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Abstract: Enzymes are tremendously proficient catalysts, which can be used as 

extracellular catalysts for a whole host of processes, from chemical synthesis to the 

generation of novel biofuels. For them to be more amenable to the needs of biotechnology, 

however, it is often necessary to be able to manipulate their physico-chemical properties in 

an efficient and streamlined manner, and, ideally, to be able to train them to catalyze 

completely new reactions. Recent years have seen an explosion of interest in different 

approaches to achieve this, both in the laboratory, and in silico. There remains, however, a 

gap between current approaches to computational enzyme design, which have primarily 

focused on the early stages of the design process, and laboratory evolution, which is an 

extremely powerful tool for enzyme redesign, but will always be limited by the vastness of 

sequence space combined with the low frequency for desirable mutations. This review 

discusses different approaches towards computational enzyme design and demonstrates 

how combining newly developed screening approaches that can rapidly predict potential 

mutation “hotspots” with approaches that can quantitatively and reliably dissect the 

catalytic step can bridge the gap that currently exists between computational enzyme 

design and laboratory evolution studies. 
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1. Introduction 

Since Friedrich Wöhler first synthesized urea in 1828 [1], organic chemists have worked on 

synthesizing a breathtaking range of organic compounds that play a role in all aspects of modern life, 

from food preservation to dyes, pharmaceuticals and fuels. Due to their ubiquity, a great variety of 

artificial catalysts have been created to accelerate organic synthesis, from compounds using simple 

acid/base catalysis to organometallic catalysts using transition metals such as palladium [2],  

platinum [3], iridium [4], rhodium [5] or gold [6] as their metal centers. Particularly, the use of 

transition metals has permitted us to increase our ability to form carbon-carbon bonds [7–9], a process 

which forms the basic building block of almost all synthetic organic chemistry. However, such 

progress has not been without its challenges. That is, in addition to cost concerns, many industrial 

processes harnessing such catalysts occur under environmentally unfriendly conditions that go against 

the important current emphasis on “green chemistry”, which encourages sustainable development [10].  

In principle, enzymes should provide the perfect solution to these problems. As one example, the 

half-life for the hydrolysis of an amide bond is in the range of hundreds of years (the half-life for the 

hydrolysis of a glycine-glycine dipeptide in neutral solution at 25 °C is 350 years [11]). If the same 

dipeptide is transferred to 1 M HCl or NaOH solutions (at the same temperature), the half-life for the 

reaction drops to approximately 150 and 2 days, respectively [12]. While this is of course impressive, 

under enzymatic catalysis, the reaction rate is increased by a factor of 1012 [11,12] (and there are many 

examples of enzymes facilitating even more extreme rate enhancements, see e.g., [12,13]). Such 

proficiencies have never been matched in a man-made catalyst (although changing the reaction 

medium from water to alcohol has been demonstrated to produce enzyme-like rate enhancements in 

the case of dinuclear zinc catalysts of phosphate diester hydrolysis [14]). In addition to their extreme 

proficiencies, they are also biodegradable and reusable catalysts [15], making them ideal green 

reagents. Also, while most enzymes work within limited and tightly controlled temperature ranges, 

there do exist enzymes that can act anywhere within a temperature range from 0 to 100 °C (for the two 

extremes observed in extremophile bacteria) [16]. On top of this, enzymes have chiral active sites, 

making them able to discriminate between different stereoisomers and regioisomers, with at times 

quite high efficiency, making them ideal catalysts for enantio- and regioselective chiral chemistry, in 

order to generate isomerically pure pharmaceuticals and fine chemicals [17,18]. 

The challenge is that the same properties that make enzymes such proficient catalysts are directly 

orthogonal to the needs of biotechnology [19]. That is, enzymes have had millions of years in order to 

evolve to become the proficient catalysts that we see today, and they need to operate under tight in vivo 

regulation. As a result of this, they are picky about what substrates they are willing to accept (which 

can be limited by both electrostatic, and simple steric considerations), their efficiencies vary 

dramatically for different substrates [20], and, since they need to be turned off as well as on, often they 

can be inhibited by even their own product [21]. They are also often highly resistant to environments 



Int. J. Mol. Sci. 2012, 13 12430 

 

 

other than the one they have evolved for. In contrast, biotechnology needs catalysts that can work 

under harsh conditions if necessary, tolerate changes in environment, catalyze a broad range of 

substrates to generate maximal amounts of product, and, ideally, can catalyze completely new 

reactions for which no catalyst currently exists. Therefore, in order to fulfill these requirements, it is 

often not sufficient to take enzymes “as is”, but rather, it is necessary to be able to modify their 

physico-chemical and functional properties in a fast, efficient and streamlined manner. In light of this, 

it is perhaps unsurprising that interest has exploded in engineering enzymes for biocatalysis, and, as of 

2012, that this area is one of the fastest growing of the biotechnology sector [22]. 

While it could be argued that “biocatalysis” dates back thousands of years to Sumerians and 

Egyptians using microorganisms to produce beer, the development of techniques such as error-prone 

PCR [23] and DNA shuffling [24] have essentially revolutionized biocatalysis [25], as they allow 

enzyme properties to be altered through random mutagenesis, in a “directed” fashion (directed 

evolution, DE), where the enzyme is iteratively refined until a property of interest (such as, for 

instance, a specific function or improved selectivity towards a given enantiomer) is observed. 

However, despite the tremendous power of this approach and the advances it has allowed in protein 

engineering, it is still subject to a number of limitations, the most pressing of which is the sheer 

vastness of the sequence space that needs sampling. That is, a simple enzyme comprised of 300 amino 

acids will have a sequence space of 20300 possible mutations (if one uses the naturally occurring 

building blocks alone), which is far out of the reach of even the best synthetic libraries [26,27]. This 

problem is further compounded by the fact that, in a random library, the frequency of a beneficial 

mutation occurring is only ~10−3 [28,29], whereas that of a deleterious mutation is ≥0.33 [30]. Various 

approaches have been developed to deal with this issue, including approaches such as iterative 

saturation mutagenesis [31] and simultaneous multiple-site saturation mutagenesis [32], which focus 

on limiting the library sizes necessary to effectively obtain enhancements in activity, or even using 

ancestral libraries [26] (to name a few examples). However, clearly, as the rounds of directed evolution 

progress, most mutations quickly become unviable, and the library sizes that need managing become 

simply astronomical. In addition to this, while one of the strengths of using directed evolution is that, 

in principle, little-to-no knowledge of the actual catalytic mechanism being employed by the enzyme is 

required in order to be able to obtain substantial catalytic enhancements, this also poses a weakness, as 

without insight into why DE mutants are catalytic (or anticatalytic) it becomes challenging to further 

improve and refine the selection procedure for a given property. 

As there are a large number of reviews addressing the advantages and challenges of  

laboratory-based evolution techniques for enzyme optimization [33,34], we will not be addressing this 

issue in the present work. However, computers have the potential to play a major role in guiding and 

directing experimental work, and increasing realization of this fact has led to an explosion in activity in 

this area. While computational enzyme design could still be classed as a nascent field, recent years 

have seen major advances in a broad spectrum of areas, from (computational) enzyme redesign, to the  

de novo design of enzymes from the basic building blocks upwards. This review will outline some 

recent developments in this field, introducing different “philosophies” towards computational enzyme 

design, and present suggestions for important future directions. Our focus will be on improving 

functional properties of enzymes rather than their physico-chemical properties such as thermostability 

and solubility, which are out of the scope of the present review. Specifically, we will illustrate the fact 
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that, when combined with ever-increasing computational power, current computational approaches are 

rapidly reaching a stage where it is possible to rationally mimic the process of laboratory evolution  

in silico, bridging the gap that exists between the proficiencies of artificially designed catalysts and the 

outcome of laboratory evolution studies. 

