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Abstract: Chromosome 3-specific NotI microarray (NMA) containing 180 clones with 188 

genes was used in the study to analyze 18 high grade serous ovarian cancer (HGSOC) 

samples and 7 benign ovarian tumors. We aimed to find novel methylation-dependent 

biomarkers for early detection and prognosis of HGSOC. Thirty five NotI markers showed 

frequency of methylation/deletion more or equal to 17%. To check the results of NMA 

hybridizations several samples for four genes (LRRC3B, THRB, ITGA9 and RBSP3 
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(CTDSPL)) were bisulfite sequenced and confirmed the results of NMA hybridization. A 

set of eight biomarkers: NKIRAS1/RPL15, THRB, RBPS3 (CTDSPL), IQSEC1, NBEAL2, 

ZIC4, LOC285205 and FOXP1, was identified as the most prominent set capable to detect 

both early and late stages of ovarian cancer. Sensitivity of this set is equal to (72 ± 11)% 

and specificity (94 ± 5)%. Early stages represented the most complicated cases for 

detection. To distinguish between Stages I + II and Stages III + IV of ovarian cancer the 

most perspective set of biomarkers would include LOC285205, CGGBP1, EPHB1 and 

NKIRAS1/RPL15. The sensitivity of the set is equal to (80 ± 13)% and the specificity is  

(88 ± 12)%. Using this technique we plan to validate this panel with new epithelial ovarian 

cancer samples and add markers from other chromosomes. 

Keywords: ovarian cancer; biomarkers; NotI microarrays; epigenetics; early detection of 

ovarian cancer; prognosis of ovarian cancer 

 

1. Introduction 

Epithelial ovarian cancer (EOC) remains a highly lethal malignancy. It is the fifth leading cause of 

cancer deaths among women in the United States (22,000 new cases and 16,000 deaths annually) and 

causes more than 140,000 deaths annually in women worldwide. Despite intensive research efforts 

over the past decade directed toward improved detection and treatment of ovarian cancer, the majority 

of women diagnosed with ovarian cancer die from the disease [1]. 

The epithelium is the tissue where most ovarian cancers arise [2]. Ovarian cancer is classified  

into several stages according to the American Joint Committee on Cancer/Tumor Node Metastasis 

(AJCC/TNM) and International Federation of Gynecology and Obstetrics (FIGO) staging systems 

which are based on how far the cancer has spread. In Stages I and II, the tumor is confined to the 

ovaries, while there is local metastasis (usually lymph) in Stage III and there is distal organ metastases 

in Stage IV [3]. 

Currently, the two principle obstacles in treating this life threatening disease are lack of effective 

biomarkers for early detection and drug resistance after initial chemotherapy. 

Due to the atypical syndrome of the early stage of ovarian cancer, it is difficult to diagnose in its 

early stages. EOC (90% of ovarian cancer) is diagnosed at an advanced Stages III and IV in 75% of all 

cases, where the disease has spread throughout the abdomen. Patients with advanced stage disease 

have a 5-year survival of only 30% in contrast to early-stage disease (confined to the ovaries), where 

5-year survival exceeds 80% [4]. 

Ovarian cancer is a heterogeneous disease both histologically and in patterns of disease progression. 

EOC is comprised of four major histologic subtypes: endometrioid, mucinous, clear cell and serous 

ovarian cancer. The high grade variant of serous ovarian cancer (HGSOC) is typically diagnosed in 

late stage, and is mostly responsible for the high lethality rate of ovarian cancer. It is also the subtype 

with the highest prevalence, estimated at ~70% of all cases [5,6].  

Similar to other cancers, the initiation and development of ovarian cancer is characterized by 

activation of oncogenes and disruption of tumor suppressor genes (TSGs) by both genetic and 
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epigenetic mechanisms. While it is well known that it is challenging to treat ovarian cancer through a 

genetic strategy due in part to its heterogeneity, the reversibility of epigenetic mechanisms involved in 

ovarian cancer opens exciting new avenues for treatment. The epigenomics of ovarian cancer has 

therefore become a rapidly expanding field leading to intense investigation. 

Hypermethylation of CpG islands in gene promoter regions has been observed as a frequent 

mechanism associated with inactivation of TSGs which contributes to malignant transformation.  

As aberrant methylation is thought to be one of the earliest observable molecular changes in 

carcinogenesis, the detection of alterations in DNA methylation patterns has potential applicability to 

the detection of early-stage or pre-malignant disease [7,8]. Specific methylated DNA markers can be 

detected in the serum, plasma and peritoneal fluid of ovarian cancer patients [9]. 

Thus, cancer epigenetic studies hold great promise in revealing potent biomarkers for improved 

cancer detection [10,11]. Candidate gene and whole-genome studies have identified methylation 

signatures that may serve as biomarkers for EOC characterization including classification [7], 

progression [12] and response to therapy [13]. 

We constructed a new generation (~20 years ago) of lambda based cloning vectors [14]. These 

vectors opened new possibilities for gene cloning and analysis. Using these vectors we invented new 

approaches for construction of NotI linking and jumping libraries that have several advantages 

compared to previous techniques; they enabled efficient construction of such libraries representative 

and in plasmid form [15,16]. We experimentally confirmed that there is a direct association between 

CpG islands, NotI sites and expressed sequences in the human genome [17,18]. We constructed 

numerous linking libraries with different restriction enzymes in an attempt to generate representative 

NotI linking libraries, covering the whole human genome [19]. We generated more than 100,000 NotI 

flanking sequences and identified among them approximately 22,000 unique NotI sequences 

comprising 17 Mb information [20,21]. It was believed at this time that human genome contains only 

3100 NotI sites and we showed for the first time that there are more than 10,000 NotI sites. 

With this sequencing information we suggested to construct and to use NotI microarrays (NMA, see 

Figure 1) for comparison of normal and malignant cells [22]. Here we present our results of analysis 

using NMA of 18 HGSOC and 7 benign ovarian adenomas (BOA) and developed a set of novel 

epigenetic biomarkers for early detection and diagnosis of EOC. 

