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Abstract: We have demonstrated the efficacy of a microfluidic medium exchange method 

for single cells using passive centrifugal force of a rotating microfluidic-chip based 

platform. At the boundary of two laminar flows at the gathering area of two microfluidic 

pathways in a Y-shape, the cells were successfully transported from one laminar flow to 

the other, without mixing the two microfluidic mediums of the two laminar flows during 

cell transportation, within 5 s with 1 g (150 rpm) to 36.3 g (900 rpm) acceleration, with 

93.5% efficiency. The results indicate that this is one of the most simple and precise tools 

for exchanging medium in the shortest amount of time. 

Keywords: microfluidic chip; Y-shape platform; medium exchange; environmental control; 

single cell; centrifugal force; on-chip cellomics 

 

1. Introduction 

In many areas of cell-based screenings such as blood monitoring, process control in pharmaceutical 

fermentations, continuous real-time monitoring of biological agents is of the utmost importance. The 

key requirement to perform such monitoring tasks is the fast and precise exchange processing of cell 

environments such as buffer exchange. Recently, microfluidic platforms [1,2] for the continuous 

separation of biomolecules and particles have been proposed. Some of these use passive working 
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principles [3–5], others apply dielectrophoresis [6,7], acoustic standing waves [8–11], segmented  

flow [12–14], or magnetophoresis [15,16]. Applying centrifugal force is one of the most powerful 

candidates for the passive steady-non pulsatile-flow in microfluidic systems [17] for continuous  

fully automated processing such as cell arrangement [18], DNA concentration [19], biomolecular 

separation [20], and also a compact disc (CD) microfluidic chip based enzyme-linked immunosorbent 

assay (ELISA) [21], whole blood glucose analysis [22], and hybridization assay for phenylketonuria 

(PKU) screening [23]. Especially, extraction of plasma from whole blood exploiting microfluidic 

pathways with centrifugal pumping [24] and cell trapping exploiting reagent-impregnated  

agarose-made micro holes with centrifugal liquid pumping [25] were examined for practical 

applications. Yet the majority of the proposed platforms are at the proof-of-concept stage of the system 

integration, and none of them have examined the ability of microfluidic platforms for quick exchange 

of cell environments in single cell level. 

Therefore, in this paper, we have evaluated the efficacy of the exchange of environments of single 

cells within the simple Y-shape microfluidic chip with passive centrifugal force with charge coupled 

device (CCD) camera image analysis. 

2. Results and Discussion 

2.1. System Design 

The continuous exchange of a medium condition surrounding single cells has been performed by 

the following three processing steps: cell introduction into the Y-shape microfluidic pathway, a 

medium exchange step that removes the environmental medium buffer by cells’ shift from one laminar flow 

to the other through the boundary of two laminar flows, and cell collection by another reverse-Y-shape 

microfluidic pathway. On our microfluidic platform the above three steps are implemented in a 

microfluidic structure which is contained in a monolithic chip. A rotating platform provides the 

required passive centrifugal force field for cell motion within the chip. For the constant centrifugal 

force generation, a rotating stage with a stepping motor (TAMAGAWA SEIKI, 5PHASE STEPPING 

MOTOR 02K-S523W-Σ) and a control unit (SIGMA KOKI, Stage controller SC-101G) was mounted 

in the optical microscope system (OLYMPUS IX70) [Figure 1 (a)].  

The microfluidic chip comprises five parts [Figure 1 (b)]: (1) two inlets (inner one is for sample cell 

solution and the other outer one is for the washing buffer); (2) Y-shape microfluidic pathway (flow 

channels) guiding two buffers into the channel junction; (3) the channel junction where two laminar 

flows are brought into contact via a laminar-flow interface (boundary) in order to transfer the cells 

from one buffer to the other; (4) reverse Y-shape pathway to split into two laminar flows once again; 

and (5) two outlets (inner one is for sample cell buffer and the other outer one is for the cells with 

washing buffer). The 2D-layout of the microfluidic structure was fabricated in the polydimethylsiloxane 

(PDMS) [26,27] attached to a 1-mm-thick glass slide. 
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Figure 1. Schematic view of the system setup and microfluidic structure of microfluidic 

chip. (a) System setup; (b) microfluidic chip design; (c) and (d) gathering part of double 

Y-shape microfluidic pathway. 

 

2.2. Rotation of Chip for Centrifugal Force Generation 

The rotating stage was set at the position of the focal plane of the microscope, and the chip was set 

on the stage (4 cm from the center of rotation), providing sufficient centrifugal force for cells 

transportation inside the microfluidic chip. The role of centrifugal force in this system was for two 

purposes: to generate the driving force for injecting buffers into the microfluidic flow with the same 

pressure and velocity; and secondly to transport cells from one laminar flow to the other.  