2. “De Novo” Enzyme Design 

One of the “Holy Grails” of biotechnology would be the ability to rapidly design effective 

biological catalysts for new chemistry completely from scratch on demand. This goal was one step 

closer to realization in 2008, with the computational design of eight enzymes capable of performing 

base-catalyzed benzisoxazole ring opening (Kemp elimination) with rate accelerations of ~105, and 

multiple (≥7) turnovers [35], although this is similar to the rate in solution when the cost of bringing 

the reacting fragments into the “reacting cage” is taken into account (see [36,37]). Catalysis of this 

reaction, which does not occur in nature, is well characterized, and has been performed by systems 

ranging from catalytic antibodies [38,39], to “off-the-shelf” proteins such as bovine (and other) serum 

albumens [40,41], to small synthetic enzyme mimics made of organic molecules (“synzymes”) [42]. 

The successful design of de novo enzymatic catalysts for this reaction was achieved using a multi-level 

approach [35]. A first port of call was the design of an idealized active site for benzisoxazole ring 

opening, which incorporated the necessary catalytic machinery for general base catalysis, as well as a 

number of other residues necessary for efficient chemistry [43] (see Figure 1). This was achieved by 

constructing an appropriate “theozyme”, which optimizes relevant functional groups necessary  

for efficient chemistry around a proposed transition structure based on quantum mechanical  

calculations [44]. The next step was to match this theozyme to a suitable scaffold, which was done 

using the Rosetta Match hashing algorithm [45]. A search through a scaffold set containing  

>100,000 members, which included multiple protein folds such as β-propellers, jelly rolls, Rossman 

folds and lipocalins ultimately favored a TIM barrel (which is also a widespread fold in naturally 

occurring enzymes). Subsequent experimental characterization of this design demonstrated an r.m.s.d. 

deviation of <1 Å (full backbone plus active site sidechains) between the designed and crystallographic 

structures, with rate accelerations (kcat/kuncat) up to 105 as outlined above, and kcat/KM values up to  

163 M−1 s−1, making it impressive that it was possible to design an effective catalyst using this 

approach. Nevertheless, the resulting catalytic efficiencies still range far behind that of catalytic 

antibodies or serum albumens [41], although still presenting progress on elegant earlier work that used 

computational search algorithms to identify catalytically active enzyme-like active sites in protein 

scaffolds [46]. Initial in vitro evolution was able to modestly increase the catalytic activity of the 

designed enzymes to provide rate accelerations in the region of factors of 104 to 106 (i.e., a kcat value of 

1.37 s−1). This is a 75-fold increase over the initial designed variant used as a starting point in this 

work, which had a kcat of 0.018 s−1 [35,47]). In addition, the kcat/Km value was improved to 2590 M−1 s−1 

(compared to 12.2 M−1 s−1 in the initial design [35,47]), after the introduction of eight mutations over 

seven rounds of evolution, showing the evolvability of the designed systems. Specifically, these initial 

mutations were determined to act by tuning the electrostatic environment of the active site, as well as 

correcting a problem in the initial design, which introduced a lysine as a general acid for leaving group 

protonation, but placed it such that it’s pKa would be detrimentally shifted by “quenching” from the 
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catalytic base. Subsequent combined experimental and theoretical work [48] on a different (and more 

active) designed enzyme, KE70 [35] (kcat of 0.14 s−1 and kcat/KM of 126 M−1 s−1), managed to further 

fine-tune the active site electrostatics, redesign the active site in order to improve substrate binding, as 

well as stabilize a catalytic His-Asp dyad in an optimal catalytic conformation. This, in combination, 

resulted in a >400-fold improvement in catalytic proficiency (for practicality, we distinguish here 

between catalytic enhancement (or efficiency) and proficiency, where by catalytic enhancement (or 

efficiency) we refer to the rate of the catalyzed versus the uncatalyzed reactions (i.e., kcat/kuncat), 

whereas by proficiency we refer to the overall kcat/KM value.), with kcat/KM values of as high as  

5 × 104 M−1 s−1 in the best variants [48], and a ~75-fold increase in kcat compared to the original design. 

A more recent work [49] has also introduced consensus mutations into one of the best of the original 

designs [35] (kcat/KM ~ 160, kcat was not measurable due to instability of the design), and screened for 

enzymatic activity with a number of substrates (5,7-dichloro, 6-chloro and 6-fluoro benzisoxazole), 

none of which showed activity above the detection limit. In all cases, however, after 16 rounds of 

mutation, not only were activities observed, but also, in the case of 5,7-dichloro substituted 

benzisoxazole, a kcat of 21.2 s−1 and a kcat/KM of 573,090 M−1 s−1 was observed. Now while Kemp 

elimination presents something of a “test system” for artificial enzyme design, nevertheless, it provides 

a good proof-of-concept of the fact that it is possible to start from a minimal, idealized active site, and 

match this to a pre-existing scaffold to end up with an active (albeit inefficient) catalyst, that can be 

further improved by subsequent laboratory evolution. 

Figure 1. Model of the active site of a representative de novo catalyst of the Kemp 

elimination reaction [43] (shown in its generalized form in the inset below). Note the 

position of E101, which was introduced to act as a general base, relative to that of the 

substrate. However, it is important to point out that the design was executed relative to the 

transition state and not the native substrate, and, therefore, the contacts in this figure are 

not truly idealized.  
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A number of other examples of de novo enzyme design have been observed in the literature 

recently. For instance, the approach used in [35] was expanded in order to design an active site that can 

accommodate multiple TS and reaction intermediates during the course of multistep reaction pathways. 

Specifically, a catalyst was designed de novo that was capable of facilitating the cleavage of  

carbon-carbon bonds [50] (a reaction which is fundamental to organic chemistry) with multiple 

turnovers and modest rate accelerations of up to four orders of magnitude (modest again in comparison 

to accelerations routinely obtained by natural systems) in the designed variants. An overview of the 

retro-aldol reaction catalyzed by this enzyme, as well as a schematic of a representative designed 

active site is shown in Figure 2. As with previous work [35], an initial theozyme was constructed, 

which harnessed two lysines close to each other in order to reduce the pKa of the nucleophilic lysine, 

as well as an aspartate which allows for general base catalysis. This was then coupled to an exhaustive 

search of 181,555 distinct protein scaffolds that could accommodate this theozyme, which resulted 

ultimately in 72 designs that were selected for experimental characterization. Of these, 32 showed 

detectable activity [50] (kcat values up to 9.3 × 10−3 s−1, kcat/KM values up to 0.74 M−1 s−1). Once again, 

this is not a highly proficient catalyst, however, as a proof-of-concept study of the possibility for 

designing catalysts from scratch for complex chemical reactions, this is elegant work. Subsequent 

analysis of the designed systems [51] suggested that the observed catalytic enhancements come from a 

number of sources, most importantly the effect of the enzyme environment on lowering the pKa of the 

catalytic lysine, as well as hydrophobic binding interactions in the enzyme active site. It was therefore 

suggested that improvements in binding interactions and the placement of catalytic groups could 

improve design efforts, a suggestion compounded by more recent studies into the interaction of these 

enzymes with covalent enzyme-substrate analog complexes [52]. Once again, site directed mutagenesis 

and laboratory evolution could be applied to the designed retroaldolases [53], extending on the 

catalytic motifs used in the original work [50], allowing for increases of up to 0.71 min−1 for kcat, and 