2. Results 

2.1. Analysis of Methylation Frequency Using NotI Microarrays 

Thirty five NotI markers showed frequency of methylation/deletion more or equal to 17% (see 

Figure 2 and Tables 1 and S1). Among the most affected genes were IQSEC1, NKIRAS1/RPL15, 

THRB, LRRC3B and RBSP3 (CTDSPL) that showed 33% methylation/deletion (up to 38% when not 

counting samples with “no information”). 
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Figure 1. Principal scheme of NotI microarray analysis protocol. (A) Isolation of genomic 

DNA; (B) digestion with methyl-specific rare-cutter enzyme NotI; (C) ligation of 

fragments with NotI-linker containing biotin; (D) digestion with 4-base pair recognizing 

restriction enzyme Sau3AI; (E) conjugation to microbeads containing streptavidin; 

washing; (F) amplification of DNA sequences that has been attached to microbeads.  

The standard procedures are performed: microarray hybridization, cloning, and  

sequencing analysis. 

 

Figure 2. Hybridization pattern of DNA from Epithelial ovarian cancer (EOC) and benign 

ovarian adenomas (BOA) samples on NotI-microarrays. (A) Vertically, 180 NotI sites 

arranged according to their localization on chromosome 3 (from 3p26.2 to 3p11.1 and from 

3q11.2 to 3q29). Horizontally, 25 ovarian samples (18 EOC and 7 BOA); (B) Vertically, 

35 NotI sites arranged by methylation/deletion frequency (from 33% to 17%). 
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Table 1. Methylation/deletion frequencies for 35 genes with the highest percent of changes 

in ovarian cancer. 

No. NotI-site Gene Locus 

Event frequency, (%) 

Met/Del 
Met/Del without 

no info 

1 NR1-XM13C IQSEC1 3p25.2 33 (6/18) 38 (6/16) 
2 NL1-CJ4R (C) NKIRAS1/RPL15 3p24.2 33 (6/18) 35 (6/17) 
3 NL4-BB6R (C) THRB 3p24.2 33 (6/18) 38 (6/16) 
4 NL3-CA11RS LRRC3B 3p24 33 (6/18) 35 (6/17) 
5 NLJ-003RD RBSP3(CTDSPL) 3p21.3 33 (6/18) 33 (6/18) 
6 NR1-KA8R (C) THRB 3p24.2 28 (5/18) 56 (5/9) 
7 NL1A401R (D) ITGA9 3p21.3 28 (5/18) 29 (5/17) 
8 NL3A006R (D) NBEAL2 3p21.31 28 (5/18) 33 (5/15) 
9 NL3A001R (D) GNAI2 3p21.31 28 (5/18) 28 (5/18) 

10 NL1-DE18R GATA2 3q21.3 28 (5/18) 28 (5/18) 
11 NL4-BH3R (C) GATA2 3q21.3 28 (5/18) 28 (5/18) 
12 NR1-PD1R ZIC4 3q24 28 (5/18) 31 (5/16) 
13 NL3003R (U) GORASP1/TTC21A 3p22–p21.33 22 (4/18) 24 (4/17) 
14 NR1-AN24RS ABHD5/C3orf77 3p21 22 (4/18) 22 (4/18) 
15 NR1-WE11RS CGGBP1 3p12–p11.1 22 (4/18) 24 (4/17) 
16 NL3-CI2R (C) LOC285205 3p13.12 22 (4/18) 27 (4/15) 
17 NR1-WD21R (C) NEK11/NUDT16 3q22.1 22 (4/18) 44 (4/9) 
18 NR5-IO11R (C) PAQR9 3q23 22 (4/18) 25 (4/16) 
19 NR1-AK24R BCL6 3q27 22 (4/18) 24 (4/17) 
20 NL6-FJ5R (C) LRRN1 3p26.2 17 (3/18) 17 (3/18) 
21 NR1-KJ5R (C) FBLN2 3p25.1 17 (3/18) 19 (3/16) 
22 NR1-PL22R (C) LOC285375 3p25.1 17 (3/18) 18 (3/17) 
23 NL4-BK12R (C) WNT7A 3p25 17 (3/18) 18 (3/17) 
24 NL1308R (D) MOBP 3p22.1 17 (3/18) 19 (3/16) 
25 NR1-NC7RS PPM1M 3p21.2 17 (3/18) 19 (3/16) 
26 NR1-NJ9R (C) PRICKLE2 3p14.1 17 (3/18) 18 (3/17) 
27 NL1-BA6R FOXP1 3p14.1 17 (3/18) 17 (3/18) 
28 NL6-F020R (C) DCBLD2 3q12.1 17 (3/18) 19 (3/16) 
29 NL1-GK21R (C) ROPN1/KALRN 3q13.3 17 (3/18) 21 (3/14) 
30 NL1290R (D) CHST13 3q21.3 17 (3/18) 17 (3/18) 
31 NL2A230R ABTB1/PODXL2 3q21 17 (3/18) 17 (3/18) 
32 NL4-DJ11RS TRH 3q13.3–q21 17 (3/18) 18 (3/17) 
33 NL1A079R (D) EPHB1 3q21–q23 17 (3/18) 19 (3/16) 
34 NL1-FK10R (C) PPP2R3A 3q22.1 17 (3/18) 21 (3/14) 
35 NR1-NH1R (C) FGF12 3q28 17 (3/18) 18 (3/17) 

To prove the results of NMA hybridizations, several samples were sequenced. For genes LRRC3B 

(No. 12 and 13) and THRB (No. 9 and 10) were selected two samples and both of them were found 

methylated. For ITGA9 three samples were selected (No. 1, 2 and 3) and only sample No. 2 was found 

unmethylated. For RBSP3 (CTDSPL) three samples were also selected (No. 14, 15 and 16) and as it 
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follows from the Figure 1B only one sample was found to be methylated (No. 14). Thus results of 

bisulfite sequencing confirmed the results of NMA (see Figure 3). 

