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Abstract: The spinal cord of a 7-week-old female Wistar rat was hemi-transected at 

thoracic position 10 with a razor blade, and changes in glial cell line-derived neurotrophic 

factor (GDNF) protein and mRNA expression levels in the spinal cord were examined. 

GDNF protein and mRNA expression levels were evaluated by enzyme immunoassay  

and reverse transcription polymerase chain reaction, respectively. Although GDNF is 

distributed in the healthy spinal cord from 150 to 400 pg/g tissue in a regionally dependent 

manner, hemi-transection (left side) of the spinal cord caused a rapid increase in GDNF 

content in the ipsilateral rostral but not in the caudal part of the spinal cord. On the other 

hand, injury-induced GDNF mRNA was distributed limitedly in both rostral and caudal 

stumps. These observations suggest the possibility that increased GDNF in the rostral  

part is responsible for the accumulation of GDNF that may be constitutively transported 

from the rostral to caudal side within the spinal cord. Although such local increase  

of endogenous GDNF protein may not be sufficient for nerve regeneration and  
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locomotor improvement, it may play a physiological role in supporting spinal neurons  

including motoneurons. 

Keywords: glial cell line-derived neurotrophic factor (GDNF); spinal cord injury; enzyme 

immunoassay (EIA) 

 

1. Introduction 

A limited regenerative response in the central nervous system (CNS) is a serious problem in 

mammals, although many experimental strategies have been employed to minimize tissue damage and 

enhance axonal growth and regeneration. In the case of spinal cord injury (SCI), the failure of axonal 

regeneration is thought to result partly from the lack of neurotrophic factors [1–3], in addition to 

expression of axonal growth-inhibiting molecules [4] and/or inflammatory reactions [5]. In particular, 

neurotrophic factors such as neurotrophins and glial cell line-derived neurotrophic factor (GDNF) have 

been reported to be beneficial for axonal regeneration when applied to the injury site of the spinal  

cord [1,6–8]. Furthermore, recent reports have shown that endogenous GDNF in the spinal cord plays 

a role in nerve regeneration and contributes to improved locomotor activity to some extent after spinal 

cord injury because nerve regeneration and locomotor activity are weakened by intraperitoneal 

administration of an anti-GDNF antibody [9]. We found that high-dose lipopolysaccharide improved 

locomotor function to a greater extent than low-dose lipopolysaccharide, consistent with expression  

of GDNF in microglia/macrophages of the injured spinal cord [2,3]. In addition, experiments  

using GDNF gene mutant mice confirmed that increase in GDNF expression levels and no reduction  

in mRNA levels of inducible nitric oxide (NO) synthase correlate with restoration of locomotor  

function [3]. These results suggest that a high degree of inflammation results in higher amelioration of 

spinal cord injury through facilitated production of GDNF and endogenous GDNF plays a critical role 

in amelioration of SCI. However, such molecular events only occur in a limited manner in the  

CNS [10], resulting in a poor regeneration and locomotor improvement that characterizes SCI. 

Investigations regarding the role of endogenous GDNF in the spinal cord following injury are 

important in determining the effects of neurotrophic factors on amelioration of the injury.  

Therefore, in the present study we examined changes in GDNF protein and mRNA expression 

levels in the spinal cord after hemi-transection and found that without affecting the expression level of 

mRNA, its translation product was increased in the rostral side from lesion site, suggesting the 

plausible possibility that constitutively transportation of GDNF protein from the rostral to caudal side 

in the spinal cord. Although, local increase of endogenous GDNF protein may not be sufficient for 

nerve regeneration and locomotor improvement, it may play a physiological role in supporting spinal 

neurons including motoneurons. 
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2. Results  