490 M−1 s−1 for kcat/KM. 

A third recent example of de novo enzyme design is the computational design of a biological 

catalyst for a stereoselective bimolecular Diels Alder reaction [54]. The overall reaction mechanism 

and a representation of the designed active site are shown in Figure 3. This system is significant, as 

there is no natural counterpart capable of catalyzing the Diels-Alder reaction. The fact that it can 

catalyze the formation of two carbon-carbon bonds to stereoselectively yield four new stereogenic 

centers is of great importance to organic chemistry, although now the catalytic proficiency is even 

poorer for this challenging reaction, with kcat values of at most 2.13 h−1, presenting a modest rate 

acceleration of only 12-fold compared to the uncatalyzed reaction at 298 K [54]. However, to achieve 

this modest acceleration, the designed variant uses a clever chemical trick. Specifically, the  

Diels-Alder reaction is under orbital control, with the reaction rate depending on the gap between the 

highest occupied molecular orbital (HOMO) of the diene, and the lowest unoccupied molecular orbital 

(LUMO) of the dienophile. Therefore, in the designed variant, two hydrogen bonds were introduced to 

increase the HOMO of the diene and decrease the LUMO of the dienophile, respectively, and these 

between them, if correctly positioned, were expected to provide ~4.7 kcal/mol transition state 

stabilization (based on quantum chemical calculations of the theozyme [54]), although, as mentioned 

above, the actual observed catalytic enhancement was much smaller. 



Int. J. Mol. Sci. 2012, 13 12434 

 

 

Figure 2. Model of the active site of a representative de novo designed retroaldolase [50], 

with a generalized version of the aldol reaction pathway using a lysine nucleophile and 

acid-base catalysis shown in the inset. Note that the figure depicts the enzyme in complex 

with the native substrate, and not with the transition state, and therefore the contacts are not 

truly idealized. 

 

Figure 3. The Diels-alder reaction, showing a pericyclic (4 + 2) cycloaddition to form a 

chiral cyclohexene ring. Also illustrated here are the residues selected to act as donor and 

acceptor in the designed Diels alderase discussed in the main text [54]. 
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We have presented here a few examples of successful de novo enzyme design, which have focused 

on using the generalized protocol illustrated in Figure 4. This is a field that has grown rapidly in 

interest, and space considerations prevent us from discussing all recent work in similar detail, and there 

have been other recent reviews that address this issue (e.g., [54], as one example). However, some 

works that we would like to mention here include a recent work by Faiella and coworkers, in which not 

only the active site, but also the scaffold was designed from first principles [55]. This resulted in an 

artificial di-iron oxo-protein, with phenol oxidase activity and, depending on substrate, kcat values of up 

to 13.5 min−1, and kcat/KM values of up to 6315 M−1 min−1 (for the best substrates). Another recent 

example comes in the form of a computationally designed homodimeric zinc-mediated protein 

interface [56], which was originally designed in order to study protein-protein interactions, but has 

recently been demonstrated to be a promiscuous catalyst capable of at least two functionalities [57] 

(Figure 5), namely the hydrolysis of p-nitrophenyl acetate and phosphate, with rate accelerations of  

105 and 104-fold, as well as kcat/KM values of 630 and 14 M−1 s−1, respectively. This is noteworthy in 

light of the fact that this system was not designed with catalytic ability in mind, but in comparison to 

many designed enzymes it shows surprising potential as a catalyst, opening other interesting avenues 

in protein engineering using simple model systems. Clearly, the works presented here demonstrate that 

we are moving closer to being able to design effective enzymes from scratch. However, there are still a 

number of significant issues. As will be discussed in the Sections 4 and 5, any rational design strategy 

requires in-depth knowledge of an enzyme’s catalytic mechanism, making it very difficult to predict 

how an enzyme will behave a priori, as was illustrated in the example of the pKa quenching problem 

in the designed Kemp eliminase (see [35,47]). Additionally, current design strategies such as those 

highlighted above cannot in and of themselves distinguish between active and inactive constructs, and 

therefore subsequent testing is left to experiment. The third issue is that, at present, the efficiencies of 

de novo designed systems are far too low to be useful in commercial settings and can only be improved 

to come closer to that of natural enzymes following subsequent laboratory evolution. While this has 

led to significant improvements in activity, this will ultimately always be limited to the same 

challenges all directed evolution studies face, namely an inability to explore the entire sequence space 

and library sizes. Therefore, for such designs to ultimately be effective, approaches will be needed to 

bridge the gap between in silico design and laboratory evolution. Therefore, Section 3 will address 

advances in and insights obtained from rational enzyme design, and Section 4 will address  

machine-learning approaches and novel screening approaches that can be used to greatly aid the  

design process.  
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Figure 4. A generalized version of a currently popular protocol for de novo enzyme design, 

adapted and abridged from [50]. Note that while molecular dynamics (MD) or quantum 

mechanical/molecular mechanical (QM/MM) characterization was not explicitly included 

in [50], it has been successfully used to aid the design process. 

 

Figure 5. Structural overview of a computationally designed zinc-mediated protein 

interface [57], that (unintentionally) is capable of promiscuously catalyzing both  

(A) p-nitrophenyl acetate (kcat/KM = 630 M−1 s−1) and (B) p-nitrophenyl phosphate 

hydrolysis (kcat/KM = 14 M−1 s−1). 
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3. Computational Enzyme Redesign 

As was seen in Section 2, recent years have seen tremendous advances in our ability to design 

enzymatic catalysts for novel chemistry “from scratch”. However, what about the enzymes that Nature 

has already provided? A wide variety of chemical reactions are necessary to facilitate life, and, as a 

result, catalysts have evolved for a range of reactions from group transfers, isomerization and 

hydrolysis reactions to oxidation/reduction reactions. Therefore, many templates already exist that can, 

theoretically, be modified for desired chemistry (as an example, compare the artificially designed 

retroaldolase [50] presented in Section 2 with natural aldolases such as DERA from E-coli, which has 

been evolved successfully for industrial biocatalytic applications e.g., [58]). In view of this, it is 

perhaps unsurprising that there has been interest in not just experimental [59,60] but also 

computational [61,62] protein redesign for several decades. Despite many promising studies, (rational) 

computational protein redesign of functional properties is not without its challenges, as it requires a 

reliable 3-D structure of the system of interest, as well as in-depth insight into the catalytic 

mechanisms, which can be changed by mutations. Additionally, in cases where high-quality crystal 

structures of the enzyme do exist, the fleeting nature of transition states means that the best one can 

hope for are complexes with transition state analogues [63]. While these can carry useful structural 

information in terms of potential contacts, they can also be deceptive in terms of the information they 

provide as to the actual chemistry [64,65] and need to be treated with care. As a result of this, the 

enhancements obtained using rational design approaches have been modest, particularly in comparison 

to the proficiencies of naturally occurring enzymes [66]. However, as with de novo enzyme design, 

increasing computer power has greatly expanded the range of possibilities with respect to protein 

redesign, both in terms of approaches to qualitatively and quantitatively probe and modify activity, as 

well as in terms of computational approaches to rapidly identify potential mutations that can affect 

enzyme function and stability. In this section, we will illustrate and discuss some noteworthy recent 

applications of computational enzyme design, whereas Section 3 will focus on screening approaches 

that can bring us closer to in silico directed evolution becoming a reality. 