Figure 3. Bisulfite sequencing of ITGA9 in EOC samples. CG-pairs containing methylated 

cytosine are shown in bold and yellow (A). Primers for bisulfite sequencing (A) are shown 

in italics below example of sequencing diagrams (B) demonstrating methylated sequence 

of ITGA9 is shown. In the two tables (C) methylated (+) and unmethylated (-) CG pairs are 

shown in eight sequenced clones for T1 and T3 samples. 

 

Eight genes showed the tendency to increase methylation/deletion frequency during ovarian cancer 

progression (stages III + IV relative to stages I + II, see Table 2).  

ITGA9a ovarian T1 and T3 
A 
CCCTGGGGTCCCAGCCCAGAGCGTGGGGGGAGAGCCGCTAGAGTTGTCTCCTCCGCCGC
CCAGCTAGACTCGGCTTCACTCTCTGAATCGAAAAGTAACTTGGCTCCTCTGCCTCCGG
GCGGCCGCCGCTGGCCCAGCGAGCCTCCTGAACCTCGCAGGGCCTGGAGGAGTCGGGGC
ACTGGAGCTGCACCCCTCCCCGGTTTTGGGGAACCCCTGAGGAAGGAGTATAGCCTCTC 
 
B              Not I 

 
 
C 
 
C 
T1                                                                         T3
CpG   C1   C2   C3  C4  C5   C6  C7  C8 
1 + + + + + - - - 
2 + + - + - - - - 
3 + + + + + - - - 
4 + + + + + - - - 
5 - + - + - - - - 
6 - + + + + - - - 
7 - + - - - - - - 
8 + + - - - - - - 
9 + + + + + - - - 
10 + + - + - - - - 
11 + + - + - - - - 
12 - + + - + - - - 
13 - + + - + - - - 
14 - + - + - - - - 

CpG   C1   C2   C3  C4  C5   C6  C7  C8 
1 + + + + - - - - 
2 - + + + - - - - 
3 + + + + - - - - 
4 + + + - - - - - 
5 + + + + - - - - 
6 + + + + - - - - 
7 + + - + - - - - 
8 + + + + - - - - 
9 + + + - - - - - 
10 + + + - - - - - 
11 + + + - - - - - 
12 + + - + - - - - 
13 + + + + - - - - 
14 + + + + - - - - 
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Table 2. Methylation/Deletion frequency for eight genes in two groups of samples. 

Gene 
Methylation/Deletion frequency, % 

p-Parameter * 
Stages I + II Stages III + IV 

LOC285205 0 (0/7) 50 (4/8) 0.08 
CGGBP1 0 (0/7) 40 (4/10) 0.10 
EPHB1 0 (0/7) 33 (3/9) 0.21 
FOXP1 0 (0/8) 30 (3/10) 0.22 
WNT7A 0 (0/7) 30 (3/10) 0.23 

NKIRAS1/RPL15 14 (1/7) 50 (5/10) 0.30 
GATA2 13 (1/8) 40 (4/10) 0.31 

Note: * p-parameter calculated using Fisher’s exact test. 

2.2. Selection of Genes/Biomarkers for Detection and Discrimination EOC with Different  

Histological Characteristics 

For detection cancer in ovarian biopsy on all stages including early one of the most perspective set 

from analyzed genes included 8 biomarkers: NKIRAS1/RPL15, THRB, RBPS3 (CTDSPL), IQSEC1, 

NBEAL2, ZIC4, LOC285205 and FOXP1. If methylation/deletion was found in two or more of these 

biomarkers then sample would be recognized as cancer. Sensitivity of this set is equal (72 ± 11)% and 

specificity (94 ± 5)%. Early stages represented the most complicated cases for detection. 

BOA samples had no changes in five cases from seven analyzed, so in order to distinguish them 

from cancer samples it is possible to use the same set as for cancer detection. If methylation/deletion 

was found in two or more of the above-mentioned biomarkers then the sample would be recognized as 

cancer. Sensitivity of this set is equal (72 ± 11)% and specificity (71 ± 17)%. 

To distinguish between Stages I + II and Stages III + IV of ovarian cancer the most perspective set 

would include LOC285205, CGGBP1, EPHB1, and NKIRAS1/RPL15 biomarkers. If we found 

methylation/deletion in 1 or more of these biomarkers then sample would be recognized as a sample 

from III + IV stages. In this case the sensitivity of the set is equal to (80 ± 13)% and the specificity is 

(88 ± 12)%. Stages III + IV methylation/deletion assumed as positive result and Stages I + II as negative. 

Table 3. Early detection and discrimination of ovarian cancer groups with different 

histological characteristics using the set of 10 selected markers. 

Use Sets of markers 

Early detection 
NKIRAS1/RPL15, THRB, RBPS3 (CTDSPL),  

IQSEC1, NBEAL2, ZIC4, LOC285205, FOXP1 
Sp = (94 ± 5)% Sn = (72 ± 11)% p < 0.01 

Discrimination 
of BOA and EOC 

NKIRAS1/RPL15, THRB, RBPS3 (CTDSPL),  
IQSEC1, NBEAL2, ZIC4, LOC285205, FOXP1 

Sp = (71 ± 17)% Sn = (72 ± 11)% p = 0.04 

Discrimination 
of Stages I + II and Stages III + IV 

LOC285205, CGGBP1, EPHB1,  
NKIRAS1/RPL15 

Sp = (88 ± 12)% Sn = (80 ± 13)% p < 0.01 

Note: Sp, specificity; Sn, sensitivity of the set. p-Parameter shows significance of compared groups 

distinction, calculated using Fisher exact test and χ2 criteria. 
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In summary, the suggested set of 10 markers (NKIRAS1/RPL15, THRB, RBPS3 (CTDSPL), 

IQSEC1, NBEAL2, ZIC4, LOC285205, FOXP1, CGGBP1, EPHB1) would allow us to 

discriminate/diagnose the majority of EOC cases with sensitivity and specificity higher than 71%  

(up to 94%) (Tables 3 and 4). 