2.1. Distribution of GDNF in Intact Spinal Cord 

The detection limit of our enzyme immunoassay (EIA) system was as low as 5 pg/mL and the 

detection signal was dose-dependent below 1000 pg/mL, demonstrating that EIA was satisfactory for 

the measurement of endogenous GDNF in the injured or intact spinal cord. Furthermore, it has been 

confirmed that our EIA system is specific for GDNF among GDNF family proteins including artemin, 

neurturin, and percephin [11]. The recovery of exogenously added GDNF from the tissue homogenate 

was 76.7%, which confirmed the effectiveness of the measurement. Therefore, the values thus obtained 

by the EIA were used without correction. The intact spinal cord was dissected and cut into 9 segments 

of 5 mm length. The segments were numbered rostrocaudally from 1 to 9 (Figure 1A). GDNF content 

in each segment varied from 150 to 400 pg/g wet tissue weight (Figure 1B). The segments of the 

lumbar region (Nos. 7, 8, and 9) may contain much higher concentrations of GDNF than segments of 

other regions.  

Figure 1. Glial cell line-derived neurotrophic factor (GDNF) protein distributes 

differentially in concentration by position in the spinal cord of adult rats. (A) The spinal 

cords were dissected from normal adult rats and cut into nine segments of 5 mm length. 

Arrows indicate the rostral and caudal sides. (B) Each segment was pulse-sonicated, 

centrifuged, and the supernatant fluids were subjected to enzyme immunoassay (EIA). The 

values are represented as mean ± SE of five animals.  

 

2.2. Changes in GDNF Protein Content after SCI 

We examined GDNF content in the spinal cord after hemi-transection at T10 (Figure 2). In the 

transected side (left side), a marked increase in GDNF protein occurred in the rostral stumps that were 

adjacent or near to the injury site (segments Nos. 5 and 6) 12 h post injury (POI). The increase 

extended to more segments (Nos. 2–5) 1 day POI, and slightly reduced to 3 segments (Nos. 3–5)  

3 days POI. The GDNF content gradually decreased 3 days POI and recovered to original levels by  

7 days POI. However, no increase was observed in the caudal stumps throughout the experiments. In 
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contrast, in the uninjured side (right), GDNF levels were not significantly high in all segments 12 h 

POI; however, its levels peaked in many rostral segments (segment Nos. 2–6) 1 day POI. GDNF  

levels returned to normal levels by 3 days POI. These results clearly demonstrated that injury-induced 

increase in GDNF content was conspicuous in the rostral part, but not in the caudal part, in both the 

injured and uninjured sides of the spinal cord.  

Figure 2. Spinal cord injury (SCI) increases GDNF protein in the rostral part of the spinal cord. 

(A) The wavy line indicates the hemi-transection site at T10. Arrows indicate the rostral or 

caudal side. The spinal cords were dissected at the indicated time and divided in the middle 

into the injured (left) or non-injured (right) side. Both were cut into nine segments of 

5 mm length. (B) Each segment was pulse-sonicated, centrifuged, and the supernatant 

fluids were subjected to EIA. Values are represented as mean ± SE of 3–8 animals. Closed 

arrows on the left side indicate the transected position, and open arrows on the right side 

indicate the position corresponding to the contralateral transection site. Significance:  

* p < 0.05, ** p < 0.01, *** p < 0.001 vs. the value of corresponding segment of normal 

animals (Student’s t-test). 

 

It is likely that the non-transected side responded to the contralateral transection similarly but 

weakly and after a longer period of time [12,13]. It may be possible that the transection of half of the 

spinal cord influenced the other half by rapid gathering of macrophages/microglia to cause 

inflammation. The inflammation might stop axonal flow carrying GDNF protein from the rostral to 

caudal side, which action could result in the accumulation of GDNF at segment 6 and withdrawal of it 
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at segment 7, thus accounting for the increase and decrease in segment 6 and 7, respectively. Since the 

response caused by the inflammation may be considered to be somewhat weaker and slower than the 

response to the transection, the increase in segment 6 of the uninjured side would be smaller than that 

in the corresponding segment of the injured side. 