Returning to the Kemp eliminases presented in Section 2, there have been a number of recent studies 

that have addressed the problem of computationally predicting and improving the catalytic activity of the 

designed enzymes (and closely related systems). Initial mixed quantum mechanical/molecular 

mechanical (QM/MM) and free-energy perturbation (FEP) calculations [67] that aimed to explore the 

energetics and mechanism of the reaction catalyzed by a number of the designed constructs as well as 

the background reactivity in water predicted activity in three of the examined constructs. In the fourth 

case, the authors obtained significant product trapping, however, uncertainty in the protonation states 

of a number of active site residues made results on this system inconclusive. In all enzyme-catalyzed 

cases, the authors obtained concerted mechanisms proceeding through a single transition state in which 

the proton transfer was quite advanced in comparison to the breaking of the isoxazolyl N–O bond  

(for the reaction mechanism, see Figure 1). A similar mechanism was obtained when modeling the 

background reaction in aqueous solution using a hydroxide base. This led the authors to suggest that, 

since the enzymes do not alter the mechanism compared to solution, design studies should focus on 

further increasing the basicity of the catalytic base as well as optimizing the positioning of catalytic 

residues in the active site [67]. It should be noted, however, that this work provided poor quantitative 
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accuracy, with large discrepancies between calculated and observed catalytic effects. Subsequent work 

has used a range of computational approaches [68], including quantum mechanical cluster models 

comprising a smaller subset of catalytic residues, QM/MM calculations that take into account the full 

system, as well as MD simulations that explore structural changes to explore the origins of activity in 

designed systems. As the authors acknowledge, the fact that the cluster and QM/MM models do not 

account for protein reorganization as well as changes in solvent accessibility along the reaction 

coordinate made these approaches insufficient to distinguish between active and inactive designs. 

However, performing molecular dynamics simulations allowed for exploration of structural features in 

cases where the activity or inactivity was known, leading to the identification of “design flaws” 

causing inactive enzymes [68].  

While such simulations are interesting and informative in the context of providing valuable 

structural insight, for effective enzyme redesign, it would be useful (and, indeed, most likely critical) 

to also have quantitative insight into the precise molecular basis for the observed catalytic  

(or anticatalytic) effect of different mutations, as well as, ideally, also, information about the 

quantitative contribution of different residues to activity and stability. To the best of our knowledge, 

most currently available quantum chemical approaches do not provide sufficient breakdowns of 

different contributions in order to be able to probe this issue, with the exception of a few notable 

examples such as the activation strain model [69], which provides a breakdown of the total energy 

intro contributions from electrostatic interactions, Pauli repulsion, and orbital interaction energies 

which could be used to dissect interactions between the reacting atoms (although even such elegant 

approaches become challenging in cases where one aims to explore the enzyme contributions, where 

using the linear response approximation with major sampling is to obtain reliable results, as 

demonstrated in [70]). Additionally, a second problem is computational cost: while, in principle,  

ab initio quantum mechanical approaches provide better precision, the cost involved in obtaining this 

precision makes it simply intractable to test numerous large systems, multiple mutations, different 

potential mechanisms and substrate binding modes, creating a major bottleneck in the design process. 

Here, in our opinion, the empirical valence bond (EVB) approach of Warshel and  

coworkers [71–73] provides the perfect solution to these problems. The EVB approach is a  

semi-empirical QM/MM approach, based, as the name suggests, on the valence bond theory, which 

describes chemical reactivity by mixing resonance states corresponding to classical valence-bond 

structures for different possible reacting states and obtaining the free energy for moving between these 

using free-energy perturbation/umbrella sampling (FEP/US) [71,74]. It is important to point out that, 

despite the concerns that may arise from the fact that the EVB approach sacrifices precision due to the 

fact that it is semi-empirical, all quantum chemical approaches use approximations to varying extents, 

and, for instance, the inherent errors in commonly used DFT approaches can be quite significant  

(see discussion in e.g., [75] and references cited therein), and the reliability of the results are heavily 

dependent on the precise functional and basis set used. However, this becomes partially irrelevant, 

since the EVB accuracy is mainly in determining relative free energies (with respect to a well-defined 

reference state), or catalytic effects. Therefore, while it is in principle fully feasible to increase the 

precision of the EVB using approaches such as the paradynamics approach [76], unless one has the 

computational resources to perform quantum chemical calculations at a very high level of theory, any 

inherent error introduced through using empirical force fields is not greater than that existing in most 
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commonly used DFT approaches (once the force field has been rigorously and carefully 

parameterized), particularly as an important core point of the EVB approach is careful calibration to 

not just ab initio but also experimental data available on the reference reaction in water. The fact that 

precision should not be a concern to the reader can be illustrated in the repeated success of the EVB 

approach at reproducing catalytic effects in wild-type and mutant enzymes with very high levels of 

quantitative accuracy, and without the need for adjustable parameters [13,36,37,77]. The strength of 

the EVB approach as a tool for computational enzyme redesign lies in three key features:  

(1) it’s relative speed, in that while it is still computationally demanding to perform the extensive 

sampling required to obtain physically meaningful convergent free energies, it is much faster than 

doing the same at a higher level of theory without compromising precision; (2) the tremendous amount 

of chemical information it carries as well as the energy-gap reaction coordinate, which allows for a 

reliable description of bond-breaking and bond-making events, while the energy-gap coordinate 

reduces the time required to obtain convergent results compared to other currently popular approaches, 

as recently shown in extensive benchmarks by Fuxreiter and coworkers [78]; and (3) the fact that the 

EVB approach is based on calibration to the correct reference reaction in solution, such that one is 

directly examining catalytic effects, and that it provides a detailed breakdown of such effects, allowing 

one to pinpoint the precise molecular basis for the observed catalytic effect. In combination, these 

approaches make the EVB ideal for not just understanding enzyme catalysis, but also as a tool for 

rapid predictive protein redesign, due to its ability to predict mutational effects with high accuracy. 

To illustrate the power of the EVB approach in protein redesign, we refer the reader to detailed 

EVB studies [36,37] of catalysis of the Kemp elimination shown in Figure 1. The first issue that we 

would like to highlight here again is the aforementioned one of precision. Namely, in these works, the 

authors first examined the molecular basis for catalysis of the Kemp elimination reaction in a wide 

range of systems, from catalytic antibodies through to serum albumens, and also computationally 

designed Kemp eliminases (KE) and designed variants. As can be seen from Figure 6, the authors were 

able to reproduce the catalytic effect of all known systems with very high accuracy (maximum 

difference between calculated and experimental activation barriers being within ~1 kcal/mol in 

approximately 20 tested systems [36,37] with standard deviations of maximum 1 kcal/mol over up to 

20 trajectories). 

Having established the reliability of the computational procedure, the authors then provided a 

number of significant insights into the reason for the observed catalytic effect of the studied mutants, 

as well as the challenges involved with obtaining proficient catalysis of this system. Specifically, it 

was observed that, in contrast to natural systems, which achieve efficient catalysis through stabilizing 

the transition state of the reaction, the mutant KEs are achieving enhanced catalytic activity through 

destabilizing the ground state of the reaction [36,37]. In principle one could argue that exactly how the 

catalysis is being achieved is not that significant as long as one can improve the efficiency of the 

enzyme. However, not only is this not observed in native enzymes [13], but also, the designed and 

evolved KEs are also not taking optimal advantage of this effect. This is important in light of 

suggestions that one should target the catalytic base [67], since, as discussed in [37], even if it were 

possible to create strong desolvation for the base in the ground state, this would result in a very large 

pKa that would not help at physiological pH as the base would simply be protonated by the bulk. The 

second challenge that ties in with this is that the charge change between the ground state and transition 
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state for this reaction is very small, making it extremely difficult to exploit active site polarity in order 

to better catalyze this reaction [36] (and, as was observed by [36,37], as a result, mutations that tend  

to effect activity also tend to be farther from the active site). This could also explain to some extent  

the current problems with trying to significantly improve this system, whether computationally  

or experimentally.  