Table 4. Annotations for gene markers involved in ovarian cancer and their protein products. 

Gene symbol 
and location 

Protein Function Involvment in cancer 

LOC285205 
3q13.12 

This gene encodes uncharacterized 
protein with moderate expression level 
in ovary, low level in brain, bladder, 
skin, breast, and testis (according to the 
dbEST and SAGE). Rather high 
expression level of this gene is observed 
in ovarian normal tissue (*). 

Only EST and SAGE data is available. 
According to this, expression level in 
ovary, testis and some types of brain 
tumors is expected to be decreased. 

CGGBP1 
3p12–p11.1 

Binds to unmethylated 5'-d(CGG)(n)-3' 
trinucleotide repeats in the FMR1 
(fragile X mental retardation gene) 
promoter and the ribosomal RNA gene 
clusters. Regulates FMR1 gene 
expression. Regulates gene expression 
during heat shock stress response. 
CGGBP1 is known to be a cell cycle 
regulatory midbody protein required for 
normal cytokinetic abscission in normal 
human fibroblasts (*). 

Decreased mRNA level in testis cancer 
and various cell lines [23,24]. 
Microsatellite instability in ovarian cancer 
cell line [25]. The role of CGGBP1 in cell 
cycle involves multiple mechanisms: 
depletion of CGGBP1 mRNA observed in 
tumor cells leads to increase of the 
expression of cell cycle regulatory genes 
CDKN1A and GAS1; otherwise, a 
presence of CGGBP1 is required for the 
ability of cancer cells to progress cell 
cycle beyond G0/G1 [24]. 

EPHB1 
3q21–q23 

Encodes a member of attractive and 
repulsive axon-guidance molecules 
family (that includes SEMA5A, in 
addition); mediates numerous 
developmental processes, particularly in 
the nervous system. Receptor for 
members of the ephrin-B family. Binds 
to ephrin-B1, -B2 and -B3. Binding 
with the guidance cue ephrin-B2 at the 
optic chiasm midline redirect 
ventrotemporal (VT) retinal ganglion 
cells (RGCs) axons ipsilaterally. May 
be involved in cell-cell interactions in 
the nervous system (*) 

Involvement in bone cancer pain [26,27]. 
Aberrant DNA methylation and epigenetic 
inactivation in acute lymphoblastic 
leukemia [28]. Underexpressed in poorly 
differentiated colorectal cancers [29]. Loss 
of expression in gastric carcinoma 
associated with invasion and  
metastasis [30]. Up-regulation in 
rhabdomyosarcoma [31]. Transduces 
signals to activate integrin-mediated 
migration, attachment and  
angiogenesis [32]. Expression level 
alterations in ovarian cancer [33] 
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Table 4. Cont. 

Gene symbol 
and location 

Protein Function Involvment in cancer 

FOXP1 
3p14.1 

FOXP1 belongs to the family of 
Forkhead box proteins, which contain a 
common DNA-binding domain termed 
the forkhead box or winged helix 
domain. FOXP1 is involved in the 
negative regulation of tissue- and cell 
type-specific gene transcription. FOXO1 
and FOXP1 also have regulatory function 
in recombination activating gene 1 
(RAG) expression in cancer cells [34]. 

FOXP1 has been reported to be associated 
with development of various types of 
tumors. Involved in chromosomal 
translocation in MALT lymphoma [35,36] 
and in large B-cell lymphoma [37]. 
Deletions, both mRNA and protein  
down-regulation in a wide range of  
tumors [38]. LOH and copy number 
alterations in kidney cancer [39].  
Highly expressed in a subset of B-cell 
lymphoma [40]. Down-regulated in 
endometrial cancer [41]. High expression 
of tumor-specific smaller isoforms in  
B-cell lymphoma and Follicular  
lymphomas [42,43]. FOXP1 is located in 
the chromosomal region 3p14.1 reported 
to contain a number of TSGs [38,44]. 
FOXP1 is found to be significantly  
down-regulated in stage III serous ovarian 
carcinoma [45]. 

WNT7A 
3p25 

A member of the WNT gene family, 
which consists of structurally related 
genes that encode secreted signaling 
proteins. These proteins have been 
implicated in oncogenesis and in several 
developmental processes, including 
regulation of cell development and 
patterning during embryogenesis. 
WNT7A binds to the Fzd9 receptor and 
signals through ERK-5 to activate the 
tumor suppressor peroxisome 
proliferator-activated receptor γ  
(PPARγ) [46]. PAPRγ inhibits 
transformed cells growth and metastasis 
and promote epithelial differentiation and 
have demonstrated tumor prevention 
efficacy [47,48]. 

Methylation of WNT7A promoter 
modulated with DNMT1 has been 
reported for non-small cell lung  
cancer [49]. It was shown that WNT7A 
regulates tumor growth and progression in 
ovarian cancer through the  
WNT/β-catenin pathway abnormally 
activated in ovarian cancer. Abundant 
WNT7A was found in the epithelium of 
serous ovarian carcinomas, but not 
detected in borderline and benign tumors, 
normal ovary, or endometrioid  
carcinomas [50]. Down-regulation in lung 
cancer [51,52], in uterine leiomyoma [53]. 
Overexpression in thyroid cancer [54], in 
ovarian cancer, associated with poor 
prognosis [55,56]. Differential expression 
(down-regulation), associated with poor 
prognosis in head and neck squamous cell 
carcinoma [57]. 
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Table 4. Cont. 