Figure 3. Two-point-transection model confirms a lack of GDNF transport from the caudal 

to rostral side. (A) Wavy lines indicate a complete transection site at T9 and a  

hemi-transection site at T10. Arrows indicate the rostral or caudal side. The spinal cords 

were similarly processed as described in the legend of Figure 2A. (B) Each segment was 

treated similarly as described in the legend of Figure 2B. Values are represented as  

mean ± SE of five animals. Arrows indicate the position of transection. Significance:  

* p < 0.05, ** p < 0.01, *** p < 0.001 vs. the value of corresponding segment of normal 

animals (Student’s t-test). 

 

There are several possible reasons for the injury-induced increase of GDNF only in the rostral part 

of the spinal cord: (1) de novo synthesis of GDNF, (2) accumulation of GDNF being transported from 

rostral to caudal side of the spinal cord, (3) accumulation of GDNF being retrogradely transported 

within the peripheral nerves from the skeketal muscles to the motoneurons, (4) binding of GDNF to the 

injury-evoked GFRα1, coreceptor of GDNF, (5) .supply of GDNF from the dorsal root ganglia (DRG). 

The forelimbs may compensate for acute functional loss of the hindlimbs which may require more 

de novo synthesis of GDNF in the cervical enlargement. Therefore, GDNF protein might be 

synthesized de novo in a physical activity-dependent manner. To clarify possibilities (1), (2) and (5), 

we prepared an animal model with injuries of both a complete transection at T9 and a left side  

hemi-transection at T10 (Figure 3A). We separately measured GDNF content in the left and right side 

of each segment 12 h POI. If there was injury-induced enhancement of de novo synthesis in the rostral 

side, increase in GDNF content could occur in segment 5 and 6 of the left side and segment 5 of the 
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right side, because they were rostral segments adjacent to the injury sites. The left and right segments 5 

were similarly increased, but not the left segment 6 (Figure 3B), which could be explainable by a 

possibility that GDNF transporting from rostral to caudal side within axons was accumulated at 

segments 5 by interference with its transport. Furthermore, this result clearly confirmed that GDNF 

does not accumulate in the caudal stumps, suggesting that GDNF transport from caudal to rostral part 

does not function in the spinal cord (Figure 3B). 

The possibility (5), supply of GDNF from the DRG, should be considered as a reason for the  

injury-induced rostral accumulation of GDNF. The DRG neurons project axons to relay neurons of 

specific laminae in the dorsal area of the gray matter of the spinal cord. A recent report [14] 

demonstrated that when afferent axons from the DRG reach the dorsal root entry zone of the spinal 

cord during embryonic development, they display a stereotyped pattern of T- or Y-shaped bifurcation. 

Therefore, DRG axons penetrate straightly into the dorsal root entry zone and form this bifurcation in 

the spinal cord to connect to target neurons. The anatomy of axons of DRG neurons is important to 

estimate the possibility of the present issue at hand. Hemitransection of the spinal cord might injure 

DRG neurons and consequently interfere with anterograde axonal transport of GDNF, resulting in 

accumulation of GDNF within these axons. However, it should be noted that axons of DRG neurons 

penetrate perpendicularly to the spinal cord, and orthogonally to the axons that run up and down within 

the cord. Therefore, only DRG axons in the vicinity of the hemitransection site would be injured and 

accumulate GDNF being transported within them. DRG axons apart from the injury site would 

function normally and show no change in GDNF distribution. If the axons of DRG neurons were 

injured by transection of the spinal cord, GDNF from the DRG would have accumulated around the 

injury sites in both rostral and caudal sides of all injury sites to which DRG axons project. Therefore, if 

this were the case, the two-point transection model shown in Figure 3 would have given different 

results. Assuming that injury to the axons of DRG neurons was responsible for GDNF accumulation in 

the spinal cord, then all segments both rostral and caudal to the transection sites should have contained 

a substantial level of GDNF. From these results and considerations, possibility (5) was excluded.  

However, another explanation that the neurons located in left segment 6 which synthesized GDNF 

de novo would die following double transaction injury due to progressive disruption of long axon tracts 

and extensive tissue loss might be possible. As this possibility was based on the injury-enhanced 

neuronal GDNF synthesis, we evaluated GDNF mRNA expression in the all segments including left 

segment 6 after hemi-transection.  