Figure 6. Correlation between calculated (∆g≠calc) and observed (∆g≠exp) activation barriers 

for the catalysis of the Kemp elimination reaction (illustrated in Figure 1) for a range of 

catalysts, including two catalytic antibodies (34E4 and Y32K), and a number of designed 

proteins in wild-type and mutant form (KE07, R6 3/7F and R7 2/5B). This plot is based on 

data presented in Table 1 of [37]. Calculations were performed using the empirical valence 

bond (EVB) approach, and, in all cases, both the difference between the calculated and 

experimentally observed values, as well as the standard deviation in the calculated values 

(over 20 trajectories) was <1 kcal/mol. 

 

To address this issue, a number of screening approaches were presented [36,37] that could be used 

to screen for potential mutation hotspots (which could then be tested by EVB), as well as to predict 

stability change upon mutation, however, we will leave the discussion of these to Section 4, which 

deals with currently available approaches for performing in silico directed evolution. Here, we would 

just like to comment on a recent work [79] that used iterative MD and experimental analysis to explore 

previously inactive artificial KEs and used insights from MD and structural analysis to improve 

activity. We agree with the authors of this work [79] that an iterative procedure is important, as well as 

the fact that understanding inactive designs can provide insights that can potentially guide future 

design effort by avoiding repetition of “mistakes” that were made during the laboratory evolution  

(or initial computational design). However, this brings us back to the question at the end of Section 2: 

Considering the wide variety of templates Nature already provides, what is the best starting point? 

Here, we believe that the most effective approach for redesign, regardless of the starting point, is one 

which can provide quantitative as well as qualitative insight (such as that of [36,37]), which allows for 

the identification of factors that can be rapidly modified, and which can then be combined with an 

iterative approach such as that illustrated in [79] for rapid redesign. 
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Having presented current computational enzyme redesign philosophies in great detail, we would 

like to only mention here some more noteworthy works to provide the interested reader with an 

overview of recent activity in the field. An area that has gained significant interest in recent years is 

enzyme specificity, as a result of increasing awareness [80–83] of the fact that, contrary to the classical 

image of enzyme catalysis, many (if not most) enzymes are catalytically promiscuous, catalyzing one 

or more chemically distinct reactions in addition to their native reaction. Significant effort has been 

invested into experimental redesign of enzyme specificity [84,85]. Along with this, inserting or 

modifying activity has also been the topic of recent computational studies. Earlier examples of this 

include Park et al.’s work [86], which introduced β-lactamase activity into a glyoxylase scaffold, while 

completely destroying the original activity. More recently, Korendovych and coworkers were able to 

computationally redesign calmodulin, which is a regulatory calcium binding protein, into an 

allosterically controlled Kemp eliminase that is activated upon Ca2+ binding by means of a single 

mutation [87]. Another recent work [88] used computational loop remodeling to control interactions 

between active site residues and the bound substrate and was able to alter the specificity of a human 

guanine deaminase to make it 100-fold more active with a structurally similar but chemically distinct 

substrate ammelide (Figure 7), and 2 × 104-fold less active for the native guanine substrate, compared 

to the wild-type enzyme (resulting in a net specificity change of 2.5 × 106-fold). A third significant 

recent work [89] focused on computationally redesigning a zinc-containing mouse deaminase to catalyze 

organophosphate hydrolysis (specifically the R(P) isomer of a coumarinyl analogue of the nerve agent 

cyclosarin), which, while giving only a modest initial phosphatase activity (kcat/KM of 4 M−1 s−1), 

compared to the wild-type, which showed no detectable deaminase activity. However, this could be 

improved to a kcat/KM of ~104 M−1 s−1 after directed evolution. Therefore, rational enzyme redesign was 

again successfully used to provide a starting point for subsequent evolution to generate an enzyme with 

an activity comparable to that of an moderately efficient naturally occurring enzyme [20].  

Figure 7. Structural comparison between (A) guanine (i.e., the native substrate of human 

guanine deaminase), and (B) ammelide. 

 

Finally, to conclude this section, we would like to briefly mention the increased interest in the 

challenging problem of designing efficient catalysts for chiral chemistry. Being able to control enzyme 

enantio- or regioselectivity is a problem of significant interest to the pharmaceutical industry, due to 

the role of chirality in drug efficacy, as well as potentially playing a major role in the industrial 

production of fine chemicals. However, computational redesign of stereo- or regioselecitvity poses a 

significant computational problem, due to the very small differences that govern selectivity as well as 

the tight dance between steric and electronic effects. There have been several computational attempts 

to address the origin of enzyme selectivity, however, these have often focused either on just ground 
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states [90] or limited small models of the active site where the results can be very dependent on the 

precise starting structure used [91]. A more promising recent work [75] addressed the selectivity of the 

soluble epoxide hydrolase (sEH), which catalyzes epoxide ring opening to yield the corresponding 

vicinal diols. Through a combination of low-level QM/MM umbrella sampling molecular dynamics 

(MD) simulations and high-level ab initio calculations, the authors were able to rationalize the 

experimentally observed selectivity of the enzyme for phenyl vs. benzylic attack, identifying factors 

responsible for governing this selectivity. This work highlights the importance of proper sampling  

and examining multiple conformations, however, the obtained results only provided reasonable 

agreement with experimental rate constants when using a very high level of theory. Here, it should be  

noted that Frushicheva and Warshel recently examined the selectivity of wild-type and mutant  

Candida antarctica lipase using the EVB approach [92], and, as with earlier work on the Kemp 

eliminases [36,37], were able to obtain very high quantitative agreement with both the wild-type 

enzyme, as well as correctly reproducing (and rationalizing) the observed changes in selectivity upon 

mutation. It is worth highlighting here that this is a particularly challenging system that faces problems 

such as different degrees of water penetration, and, therefore, this work demonstrates the crucial 

importance of extensive sampling in order to obtain convergent results and to be able to reliably 

rationalize enantioselectivity [92]. 

4. In Silico “Directed Evolution”: Approaches to Reduce the Sequence Space in Laboratory 

Evolution Studies  

Despite extensive improvements to rational enzyme design using computational approaches, the 

arguably most powerful tool in enzyme (re)design for biocatalytic purposes remains simply random  

(or semi-random) laboratory evolution [25,93]. Despite its power, the limitations in searching sequence 

space as well as the complexity of the enzymes’ catalytic actions remain inherent bottlenecks in all 

directed evolution studies. As a result of this, several experimental strategies are being developed to 

handle these problems in order to allow for high accuracy “low-throughput” screening (an issue 

discussed in detail in e.g., [94]). The question then arises of the extent to which computational 

approaches can contribute to this approach, guiding and rationalizing the ongoing experimental work. 

In light of the importance of this problem, it should not be surprising that there are also several 

computational strategies being developed in order to limit the search space in directed evolution 

studies as well as to perform screening of mutations in silico, allowing for a form of computational 

directed evolution. Here, we will address a number of these that can be used for improving enzymatic 

activity (many more of which have been reviewed elsewhere, see e.g., [95–98]). We aim to demonstrate 

that we are reaching a stage in the field where, rather than being limited to the early stages of artificial 

enzyme design or small-scale qualitative modifications, computational approaches can start to be used 

as a bridge across the gap that currently exists between rational design and laboratory evolution.  

Early computational approaches towards reducing sequence space in DE studies included applying 

mean-field theory to explore protein fitness landscapes as well as the structural tolerance of individual 

residues [99], suggesting that mutations that are beneficial to activity and stability tend to occur at 

amino acid positions that are tolerant to substitutions. This was then matched by comparison to 

experimental directed evolution on subtilisin E and the T4 lysozyme, demonstrating that during 
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experimental DE, favorable mutations were accumulated at the position predicted by this approach.  