Gene symbol 
and location 

Protein Function Involvment in cancer 

NKIRAS1/ 
RPL15 
3p24.2 

NKIRAS1: Atypical Ras-like protein that acts 
as a potent regulator of NF-κ-B activity by 
preventing the degradation of NF-κ-B 
inhibitor beta (NFKBIB). Both GTP- and 
GDP-bound forms block phosphorylation of 
NFKBIB (*) 
RPL15: A ribosomal protein that is a 
component of the large 60S subunit. The 
protein belongs to the L15E family of 
ribosomal proteins. Transcript variants 
utilizing alternative polyA signals exist. 
Interacts with IFIT1 [58]; up-regulation of 
both IFIT1 and RPL15 may lead to 
proliferative inhibition of gastric cancer  
cells [58]. 

NKIRAS1: Chromosomal aberrations and 
subsequent down-regulation in kidney 
cancer; furthermore, high grade kidney 
tumors (III and IV stage) revealed lower 
NKIRAS1 mRNA level than low grade ones 
(stage I and II) [59]. Overexpression, 
associated with poor prognosis in  
gliomas [60]. 
RPL15: Overexpression in gastric  
cancer [61]. Differentially expressed in 
cutaneous squamous cell carcinoma [62]. 

GATA2 
3q21.3 

This gene encodes a member of the GATA 
family of zinc-finger transcription factors. 
GATA proteins bind the DNA sequence 
WGATAR and, along with other cofactors, 
drive expression of target genes important in 
development of a variety of tissues [63]. For 
example, the encoded protein plays an 
essential role in regulating transcription of 
genes involved in the development and 
proliferation of hematopoietic and endocrine 
cell lineages, e.g., activation of  
beta-thyrotropin (thyroid-stimulating hormone) 
expression [64]. 

GATA2 along with ZIC4 was found to have 
methylated CpG islands in bladder  
cancer [65]. GATA2 mutations are associated 
with hereditary myelodysplastic syndrome 
and extreme risk of acute myelogenous 
leukemia development [66,67]. Considering 
murine model, GATA2 promoter methylation 
was found to be associated with 
development of breast cancer (BC); its 
down-regulation was seen for human  
BC [68]. However, GATA2 negatively 
regulates PTEN (phosphatase and tensin 
homolog deleted on chromosome 10) tumor 
suppressor by preventing nuclear 
translocation of androgen receptor and by 
androgen-independent suppression of PTEN 
transcription in breast cancer [69]. 
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Table 4. Cont. 

Gene symbol 
and location 

Protein Function Involvment in cancer 

THRB 
3p24.2 

Encodes receptor of nuclear hormone receptor 
for triiodothyronine. The thyroid hormone 
receptors (TRs) are transcription factors that 
mediate the pleiotropic activities of the 
thyroid hormone, T3. TRs regulate cell 
proliferation, differentiation, and  
apoptosis [70]. These TRs are expressed in a 
tissue-dependent and developmentally 
regulated manner. Different hormone 
receptors, while having certain extent of 
redundancy, may mediate different functions 
of thyroid hormone. THRB acts as a tumor 
suppressor and disturbances of the THRB 
gene are frequent findings in cancer [71]. 

In mouse models, a truncated THRB gene 
leads to thyroid cancer (TC); it can be  
down-regulated at least with seven miRNAs 
overexpressed in papillary TC [70]. THRB 
aberrant methylation can be found in tissue 
and plasma of BC patients [72]. THRB 
revealed a low frequency of methylation in 
prostate cancer samples [73], but high 
frequency of LOH in prostate [74,75], 
esophageal cancer [76], endocrine tumors of 
the cervix [77], head and neck cancer [78]; 
also small LOH frequencies were shown for 
NSCLC [79]. Mutation of this gene in mice 
predisposes to the development of mammary 
tumors [80]. Reduced THRB expression was 
shown for clear cell renal cell cancer 
samples which can be resulted from 
regulatory effects of THRB 5' and 3' UTRs 
on THRB protein translation [71]. 

RBPS3 
(CTDSPL) 

3p21.3 

RBSP3/CTDSPL belongs to a gene family of 
small CTD phosphatases that preferentially 
catalyzes serine-5 dephosphorylation in the 
specific sequence of the RNA polymerase II 
(Pol II) large subunit and in other proteins. 
This leads to inactivation of Pol II and 
negative regulation of transcriptional activity. 
RBSP3 is thought also to activate RB1 
(retinoblastoma 1) tumor suppressor precursor, 
that leads to cell cycle arrest at G1/S phases 
boundary. RBSP3 is TSG whose product is 
likely to be an important component of the Rb 
cycle regulation pathway. RBSP3 transcribes 
two isoforms with antitumor activity, which is 
more pronounced for the product of  
isoform B [81].  

RBSP3 showed a low expression level 
because of deletions and methylation in 
various epithelial tumors [82–86]; these 
aberrations were also found in early 
dysplastic lesions of head and neck [87], 
premalignant cervical lesions [88]. RBSP3 
gene revealed high mutability rate in various 
primary tumors and cell lines [89]; tumor 
suppressor activity revealed for lung and 
renal cancer cell lines ACC-LC5 and 
KRC/Y, in vitro and in vivo [81]; transient 
protein expression resulting in a significant 
decrease of phosphorylated RB1 level, 
which may lead to cell cycle arrest between 
G1 and S phases [81]. Acute myeloid 
leukemia reveals specific overexpression of 
mir-100 targeting RBSP3, which promotes 
cell proliferation and blocks 
granulocyte/monocyte differentiation [90]. 
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Table 4. Cont. 