In order to maintain the two laminar flows at the junction area, the velocity must be synchronized 

precisely at this area. In this system, each of the two inlets and two outlets were designed at the same 

distance from the center of rotation (Figure 2). The acceleration in microfluidic chip was determined 

by r2, where r is the distance of the chip from the center of rotation (4 cm),  is angular velocity of 

rotator. In this case, the accelerations were 1 g for 2.5 Hz rotation, and 36.3 g for 15 Hz. 

2.3. Cell Motion in Microfluidic Chip Under Centrifugation 

Under the influence of the centrifugal force provided by the rotation of the microfluidic chip, the 

cells gathered on the outer wall of the microfluidic pathway. As shown in [Figure 3 (a,b)], before 

centrifugal force was applied, whole erythrocyte cells were dispersed in the pathway. Whereas, once 

the centrifugal force was applied [Figure 3 (c,d)], whole cells shifted to the outer wall of microfluidic 

pathway under 1 g acceleration condition with a 100 µms−1 velocity of buffer. 
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2.4. Cell Transportation Between Two Laminar Flows 

We checked two topics regarding this centrifugation platform: firstly, the evaluation of cell 

transportation from one pathway to the other, and, secondly, the evaluation of mixture of two laminar 

flows during the cell transportation process.  

Figure 4 (a) shows the results of the above two subjects, i.e., cell transportation and medium 

mixture. As shown in this figure, a HeLa cell with a 100 µms−1 flow velocity, shifted successfully 

from the first laminar flow to the other along the 400 µm length of two laminar flow boundaries at the 

gathering area. In contrast, the medium buffers maintained their boundaries, and no mixture was 

observed either visibly or in fluorescence detection of collected buffer (we added fluorescent dye 

(Rhodamine B) into one of two buffers for quantitative evaluation of mixture).  

Figure 4. Time course tracking of cell transportation. (a) movement of single HeLa cell 

from one laminar flow to the other under 1 g acceleration with 2.5 Hz rotation; 

(b) movement under 36.3 g with 15 Hz rotation. 

 

We have also checked the cell transportation under stronger centrifugal force conditions. As shown 

in Figure 4 (b), we added 36.3 g (15 Hz) acceleration into the microfluidic chip and confirmed the cells 

having 200 µms−1 velocity successfully shifted from one laminar flow to the other, and no fluorescent 

medium mixture was observed using fluorescence detector. 

As this exchange was performed successfully even under 1 g centrifugal force condition, that means 

we can exchange medium buffer continuously using gravity without using centrifugal force. As 

expected, when we set this microfluidic chip perpendicular to the gravity, the cells were separated 

effectively with no centrifugal force applied.  
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were suspended in the standard phosphate buffer and applied to the chip. For the washing buffer, the 

same standard phosphate buffer containing Rhodamine B was applied. 

3.3. Experiment Procedure 

Just before rotation starts, 50 µL of sample cell buffer was applied into the inner inlet, and 50 µL of 

sample cell buffer was applied into the outer inlet. Then the rotation was started and CCD observation 

was recorded. After whole buffer at the inlets were transported to the outlets, rotation was stopped and 

the chip was removed from the rotating stage, and observed the outlets by optical microscope.  

3.4. Flow Velocity Estimation 

Flow velocity in the microfluidic flowchannels were estimated by the measurement of movement of 

cells in the flowchannels by CCD camera images (frame rate, 1/30 s intervals).  

3.5. Superimposed Image Acquision and Image Analysis 

For superimposed, quantitative evaluation and comparison of images, we used Image J software. 

The acquired analog CCD camera images were recorded in Digital Tape Recorder (SONY WV-

D9000), and the recorded data was digitized and stored using image converter of PC (SONY RX-71). 

The digitized bit map images were then imported Image J software for the further processing. 

4. Conclusions 

In this paper, we introduced the experimental results of a fast and simple cell medium exchange 

using a double Y-shape microfluidic chip and centrifugal force. Based on the simple rotating platform, 

we demonstrated that cells can shift effectively from one pathway to the other without any mixture of 

two laminar flows of different buffers even using 1 g acceleration. Using appropriate buffer solutions, 

the reported platform can be used for continuous automation of quick and single-step minimum buffer 

exchange in many other well-known processes of cell studies, such as quick exchange of enzymatical 

treatment buffer without dilution steps or inhibitor additions, quick staining of cells with minimum 

volume of expensive fluorescent dye, or precise time course measurement of effect of compounds. 
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