A related approach is the SIRCH algorithm [100], which uses a second-order mean-field approach to 

identify residue-residue clashes from rotamer libraries, using atomistic representations to calculate 

rotamer-backbone, romater-intrinsic and rotamer-rotamer conformational energies. This can be used 

for truncating libraries in experimental directed evolution. More recent approaches for targeting 

directed evolution studies by exploring sequence function space include the protein sequence activity 

relationship algorithm (ProSAR) [101], currently owned by CODEXIS Inc™. This approach uses 

Kaufmann’s NK model [102] to describe the fitness landscape. Here, in this case N is the number of 

variable positions in the protein, and K is the degree of coupling between the variable positions. 

ProSAR then exploits a genetic algorithm to search the NK landscape, based on an iterative procedure 

in which a subset of protein sequences are generated from the full library of possible sequences. These 

are then ordered in terms of decreasing fitness, the top protein is retained as the backbone for the 

design work, and the list of residues at each position in the backbone is expanded by addition of 

subsequent protein sequences in decreasing order of fitness. This allows for the identification of 

residues potentially contributing most to fitness, and then parents are “mated” and the procedure is 

repeated iteratively until the desired property is observed (for more details, see [101]). A clear 

advantage of this approach in an industrial context is the limited knowledge of detailed chemistry that 

is required to achieve noticeable improvements in efficiency, and an example of a practical application 

of this approach was illustrated for instance in the 4000-fold improvement in the volumetric productivity 

of a cyanation process necessary for the synthesis of a cholesterol-lowering drug, atorvastatin (Lipitor), 

by a bacterial dehalogenase [103]. A few last examples include statistical coupling analysis (SCA), 

which is a bioinformatics procedure that uses sequence information to determine networks of 

energetically coupled co-evolving residues in proteins [104] and has already been applied to the design 

of allosteric communication in proteins [105] as well as the design of artificial sequences capable of 

folding to target structures [106]. Finally, while the SCA approach is powerful, an alternative approach 

based on evaluating energy-based allosteric matrices, which has already been successfully applied to 

explore the effect of mutations on transition state energetics and fidelity in DNA polymerases [107], is 

likely to be a powerful tool for not only the rational design of TSAs and drug design, but also for 

computational enzyme design.  

Another issue that has gathered increasing attention recently is that of protein promiscuity, which 

has been hypothesized to play an important role in guiding enzyme evolution [80,81,83]. This is of 

potential importance to enzyme design [83], as reverse evolution to a promiscuous “progenitor” 

enzyme capable of catalyzing multiple reactions provides an attractive starting point for the insertion 

of novel functionality. Therefore, in addition to general interest in resurrecting ancestral  

proteins [108,109], there is also interest in mapping and redirecting enzyme evolutionary trajectories to 

modify enzyme functionality [110]. Finally, apart from standard bioinformatics-based approaches that 

can be used to do this, such as those harnessed in the aforementioned works, recent years have also 

seen a tendency to borrow from the social or economics sciences, using approaches such as Pareto 

efficiency or Pareto optimality [111] as an optimization procedure in protein design [112,113] for 

cases where there are multiple objects present, and an efficient and fast optimization procedure  

is needed. 
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A key common feature of the approaches described above is the fact that they rely on limited to no 

knowledge of the molecular details for the actual chemical step being catalyzed by the systems of 

interest. As the examples brought here highlight, there are cases where such approaches can rapidly 

provide improvements in enzyme activity, and are particularly useful in, for instance, industrial 

settings where a modest improvement at minimal cost is often more desirable than approaches that can 

provide better improvements but require far more input in terms of both manpower hours and chemical 

or computational expense. To conclude this section, we would like to highlight a number of recently 

developed screening approaches that directly target the chemical step, as well as the effect of mutations 

on subsequent folding stability, and highlight the fact that the gap between “black-box” approaches 

and those that require more insight into the actual system are rapidly decreasing allowing for effective 

targeting of actual chemistry and, therefore, potentially much higher improvements in catalytic efficiency 

than current approaches allow. As a starting point, considering the multitude of computational 

approaches that are currently available, it is important to focus on what is exactly required of a 

computational approach in order to be able to do effective computational enzyme design. As one of the 

main challenges with directed evolution studies is focusing the search space in an effective way, and 

the fact that it is hard to deduce the molecular basis for the beneficial or detrimental effects observed 

with different mutations, one would require from a computational approach that it can reliably 

reproduce catalytic effects in both wild-type and mutant enzymes (see also discussion in e.g., [114]).  

In such a way, it is possible to then use as a scoring function the expected effect of mutations on the 

catalytic effect in order to directly rank different constructs. A second issue, however, is the  

cost-to-benefit ratio of such an approach. Recent years have seen tremendous improvements in 

approaches for experimental directed evolution (see e.g., [94]), both increasing the library sizes that 

can be handled and also finding ways to focus the search space. Therefore, it is already possible to 

obtain quite impressive improvements on enzymatic activity using experimental approaches alone, and 

for a computational approach to be advantageous, it needs to provide an insight that the experiment 

cannot provide by itself, and to do so in a way that is faster than one can currently perform with 

experimental evolution. As discussed in Section 3, and illustrated by the data shown in Figure 6, we 

believe that one of the most effective ways of currently doing this is the EVB approach, as it not only 

allows you to rapidly explore mutational effects without the need for any further parameters 

adjustment once the reference state has been correctly calibrated, but also, it provides detailed 

breakdowns of the different contributors to this effect, allowing one to dissect the molecular basis for 

catalysis. In principle, one could do brute-force EVB to test different mutations (driven by chemical 

insight into the native reaction). However, considering the fact that it is necessary to do extensive 

sampling over multiple trajectories in order to get physically meaningful convergent results, 

computational cost will still become a limiting factor. Therefore, it can be useful to have a toolkit with 

which to do rapid initial screening of mutation hotspots prior to subsequent more detailed testing of the 

most promising constructs using EVB (and ultimately experiment). A number of these have been 

discussed and compared in detail in [114,115]. Specifically, these works compared the efficacy of 

different computational approaches for modeling the enzyme-catalyzed rearrangement of chorismate to 

prephenate (Figure 8), as well as for probing the effect of mutations on the observed catalytic activity 

of the different mono-, di- and trimeric forms of chorismate mutase (CM). This particular system was 

chosen as it has been important both for design studies [116], as well as for probing the validity of 
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transition state analogues [64,116]. Specifically, the authors compared using the EVB directly to 

screen for mutations with focusing only on the TS electrostatic energy, using in this case the 

semimacroscopic version of the protein dipole Langevin dipole method, in its linear response 

approximation version (PDLD/S-LRA, for methodological details see [117]). The authors also 

explored the effectiveness of using the changes in EVB reorganization energies upon mutation as a 

screening tool. Here, it was found that, clearly, the EVB was the most effective tool for quantitative 

screening, due to its ability to reliably reproduce mutational effects in a quantitative manner (see e.g., 

Figures 6 and 9). In comparison, examining reorganization energies was found to be useful but 

suffered from convergence problems, and also, the PDLD/S-LRA (or the group contribution approach 

which dissects the contribution of different residues to the activation barrier or to TS binding energies) 

could be useful for identifying residues that can contribute to electrostatic stabilization of the TS, 

however, as it does not include the important effect of protein reorganization, it is mainly helpful as an 

initial screening approach to identify residues that could then be examined further by EVB. 

Figure 8. Overview of the mechanism for the rearrangement of chorismate to prephenate. 

 

Figure 9. Correlation between calculated (∆g≠calc) and observed (∆g≠exp) activation barriers 

for the rearrangement of chorismate to prephanate catalyzed by the wild-type  

mono- (MjCM), di- (EcCM) and trimeric (BsCM) forms of chorismate mutase. The 

corresponding data for a range of mutants are also shown here. Note that R90Cit denotes a 

mutation to a non-standard amino acid (citrulline). Based on data presented in Table 2  

of [114]. Calculations were performed using the empirical valence bond approach. In all 

cases, the calculated value is within ~2 kcal/mol of the experimental value. 