Gene symbol 
and location 

Protein Function Involvment in cancer 

IQSEC1 
3p25.2 

The representative of guanine-exchange 
proteins binding to ADP-rybosylation factors. 
This protein preferentially works as a guanine 
nucleotide exchange protein for ARF6  
(ADP-ribosylation factor), a member of a 
family of small GTPases, mediating 
internalization of beta-1 integrin [91]. 
Regulates phagocytosis of monocytic 
phagocytes [92].  

The EGFR-IQSEC1-ARF6-AMAP1 
signaling pathway is essential for breast 
cancer (BC) invasion and metastasis. 
Overexpressed IQSEC1 is responsible for 
activation of ARF6 which leads to BC 
invasion and metastasis. IQSEC1, in turn, is 
activated by ligand-dependent epidermal 
growth factor receptor (EGFR) [93,94].  

NBEAL2 
3p21.31 

Encodes a BEACH/ARM/WD40 domain 
protein. Mutations in this gene are leading to 
gray platelet syndrome (a rare congenital 
bleeding disorder caused by a reduction or 
absence of alpha-granules in blood  
platelets) [95]. NBEAL2 protein is predicted 
to interact with WDFY3 (WD repeat and 
FYVE domain containing 3), which itself 
interacts with CHS1, and with DLL1 and 
JAG1 [96], known to have roles in 
hematopoiesis. 

The gene is located in close proximity to the 
LUCA and AP20 regions subject to frequent 
aberrations in various tumors, but there are 
no literature data concerning such NBEAL2 
alterations. GeneNote, EST and SAGE 
analysis reveal omnipresent expression 
character of NBEAL and allow to expect its 
probable mRNA level decreases in thymus, 
brain (various type of tumors), liver, 
pancreas, prostate cancer and leukemia (*). 

ZIC4 
3q24 

Encodes a member of the ZIC family of 
C2H2-type zinc finger proteins. Members of 
this family plays important roles during 
development, and have been associated with 
X-linked visceral heterotaxy and 
holoprosencephaly type 5; heterozygous 
deletion of ZIC4 are associated with  
Dandy-Walker cerebellum malformation 
syndrome [97].  

ZIC4 along with GATA2 was found to have 
methylated CpG islands in bladder cancer; it 
was associated with high extent of 
progression and invasive character of 
bladder tumors [65]. Zic4 along with  
Zic1-5, other members of this family, was 
shown to suppress β-catenin-mediated 
transcriptional activation within the  
Wnt/β-catenin signaling pathway (in 
Xenopus laevis). ZIC1, ZIC2, and ZIC5 were 
found to be novel molecular markers for 
meningiomas whereas ZIC4 expression is 
highly selective for medulloblastomas [98]. 
Using NotI-microarrays, ZIC4 aberrant 
methylation/ deletions were found for 
various types of tumors [84]. Consistent  
up-regulation of the neural transcription 
factors ZIC1 and ZIC4 was shown for 
desmoid tumors and other fibroproliferative 
disorders [99]. ZIC4 aberrations are 
associated with paraneoplastic neurologic 
disorders and small-cell lung  
cancer [100,101]. 

Note: asterisks (*) indicate these data were obtained from GeneCards web portal [102]. 
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3. Discussion 

In this work we used chromosome 3 specific NotI-microarrays with 180 clones containing 188 genes to 

analyze 18 HGSOC and 7 BOA samples. The main idea of the approach is that NotI enzyme cuts only 

unmethylated CpG pairs inside the recognition site of the enzyme (5'-GCGGCCGC-3') and only small 

fraction (0.1%–0.05%) of the human genome containing NotI digested fragments is labeled. The NR 

probes were prepared as described earlier (see Materials and Methods and [84,103–105]). Thus, in 

contrast to all other methods where undigested by methylation sensitive enzymes DNA fragments are 

labeled, we label only digested DNA fragments. As a consequence, our probe contains 10-fold less 

repeats, it is hotter, not very sensitive to incomplete digestion and gives less background. To confirm 

results of NMA hybridizations, several samples for four genes, namely, LRRC3B, THRB, ITGA9 and 

RBSP3 (CTDSPL) were sequenced (see Figure 3). All the genes were found to be methylated. It is 

important to note that for bisulfite sequencing we always clone PCR product and then sequence 8 

clones. Of course, we could not exclude the possibility that unmethylated clones, i.e., green in  

Figure 2, were in fact deleted. However, this issue can be considered as an advantage when search for 

TSGs is being performed: TSGs are inactivated either by methylation or deletions, or both of them, 

and we can detect these events simultaneously. If it is necessary, discrimination between these changes 

can be done using e.g., qPCR, bisulfite sequencing, and using another NR probe prepared with tumor 

DNA after amplification with Phi29 DNA polymerase. 

This study clearly demonstrated that NotI-microarrays are powerful tools to find methylated genes 

and resulted in identification of many novel genes/biomarkers that can be important for the development 

of more specific biomarker sets for early diagnosis and new approaches to therapy of EOC. 

As it was mentioned in the Introduction the major problems in HGSOC are its early diagnosis, 

discrimination between Stages I + II and Stages III + IV and absence of specific molecular markers. 

For example, ovarian cancer screening with transvaginal ultrasound (TVU) and CA125 was 

evaluated in the Prostate, Lung, Colorectal, and Ovarian (PLCO) trials. However, it was revealed that 

the predictive value of both tests was relatively low [106]. Of 39,115 women randomized to receive 

screening, 28,816 received at least 1 test. Abnormal TVU was found in 1338 (4.7%), and abnormal 

CA-125 in 402 (1.4%). Twenty-nine neoplasms were identified (26 ovarian, 2 fallopian, and 1 primary 

peritoneal neoplasm). Nine were tumors of low malignant potential and 20 were invasive. The positive 

predictive value for invasive cancer was 3.7% for an abnormal CA-125, 1.0% for an abnormal TVU, 

and 23.5% if both tests were abnormal. The authors concluded that nothing in the findings reported in 

the paper suggests a need to revise the present (1996) ovarian cancer screening guidelines of the US 

Preventive Services Task Force, which state “routine screening for ovarian cancer by ultrasound, the 

measurement of serum tumor markers, or pelvic examination is not recommended.” 

