Complex, Universiti Putra Malaysia (longitude 101°44′ N and latitude 2°58′ S, 68 m above sea level) 

with a mean atmospheric pressure of 1.013 kPa. The experiment started from 10 July 2010 to  

11 September 2010. About three-month old L. pumila seedlings of var. alata, pumila and lanceolata 

were left for a month to acclimatize in a nursery until ready for the experiments. The seedlings were 

planted in soilless medium containing coco-peat, burnt paddy husk and well composted chicken 

manure in 5:5:1 (v/v) ratio in 25-cm diameter polyethylene bags. Day and night temperatures in the 

greenhouse were maintained at 27–30 °C and 18–21 °C, respectively, and relative humidity from  

50 to 60%. All the seedlings were irrigated using overhead mist irrigation given four times a day or 

when necessary. Each irrigation session lasted for 7 min. When the seedlings had reached 4 months of 

age, they were fertilized with four rates of nitrogen, viz. 0, 90, 180 and 270 kg N/ha, applied in the 

form of urea. The fertilization with nitrogen levels were split into three applications (Table 7). This 

factorial experiment was arranged in a split plot using a randomized complete block design with 

varieties being the main plot, and nitrogen levels as the sub-plot replicated three times. Each treatment 

consisted of 10 seedlings. 
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Table 7. Nitrogen fertilization levels of Labisia pumila Benth. during the experiment. 

Nitrogen (kg N/Ha) 1,2 Total nitrogen fertilizer per plant 3 (g) 
0 0.00 
90 0.36 
180 0.72 
270 1.08 

1 Nitrogen source used was urea (46% N); 2 Every nitrogen treatment received TSP (Triple super 
phosphate; 46% P) and MOP (muriate of potash; 60% K) at a standard rate of 180 kg N ha−1; the 
nitrogen was split into three fertilization phases, and each phase was about 33.3% of total nitrogen 
fertilizer; 3 Every nitrogen treatment receives TSP (triple super phosphate; 46% P; 0.72 g per plant) 
and MOP (60% K; 0.51 g per plant) at standard rates of 180 kg N/ha. 

3.2. Total Flavonoids Quantification 

The method of quantification for total flavonoids contents followed after Ibrahim and Hawa [58]. 

About 0.1 ground tissue samples was extracted with 80% ethanol (10 mL) on an orbital shaker for  

120 min at 50 °C. The mixture was consequently filtered (Whatman™ No.1), and the filtrate was used 

for the determination of total flavonoids. For total flavonoids determination, a sample (1 mL) was 

mixed with NaNO3 (0.3 mL) in a test tube covered with aluminium foil, and left for 5 min. Then  

10% AlCl3 (0.3 mL) was added followed by addition of 1 M NaOH (2 mL). Later, the absorbance was 

measured at 510 nm using a spectrophotometer with rutin as a standard (results expressed as  

mg g−1 quercetin dry sample). 

3.3. Measurement of Glutathione (GSH) and Oxidized Glutathione (GSSG) 

GSH and GSSG were assayed using the method described by Castillo and Greppin [59]. Total 

glutathione were determined by reacting 0.5 mL plant extracts with 50 mM KH2PO4/2.5 mM EDTA 

buffer (pH 7.5), 0.6 mM DTNB [5,5-dithio-bis-2-nitrobenzoic acid] in 100 mM Tris-HCl, pH 8.0,  

1 unit of glutathione reductase (GR, from spinach, EC 1.6.4.2) and 0.5 mM NADPH. GSH was quantified 

from the reaction mixture by mixing 0.5 mL of plant extract with 60 mM KH2PO4/2.5 mM EDTA 

buffer (pH 7.5), 0.6 mM DTNB in 200 mM Tris-HCl, pH 8.0. The mixture was incubated at 30 °C for 

15 min, and the reaction was followed as the rate of change in absorbance at 412 nm using a light 

spectrophotometer (UV-3101P, Labomed Inc, USA). GSSG was determined after removal of GSH 

from the plant extract.  