2.3. GDNF mRNA Expression after Spinal Cord Injury 

We evaluated GDNF mRNA expression in each segment after SCI by RT-PCR (Figure 4). In the 

transected left side, GDNF mRNA was evenly detected in both rostral and caudal stumps adjacent to 

the injury site 6 h POI onset until at least 3 days POI examination. In the non-transected right side, the 

expression was similarly detected in both rostral and caudal stumps; however, the expression was 

weaker and more transient compared with that in the left side probably because of the low severity of 

the injury. These results demonstrated a mismatch of GDNF mRNA and GDNF protein in their 

distribution after SCI. Therefore, enhanced de novo synthesis of GDNF was unlikely as a reason for 

rostral GDNF increment, because of the inconsistency between mRNA expression and GDNF protein 
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levels. Therefore, it is possible that marked increase in GDNF protein in the rostral side may be 

responsible for the accumulation of GDNF protein that is transported within the spinal cord. We did 

not provide the results on mRNA expression in the sham-operated controls because it was almost the 

same as the results for the “control (0 h after SCI)” shown in Figure 4. Namely, GDNF mRNA 

expression was weak or lacking in the sham-operated uninjured spinal cord, suggesting that the 

substantial level of GDNF protein detected in the spinal cord (Figures 1 and 2) was not largely 

responsible for de novo synthesized GDNF in the spinal cord. This possibility supports constitutive 

transport of GDNF within the spinal cord. 

Figure 4. SCI induces GDNF mRNA expression in the rostral and caudal stumps adjacent 

to the injury sites. (A) Same as described in the legend of Figure 2A. (B and C) Total RNA 

was isolated from each segment using TRIZOL Reagent (Invitrogen) according to the 

manufacturer’s instructions. All RNA samples were treated with DNase I to remove 

contaminating genomic DNA. RT-PCR was performed to assess the GDNF mRNA level 

using G3PDH mRNA as the internal control. A closed arrow in (B) indicates transection 

site of the spinal cord, and an open arrow in (C) demonstrates the corresponding position to 

the contralateral transection site.  

 

2.4. GFRα1 mRNA Expression after Spinal Cord Injury 

The injury-induced expression of GDNF receptors [15] might cause GDNF increase in the rostral 

part, enhancing binding and accumulation of GDNF in this region. We examined time course of 

regional mRNA expression of GFRα1, GDNF binding coreceptor, after hemi-transection. GFRα1 
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mRNA increased rapidly from as early as 3 h POI in almost all segments of both transected and  

non-transected sides, and the increment continued till 3 days POI. Therefore, we noticed that the 

injury-induced enhancement of GFRα1 mRNA expression occurred in extensive, not limited to the 

rostral part of the injury site, suggesting that GFRα1 was not involved in mechanisms for rostral 

GDNF accumulation.  

We expected at first that hemi-transection of the spinal cord would make a great difference between 

ipsilateral and contralateral sides. Contrary to this expectation, both sides showed a similar change, 

although response of the non-transected (right) side was somewhat weak and slow. However, the rapid 

increase of GDNF in rostral side was observed only in the transected left side. In over one day, both 

sides showed a similar GDNF distribution. It is likely that the transection of half of the spinal cord 

influences on the contralateral half by rapid gathering of macrophages/microglia to cause 

inflammation. Our present results demonstrated that injury-induced GFRα1 mRNA expression 

occurred similarly in both transected and non-transected sides as early as 3 h after the injury, 

suggesting that hemi-transection caused similar influence on the transected and non-transected side 

(Figure 5). 

Figure 5. SCI-induced GFRα1 mRNA expression in the rostral and caudal stumps. (A) As 

described in the legend of Figure 2A. (B and C) RT-PCR was performed to assess the 

GFRα1 mRNA level as described in the Figure 4 legend using G3PDH as the internal control. 