Increasing evidences indicate that epigenetic mechanisms may play a major role in the development 

of ovarian cancer [2]. Aberrant DNA methylation occurs commonly in tumors and is considered to be 

one of the earliest molecular changes in carcinogenesis [8,107–110]. Furthermore, studies have identified 

tumor-specific gene methylation in blood DNA of patients with EOC [9,111–113], indicating that 

methylation patterns in plasma DNA have potential to serve as non-invasive biomarkers of EOC. 

Thus, Caceres et al. [9] using the panel of 6 TSGs: BRCA1, RASSF1A, APC, p14ARF, p16INK4A and 

DAP-Kinase, demonstrated that promoter hypermethylation is common in ovarian cancer, including  
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stage I disease, and can be readily detected in a specific manner in serum and peritoneal fluid DNA. In 

this initial feasibility study, they observed a sensitivity of 82% and 100% specificity in serum. 

However, hypermethylation was observed in all histologic cell types, grades, and stages of ovarian 

tumor examined and moreover TSGs that were used in the study were not ovarian cancer specific. 

In the study by Melnikov et al. [114] previously developed microarray-based technique was used; 

authors evaluated differences in DNA methylation profiles in a panel of 56 genes using sections of 

serous papillary adenocarcinomas and uninvolved ovaries (n = 30) from women in a high-risk group. 

Methylation profiles were also generated for circulating DNA from blood of patients (n = 33) and 

healthy controls (n = 33). Using the most differentially methylated genes for naïve Bayesian analysis, 

they identified 10 of these profiles as potentially informative in tissues. Various combinations of these 

genes produced 69% sensitivity and 70% specificity for cancer detection as estimated under a 

stratified, fivefold cross-validation protocol. In plasma, five genes were identified as informative; their 

combination had 85% sensitivity and 61% specificity for cancer detection. These results suggest that 

differential methylation profiling in heterogeneous samples has the potential to identify components of 

a composite biomarker that may detect ovarian cancer in blood with significant accuracy. 

Ten of the most well-known methylated genes in ovarian cancer were selected in Montavon et al., 

2012 study: BRCA1, CDH1, DLEC1, EN1, GATA4, GATA5, HOXa9, HSULF1; RASSF1A and SFN. 

Although some of them showed very high frequency of methylation in HGSOC (e.g., SFN 100%) and 

HOXa9 and EN1 showed sensitivity of 98.8% and specificity of 91.7%, none of the markers after 

correction for multiple testing, gene methylation was not significantly associated with any clinico 

pathological characteristics including discrimination of Stages I + II from Stages III + IV [6]. 

It has become clear that even with the great promise of DNA methylation biomarkers in epithelial 

ovarian cancer, the identification of highly specific, sensitive and robust panels of markers and the 

standardization of analysis techniques are still required in order to improve detection, treatment and 

thus patients’ outcome [115]. 

Among 11 genes included in our set there are six genes for which no information about their 

involvement in ovarian carcinogenesis have been shown: NKIRAS1/RPL15, THRB, IQSEС1, NBEAL2 

and ZIC4 (see Table 4). However, for all 11 genes in the set it was shown involvement in some of 

cancers. In some cases it was shown only decreased expression (LOC285205, EPHB1 and RBSP3 

(CTDSPL)) and in other cases loss of heterozygosity and copy number changes (CGGBP1 and RBSP3 

(CTDSPL)) in ovarian cancer. Some other genes showed decreased expression in other cancer types, 

like EPHB1 in gastric carcinoma, NKIRAS1 in kidney cancer, THRB in many cancers, etc. FOXP1 is 

found to be significantly down-regulated in stage III serous ovarian carcinoma (see Table 4). Among 

two genes from the Table 2 not included in the set is the well-known tumor suppressor WNT7A. WNT 

(Wingless-Type Mouse mammary tumor virus Integration Site Family) growth factors have diverse 

roles in governing cell fate, proliferation, migration, polarity, and death in multicellular organisms. 

WNT7A has been demonstrated to be a TSG in lung cancer. Normally WNT7A maintains epithelial 

differentiation and inhibits growth of the transformed cell in a subset of human Non-Small Cell Lung 

Cancer (NSCLC). It was shown that WNT7A regulates tumor growth and progression in ovarian 

cancer. GATA2 is also involved in the development of bladder and breast cancer and acute 

myelogenous leukemia. Other genes were also shown to be involved in the process of carcinogenesis 

(see Table 4). Among the genes represented in the set there are genes encoding transcriptional 
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regulators (CGGBP1, GATA2), receptors (EPHB1, THRB), phosphatase (RBSP3 (CTDSPL)), proteins 

interacting with other proteins (NKIRAS1, IQSEC1, NBEAL2, ZIC4). 

These proteins are involved in different cancer-related pathways: 

EPHB1 for example participates in the Ephrin-EphR Signaling Pathway. In this pathway members 

of RAS family, MAPK, oncogene NCK1 and other genes important for cell developmental processes 

are included. Ephrin receptors make up the largest subgroup of the receptor tyrosine kinase (RTK) 

family. The protein encoded by this gene is a receptor for ephrin-B family members.  

NKIRAS1 is a potent regulator of NF-κ-B activity by preventing the degradation of NF-κ-B inhibitor 

beta (NFKBIB) by most signals, explaining why NFKBIB is more resistant to degradation. 