3.4. Ascorbic Acid Content 

The ascorbic acid content was measured using a modified method of Davis and Masten [60]. The 

fresh leaf samples (1 g) were extracted in 1% of phosphate-citrate buffer, pH 3.5 using a chilled pestle 

and mortar. The homogenate was filtered. The filtrate was added to the 1 mL of 1.7 mM  

2,6-dichloroindophenol (2,6-DCPIP) in a 3 mL cuvette. The absorbance at 520 nm was read within  

10 min of mixing the reagents. The extraction buffer was used as a blank. L-Ascorbic acid was used as 

a standard. Ascorbic acid was recorded as mg/g L-ascorbic acid fresh leaves. 
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3.5. Anthocyanin Content  

Anthocyanin content was determined according to Bharti and Khurana [61]. Fresh leaves (1 g) were 

added in 10 mL acidic methanol (1% v/v HCl) and incubated overnight. Anthocyanin was partitioned 

from chlorophyll with 10 mL chloroform, followed by adding 9 mL of double deionised water. The 

test tubes containing the samples were shaken gently and the mixture allowed to settle. The absorbance 

was read at 505 nm. Petunidin was used as a standard. Anthocyanin content was recorded as mg/g 

petunidin fresh weight.  

3.6. DPPH Radical Scavenging Assay 

The DPPH free radical scavenging activity of each sample was determined according to the method 

described by Joyeux et al. [62]. A solution of 0.1 mM DPPH in methanol was prepared. The initial 

absorbance of the DPPH in methanol was measured at 515 nm. An aliquot (40 µL) of an extract was 

added to 3 mL of methanolic DPPH solution. The change in absorbance at 515 nm was measured after 

30 min. The antiradical activity (AA) was determined using the following formula: 

AA% = 100 − [(Abs:sample − Abs:empty sample)] × 100)/Abs:control 

The optic density of the samples, the control and the empty samples were measured in comparison 

with methanol. One synthetic antioxidant, BHT (butylhydroxytoluene) and α-tocopherol, were used as 

positive controls. The antioxidant capacity based on the DPPH free radical scavenging ability of the 

extract was expressed as µmol Trolox equivalent per gram of dried plant material. 

3.7. Reducing Ability (FRAP Assay) 

The ability to reduce ferric ions was measured using modifying methods of Ibrahim and Hawa [63]. 

An aliquot (200 µL) of the extract with appropriate dilution was added to 3 mL of FRAP reagent  

(10 parts of 300 mM sodium acetate buffer at pH 3.6, 1 part of 10 mM TPTZ solution and 1 part of  

20 mM FeCl3 6H2O solution) and the reaction mixture was incubated in a water bath at 37 °C. The 

increase in absorbance at 593 nm was measured after 30 min. The antioxidant capacity based on the 

ability to reduce ferric ions of the extract was expressed as expressed in µM Fe(II)/g dry mass and 

compared with those of standards for BHT, ascorbic acid, and α-tocopherol. 

3.8. Statistical Analysis 

Data were analyzed using analysis of variance using SAS version 17. Mean separation test  

between treatments was performed using Duncan multiple range test and standard error of differences 

between means was calculated with the assumption that data were normally distributed and equally 

replicated [64,65]. 

4. Conclusions 

In conclusion, our results indicate that manipulation of N fertilization levels may be an effective 

method to increase the expression of secondary metabolites compounds in L. pumila. Higher total 

flavonoids, GSH, GSSG, anthocyanin content and ascorbic acid concentrations were observed in  



Int. J. Mol. Sci. 2012, 13           

   

 

404

L. pumila when nutrient availability was limited by the non application of N fertilizer. Moreover, at the 

highest nitrogen level treatment, L. pumila exhibited significantly lower antioxidant activities (DPPH 

and FRAP) than those under limited N growing conditions. In order to avoid negative effects on the 

quality of L. pumila, it is recommended that no excess N application should be practiced when 

cultivating L. pumila for its medicinal use. 
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