 

2.5. GDNF Immunoreactivity in Intact and Injured Spinal Cord 

Distribution of GDNF-immunoreactivity (ir) in the intact spinal cord is shown in low- and  

high-power photographs (Figure 6). GDNF-ir was observed in the cell bodies of motoneurons and in 

small cell bodies of the dorsal area. The antibody preabsorbed with peptide containing the antigen 
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sequence gave no significant signal (data not shown), demonstrating antibody specificity for GDNF. 

Our present results (Figure 4C) demonstrated that GDNF mRNA expression was low in the intact 

spinal cord when compared to the expression around the injury site, supporting the fact that GDNF 

mRNA was undetectable in motoneurons [16]. In contrast, GDNF generates signals through a receptor 

complex comprising coreceptors (GFRα1) and Ret tyrosine kinase. GFRα1 mRNA is known to be 

expressed in spinal neurons, including motoneurons [17], and widely distributed in the whole  

spinal cord. Furthermore, another molecule for signal generation, c-Ret, is also expressed in 

motoneurons [18,19]. Therefore, it is likely that GDNF-ir found in spinal cells, including motoneurons, 

was derived at least partly from GDNF synthesized elsewhere and bound to the neurons. 

Figure 6. GDNF-ir in intact and injured spinal cord. GDNF-ir in coronal sections of the 

intact (A, B, C, site around T9-10) or injured (D, rostral part to the injury site at T9-10,  

12 h post injury (POI)) spinal cord was shown in low- (A, D) and high-power photographs 

(B, C). (B) and (C) are enlargements of boxes “b” and “c” in (A), respectively. Scale bars: 

single line, 500 μm; double line, 100 μm.  

 

To obtain evidence that GDNF is transported and accumulated in the rostral side, we examined the 

distribution of GDNF-ir around the rostral stumps. As shown in Figure 5D, GDNF-ir did not show any 

obvious change in distribution and/or intensity. Therefore, we could not obtain such evidence, but 

exclude a possibility that GDNF being retrogradely transported within the peripheral nerves from the 

skeketal muscles to the motoneurons. 

A question why the GDNF-ir was less clear in the immunohistochemical analysis than the EIA may 

arise. This may be due to differences in the principle of the detection. That is, the GDNF transporting 

within the axons was thought to be biologically active and diffusible form. Such moleculesm might be 

easily extracted from the unfixed tissues, and might be released unexpectedly from the fixed tissues. 

Therefore, detection efficiency of GDNF by immunohistochemical technique might be lower than it 

was. In this point of view, EIA is reliable to quantify active and diffusible GDNF molecules. 

2.6. Injury-Induced GDNF Synthesis in Immune Cells 

Another type of GDNF-ir-positive cell was detected in both the rostral and caudal rims of the 

transection site. Most of these cells co-expressed ED-1 antigen and GDNF-ir (Figure 7), demonstrating 

that they were microglia or macrophages. This GDNF-ir expression by microglia/macrophages was 
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timely and regionally coincident with the injury-induced mRNA expression observed in both the 

rostral and caudal stumps adjacent to the injury site (Figure 4C). However, amount of GDNF 

synthesized by the immune cells was thought to be small, because the EIA for GDNF could not detect 

elevations in GDNF levels of the caudal stumps, except for segment 7 one day POI with significant 

increase (Figure 2). 

Figure 7. GDNF-ir-positive cells near the injury site are bearing ED-1 antigen. GDNF-ir 

(red color) (A, B, D) and ED-1 antigen (green color) (C, E) in sagittal sections of the 

injured spinal cord were shown in low- (A), middle- (B, C) and high-power photographs 

(D, E). It was shown that GDNF-ir-positive cells present in the rim of the injury site 

expressing ED-1 antigen, a specific marker for microglia/macrophages. The box in (A) was 

enlarged into (B) and (C). The box “d” in (B) and the box “e” in (C) were enlarged into (D) 

and (E), respectively. Scale bars: single line, 500 μm; double line, 100 μm; line with 

arrowheads, 20 μm.  