IQSEC1 links epidermal growth factor receptor signaling to ARF6 activation to induce breast 

cancer invasion (see Table 4).  

RBSP3 (CTDSPL) is a potential activator of the RB1 gene pathway [81]. 

At the same time little is known about function and involvement of LOC285205 and CGGBP1 

genes in carcinogenesis. Thus this novel set of markers open perspectives for further improvement in 

early detection and diagnosis of EOC. Of course, this set needs further validation and testing with new 

samples of ovarian cancer including blood samples. Also this panel should be enriched with additional 

markers from other chromosomes; we are planning to construct NMA containing 10,000–15,000 genes. 

4. Materials and Methods 

4.1. Tissue Specimens 

Eighteen paired specimens of epithelial ovarian carcinoma (all the samples were HGSOC) and 

seven cases of benign ovarian adenoma (BOA) were obtained after surgical resection of primary EOC 

or adenoma prior radiation or chemotherapy and stored in liquid nitrogen. “Normal” controls were 

obtained minimum at 2 cm distance from the tumor and confirmed histologically as normal ovarian 

epithelial cells. The diagnosis was verified by histopathology and only samples containing 70%–80% 

or more tumor cells were used in the study. The samples were collected in accordance to the guidelines 

issued by the Ethics Committee of Blokhin Cancer Research Center, Russian Academy of Medical 

Sciences (Moscow). All patients gave written informed consent that is available upon request.  

The Ethics Committee of Blokhin Cancer Research Center, Russian Academy of Medical Sciences 

specifically approved this study. The study was done in accordance with the principles outlined in the 

Declaration of Helsinki. All tumor specimens were characterized according to the International System 

of Clinico-Morphological Classification of Tumors, based on the tumor-node-metastasis (TNM) and 

staging classification of 2002 and AJCC/TNM criteria classification of 1999 [3]. 

4.2. NotI-Microarrays  

One hundred and eighty NotI linking clones from human chromosome 3 containing  

188 genes [22,116] with inserts up to 15 kb were immobilized on the glass slides in six replications. 

Plasmid DNA for immobilization on the glasses was isolated with a HiPure Plasmid Midiprep kit 

(Invitrogen) and printed on the silanized glasses at a concentration of 0.25 μg/μL with a QarrayMini 

microarrayer (Genetix, UK). DNA from E. coli was used as negative hybridization control. 
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4.3. NotI Probes and Hybridization 

Preparation of NotI representations (NotI probes, NR, see Figure 1) with special labeling procedure, 

where only sequences surrounding NotI sites were labeled (0.1%–0.05% of the total human genomic 

DNA) was done using paired normal (adjacent control) and tumor DNA essentially as described  

previously [84,103–105]. In brief, this involved DNA digestion with NotI restriction enzyme, ligation to 

NotI-linkers with biotin, digestion with Sau3A restriction enzyme, immobilization on Dynabeads  

M-280 Streptavidin “Dynal” and finally washing and ligation to DNA bound with magnetic beads  

with Sau3A-linkers. The enriched DNA was amplified by PCR using universal and linker-primers. 

PCR conditions were the following: 2 min at 95 °C, then 35 cycles of denaturation (45 s at 95 °C), 

annealing (40 s at 64 °C) and synthesis (2 min 20 s at 72 °C). Thereafter, 200–400 ng of NR was 

labelled by PCR as described above but in the presence of 1.25 nM of Cy5-dCTP (or Cy3-dCTP). This 

probe detected both deleted/amplified and methylated/unmethylated sequences. If it is necessary, 

discrimination between these changes can be done using qPCR, bisulfite sequencing, using another NR 

probe prepared with tumor DNA after amplification with Phi29 DNA polymerase, etc. It is clear from 

Figure 1 that deleted NotI sites will give no signal, the same as methylated, i.e., will be green whereas 

amplified DNA would give stronger red signal. 

Hybridization of coupled NotI samples was carried out at 42 °C for 15 h in a Lucidea Base device 

(Amersham Pharmacia Biotech) according to manufacturer’s recommendations. Microarrays were 

scanned in a GenePix 4000A. The results were processed with GenePix Pro 6.0 software (Amersham 

Pharmacia Biotech). Then data were analyzed using our program NIMAN (NotI-Microarray ANalysis, 

see [117]). 

4.4. Statistical Analysis 

Fisher’s exact test and χ2 criteria were used for analysis of methylation changes in ovarian cancer 

groups with different histological characteristics. p-Values < 0.05 were considered as statistically 

significant. All statistical procedures were performed using NIMAN [117] and BioStat software [118]. 

Sensitivity was calculated as the proportion of true positives that were correctly identified by the set. 

Specificity was calculated as the proportion of true negatives that were correctly identified by  

the set [119]. 

4.5. PCR, Cloning, Bisulfite Sequencing 

PCR, cloning, bisulfite sequencing were done as described earlier [120]. 

5. Conclusions 

We selected novel epigenetic markers including NKIRAS1/RPL15, THRB RBPS3 (CTDSPL), 

IQSEC1, NBEAL2, ZIC4, LOC285205, CGGBP1, EPHB1 and FOXP1 that allowed detection of cancer 

in ovarian biopsies on all stages with sensitivity equal to (72 ± 11)% and specificity (94 ± 5)%. This 

set allowed us to discriminate between Stages I+II and III+IV with sensitivity equal to (80 ± 13)% and 

specificity (88 ± 12)%. We will confirm this with a validation set of new EOC samples and add 

markers from other chromosomes. Among eleven genes included in our set, there are six genes for 
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which no information about their involvement in ovarian carcinogenesis have been shown: 

NKIRAS1/RPL15, THRB, IQSEC1, NBEAL2 and ZIC4. For the 5 remaining genes except FOXP1 only 

slightly relevant information was published. 
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