 

The authors have since evolved and expanded on their screening approaches, highlighting their 

power as applied to the cases of the aforementioned Kemp elimination reaction [36,37] and also to an 
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enantioselective lipase from Candida Antarctica [92] (CAL A). Here, the authors’ starting point is a 

simple and effective rapid screening approach, which bases itself on using the PDLD/S-LRA approach 

and estimating the electrostatic contribution of different residues (“groups”) to the activation barrier 

using the formulation: 

gelec
‡  332 qjQi / rijij

ij
  (1) 

Here, qj  refers to the effective charge (or dipole in the case of polar residues) of the qth residue, ∆Qi 

refers to the change in substrate residual charges upon moving from the ground to the transition state, 

and εij represents the dielectric constant for a given interaction. The effect of mutating each residue can 

then be explored by artificially assigning a charge of 1.0 to all residues in the protein, and then 

identifying the charge change that will lead to the most negative ∆∆g‡
elec (i.e., the greatest stabilization 

upon mutation). An example of this in the case of a designed Kemp eliminase [36] is shown in Figure 10.  

Figure 10. Predicting mutation hotpots for a designed Kemp eliminase. The y-axis denotes 

the interactions (in kcal/mol) between the protein residues with the substrate as its charge 

changes upon moving from the reactant state (RS) to the transition state (TS). Large 

negative contributions suggest optimal sites for mutations likely to enhance the catalytic 

effect. This figure was originally presented in [36]. 

 

This then leads to the formulation: 

(qj )opt  gelec
‡ / qj   Q

i
/ rij ij

i
  (2) 

where the optimal values of ∆qj  are proportional to the electrostatic group contributions in the case 

when all the protein groups are positive charges, and α is a proportionality constant. Such an approach 

is particularly useful in cases where the effect is predominantly electrostatic, and also for challenging 

cases where the charge change upon moving from ground to product state is sufficiently small to 

makes it hard to directly exploit the polarity of the active site residues (see [36]). However, it can be 

insufficient in cases such as enzyme enantioselectivity, where the observed effect is due to not only 
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electrostatic but also steric effects, by combining the linear response approximation (LRA)  

approach [118], which can provide a reliable estimate of the free energy associated with changing the 

electrostatic potential of the system from one potential to another, with the steric (nonelectrostatic) 

component of Åqvist’s linear interaction energy (LIE) approach [119,120], which introduces an 

empirical parameter (β) that scales the van der Waals component of the protein-ligand interaction. 

Such a combined LRA/β approach has shown significant promise in the test case of CAL A [118].  

A final critical issue is, of course, the effect of such mutations on protein stability. That is, stability 

should minimally not be significantly impaired, and ideally retained or even optimized. This can be 

done in an effective way using a focused dielectric constant [121], which approximates the folding 

energy using the expression: 

Gfold  332 q
i
qj / r

ij
 focus

ij
  (3) 

Here, εfocus denotes the optimal dielectric constant for a given interaction, and qi and qj are the charges 

of the relevant ionized residues at a given pH [121]. For other recent examples of predicting protein 

stability upon mutation using computational approaches we refer the reader to [122–126], amongst 

others. As discussed in e.g., [37], combining approaches to optimize TS stabilization with protein 

stability constraints can provide a highly efficient approach to predict optimal mutations of particularly 

distant (from the active site) ionized residues, and, as can be seen, while this is an area still in its 

infancy, significant progress is being made at a rapid pace, and we believe that approaches such as 

these will be the most effective currently available in the move towards in silico directed evolution. 

5. How do Enzymes Actually Work, or Why is Computational Enzyme Design so Difficult? 

Computers are constantly increasing in power, and, in theory, computational approaches should 

play a major role in the design of novel catalysts. However, as illustrated in Sections 2 and 3, despite 

impressive advances in computational enzyme design (both de novo and by redesigning existing 

systems), the actual rate enhancements obtained by the designed systems are quite poor, and clearly far 

from that of naturally occurring systems. The question then becomes why this should be the case? This 

has been a topic of significant discussion [36,37,66,116], and suggestions as to the source of this 

problem have included, at the most qualitative level, simply that either the active site construct is 

incorrect (based on the argument that enzymes require idealized active sites), that the idealized active 

site is not realized in practice, and that the designed active site is not supported by the scaffold it is 

placed into [66].  

While valid points, such arguments reflect the focus that has been placed on achieving shape 

complementarity in many of the enzyme design studies discussed in this work. Here, we would like to 

argue that the actual situation is more complex than this. That is, enzymes are chemical catalysts, and 

therefore, in order to be able to engage in effective enzyme (re)design, it is important to have detailed 

insight into how enzymes actually work at the molecular level. Indeed, being able to design effective 

artificial enzymes is perhaps one of the best proofs that we have finally solved this problem. However, 

the question of how enzymes actually work is one that has eluded enzymologists for over a century, 

and multiple hypothesis have been put forward to try to rationalize the tremendous catalytic 

proficiencies of enzymes, including desolvation effects, strain, and entropy loss during the reaction 
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coordinate (see discussion in e.g., [13,127,128]). The problems with these (and related) hypotheses 

have been discussed in detail elsewhere [13,70,129,130]. However, we would like to focus on a 

hypothesis that has gained a lot of popularity in recent years, namely the potential importance of 

dynamical effects to enzyme catalysis [131–135]. One of the problems with this hypothesis is that it 

has not been clearly defined: That is, clearly, once atoms are above a few degrees K they move, and 

enzymes are dynamic entities. Additionally, many enzymes utilize conformational modification as an 

important part of their catalytic cycles. However, whether such dynamics can actually contribute to  

the chemical step of enzyme catalysis is a different issue, and one that is not possible to test 

experimentally, as there is no experiment that can actually check this. Therefore, arguments in favor of 

the dynamical hypothesis have been mainly based on indirect observations such as similar timescales 

for the conformational and chemical steps [132,133]. We explored this issue in great detail [128] and 

demonstrated that, based on our simulations, this would strongly suggest that the chemical step has no 

memory of any preceding conformational transition [136]. Additionally, even anticatalytic mutations 

that apparently provide direct evidence for the importance of dynamics in enzyme catalysis [134] were 

demonstrated to be electrostatic in origin [77]. Other workers than us have also expressed concern over 

this issue [137–139]. We bring this up here due to the increasing popularity of invoking dynamical 

effects as being important for artificial enzyme design (see e.g., [140]). Clearly, conformational 

changes can be very important for enzyme function, and by modulating such changes one also modulates 

the activity of the enzyme. However, as one is only likely to impair the catalytic activity of the enzyme 

through this, and as the enzyme appears to have no memory of the conformational change once the 

chemical step has started, it is unclear how such effects are likely to actually aid enzyme design. 

While it is unlikely that dynamical effects play an important role in the actual rate acceleration that 

enzymes have evolved to optimize, a number of other factors clearly are to different degrees. These 

include well-characterized chemical effects such as acid-base catalysis and covalent catalysis, both of 

which can account in relevant cases for some of the observed catalytic effect. The major contributor, 

however, as has been observed by countless simulation studies [13], is the electrostatic preorganization 

of the active site [141] (Figure 11). Specifically, the reorganization penalty associated with reorienting 

randomly oriented water dipoles as the environment becomes polarized by changing charge on the 

substrate is much higher than the corresponding effect in an enzyme active site, where the relevant 

dipoles and charges are already optimally organized. The importance of electrostatic complementarity 

has been particularly highlighted in the case of ketosteroid isomerase [65,142,143], which has been 

one of the “classical” systems to challenge the electrostatic preorganization idea [144–146], and where 

it was demonstrated that almost the entire origin of the catalytic effect is electrostatic [65]. Now the 

fact that an increasing number of enzymes are being demonstrated to be “catalytically  

promiscuous” [83], catalyzing multiple, chemically distinct transition states in addition to their native 

transition state, with proficiencies that can at times almost compete with that for their native  

reaction [147–150], would superficially appear to be at odds with the idea of electrostatic 

preorganization (and the argument above that enzymes have “idealized” active sites). However, a 

recent computational work (to the best of our knowledge) that has comparatively explored both 

structural and electrostatic features driving catalysis of multiple substrates in a quantitative fashion in 

an extremely promiscuous arylsulfatase [151,152] has demonstrated that the enzyme is able to identify 

and distinguish between different, chemically distinct transition states, but that the promiscuity is 



Int. J. Mol. Sci. 2012, 13 12449 

 

 

simply driven by the ability of the promiscuous substrates to exploit the pre-existing electrostatic 

preorganization of the active site for the native substrate. Similar qualitative observations were made 

for a related system based on experimental work [153]. Therefore, the promiscuity appears to even in 

such a case be electrostatically-based [152], suggesting a role for chemistry-driven protein evolution. It 

is also worth noting that in this study, the two best substrates examined (out of four) proceeded 

through the most compact and expansive transition states, respectively. Also, out of a number of 

promiscuous substrates, the one that the enzyme preferentially catalyzed was the largest and bulkiest of 

these (in agreement with experimental data [147]), illustrating that the enzyme can exploit its active 

site plasticity to adapt to the substrate if the electrostatics match. Therefore, it could be argued that, 

rather than focusing on shape complementarity, it would be much more effective to focus on 

electrostatic complementarity, and use rational chemistry-driven protein redesign in order to obtain 

effective catalysts (see also discussion in [36,37]). 

Figure 11. Schematic overview of the preorganization effect. This figure first considers the 

charging of a substrate in an environment that has not been polarized by the substrate and 

then illustrates the effect of the polarization of the solvent by the field of the substrate, 

which is substantially larger in (A) water than in (B) protein. This figure was originally 

presented in [65]. 

 

6. Conclusions and Future Perspectives 

Artificial enzymes have the potential to play a major role in sustainable development, providing 

green reusable catalysts for processes encompassing all aspects of life, from generating new 

therapeutics to the food industry to their use as detergents. Therefore, interest in using enzymes as 

artificial catalysts has exploded, and biocatalysis is one of the most rapidly growing current fields  
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(see e.g., [15,34,154,155]). However, design of artificial enzymes requires an intimate understanding 

of how enzymes work, and to date, the precise molecular details of enzyme catalysis still remain 

controversial and to some extent elusive, although electrostatics clearly plays a central and dominant 

role [13]. Therefore, any progress in artificial enzyme design will be aided by parallel progress in our 

understanding of enzymology, and the ability to effectively design artificial enzymes will in turn be the 

best proof that we have finally understood how enzymes work.  

Despite these challenges, recent years have seen significant progress in both de novo computational 

enzyme design, from minimal active site models, as well as computational protein redesign, based on 

existing templates, and constant increases in computational power are expected to continue to 

accelerate such advances. Nevertheless, impressive as such studies have been, as has been illustrated 

by the examples brought up in this review that there is still a very large gap between the proficiencies 

of natural and designed enzymes. Many arguments have been put forward to rationalize this [66,116], 

some of which have focused on the importance of having an idealized active site and the problems 

with realizing such a situation. However, as was outlined in Section 5, many promiscuous enzymes  

do not have idealized active sites, recognizing multiple chemically distinct transition states  

(e.g., [147–150,153]), with often quite high efficiency. Here, in the only example known to us where 

such promiscuity has been quantitatively dissected using computational approaches to compare the 

catalysis of multiple substrates, it appeared that the main driving force for the promiscuity was simply 

the electrostatic preorganization of the active site, which, while it is optimized for the native substrate, 

can also be flexible enough to accommodate multiple, chemically distinct substrates [152]. If it can be 

extended to other systems, such electrostatic flexibility, whether naturally occurring or engineered, can 

clearly be exploited for enzyme design. This then raises a number of questions. The first is that of what 

the best starting point actually is for enzyme design. That is, while clearly the ability to engineer novel 

catalysts completely de novo is impressive in and of itself, Nature already provides a vast range of 

templates for many different types of chemistry, and naturally occurring enzymes are evolving all the 

time. Therefore, we believe that there is a strong argument in favor of starting from a naturally 

occurring system that demonstrates evolvability and manipulating its activity, rather than performing 

completely de novo enzyme design. However, regardless of the starting point, the next issue becomes 

that of how to effectively improve such systems. As was illustrated in Section 2, even in cases where 

the initial catalytic activities of de novo designed systems were relatively poor, subsequent rounds of 

experimental evolution can improve on such poor activities. Despite its power, however, directed 

evolution studies will inherently be limited by the vastness of the sequence space combined with low 

frequencies of desirable mutations even in targeted libraries [26]. In light of this, we are therefore at a 

very exciting time in the field. As illustrated in Section 4, recent years have seen substantial advances 

in approaches to reduce the search space needed in directed evolution studies, but also, even more 

importantly (in light of the fact that enzymes are chemical catalysts), in approaches that can effectively 

and reliably screen for mutation hotspots and predict the effect of mutations in silico, even prior to any 

experimental testing. Such approaches can directly target the chemical step, dissecting the contribution 

of different residues to catalysis, and quantifying the effect of modification of different residues both 

directly in the active site and even quite far from it. Critically, such approaches (such as, e.g., those 

discussed in [36,37,114,115,118]) allow for extensive sampling and take into account the 

reorganization of the protein environment, which is often missing in many design studies. This means 
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that they can be used to study complex problems such as that of enzyme selectivity [118], where a very 

subtle balance between steric and electrostatic effects can completely determine the preference of an 

enzyme for one form of the substrate, or position of attack, over another. Clearly there are still 

challenges involved in such chemistry-driven approaches, which include the problems of dealing with 

systematic searches of the effect of multiple mutations simultaneously. Now this problem can, for 

example, be alleviated by use of a coarse-grained model that can be extended to examine multiple 

mutants at once, while then also extrapolating back to an all-atom model, as discussed in [118]). More 

critical, however, is the risk that incorporated mutations could cause large-scale conformational 

rearrangements, or even collapse, that are not captured by the computational approach (although many 

approaches for predicting protein stability upon mutation are currently being developed, with varying 

degrees of success [121–126]). In the long run, once such approaches can be coupled with approaches 

that can reliably predict the effect of mutations on enzyme physico-chemical properties such as 

thermal stability and solubility, this would then provide an ideal starting point for experimental testing. 

Such an iterative approach, in which the experimental evolution is guided by rational in silico 

evolution (which is in turn guided by detailed knowledge of the molecular machinery for catalysis), 

with theory being used to guide and rationalize experiment and experiment being used to test, validate 

and refine theory, will ultimately allow for a far more efficient design strategy. This, in addition to 

accelerating the design process overall by allowing a significant part of it to be performed 

computationally, also accelerates the design process by allowing for the construction of focused 

“smart” libraries for experimental evolution, significantly reducing the size of the sequence space that 

needs sampling. When this is combined with parallel advances in de novo enzyme design and 

structure-based protein redesign, this will provide a much-needed bridge, which closes the gap that 

currently exists between computational enzyme design and laboratory evolution. 
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