 

3. Discussion  

GDNF, which generates signals through
 
a receptor complex comprised of the coreceptors, (GFRα1) 

and c-Ret tyrosine kinase, which activate phosphoinositide 3-kinase and mitogen-activated protein 

kinase pathways to enhance cell survival, lamelopodia formation, and axonal elongation, provides 

trophic cues to midbrain dopaminergic neurons and spinal motor neurons in central nervous system 

(CNS) [16,17,20,21]. GDNF signaling
 
has also been shown to regulate other aspects of motoneuron 

development,
 
including the expression of motoneuron subtype-specific transcription factors,

 
motor 

axon projections, and muscle innervations [16,18,22–25]. Widespread expressions of GDNF in 

developing skeletal muscles are consistent with neurotrophic activity in motoneurons of the spinal  

cord [26]. Furthermore, a recent report revealed that GDNF induces BDNF gene expression, which 

suppresses apoptosis of nigrostriatal dopaminergic neurons through the transcription factor Pitx3 [27].  
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GDNF mRNA is mainly distributed in neurons in various CNS regions, including the cortex and 

spinal cord [28,29]. GDNF-ir is observed widely in the CNS of humans [30] and rodents [31]. For one 

example, Tokumine et al. [32] detected GDNF protein in the spinal cord by EIA as 74 ± 22 pg/g tissue 

weight, which is slightly lower but comparable to the values in our study, as shown in Figure 1. 

Ischemia increased GDNF levels in the spinal cord reaching two peaks [33] derived from  

a-motoneurons and astrocytes 2 h and 72 h after onset of recirculation, respectively, suggesting that 

activated astrocytes may have a role in maintaining high levels of GDNF. However, the expression of 

GDNF mRNA and protein is known to be regulated in a cell-, region- or insult-specific manner [34]. 

Therefore, the physiological roles of GDNF should be examined individual situation. 

In the present study, we examined SCI-induced changes in expression and distribution of GDNF 

protein and mRNA within the spinal cord. GDNF content rapidly increased and was regionally 

distributed in the rostral part but not the caudal part (Figure 2); however, GDNF mRNA was expressed 

only at both the rostral and caudal sites (Figure 4C). ED-1-positive cells, microglia/macrophages, were 

distributed around the rim of the injury site and expressed GDNF-ir, as shown in Figure 7. It should be 

noted that ED-1-positive cells were similarly distributed as putative GDNF mRNA-expressing cells, 

suggesting that microglia/macrophages were the major cells producing GDNF in the proximal region 

to the lesion site. Indeed, our previous quantitative analysis demonstrated that almost all of the  

GDNF-positive cells expressed ED-1 12 h or 2 days POI [2,3]. The hypothesis is supported by the fact 

that GDNF protein was not increased in the segment 6 in the spinal cord of T9/T10-level double 

transections (Figure 3). In other word, GDNF may be always transporting from the rostral to caudal 

side within the nerve tracts and accumulates in the rostral side by SCI-induced interference of 

transport. Although we did not know the physiological roles of the accumulated GDNF, such GDNF 

may contribute to neurotrophic cues such as support of survival and maintenance of function of some 

spinal neurons including motoneurons. By using GDNF heterozygous mice, we have previously 

demonstrated that deficiency of endogenous GDNF significantly compromise the function recovery 

from hemi-transection of spinal cord [3].  

Recent reports have shown that recombinant adeno-associated virus (rAAV)-derived GDNF can be 

delivered to the lumbar spinal cord through the pathways of upper motoneurons, the corticospinal 

tracts (CST), and rubrospinal tracts (RST) over considerable distances by anterograde transport [35]. 

Furthermore, it has been demonstrated that rAAV5-GDNF gene infections in the red nucleus resulted 

in GDNF-positive fibers projecting into spinal gray matter; however, cortical infections drew less 

evident staining in the spinal cord. These observations imply that GDNF is anterogradely transported 

from the rostral to caudal side, predominantly originating from the RST tracts rather than the CST 

tract, which may support our present results showing a rapid and regional accumulation of GDNF in 

the rostral side after SCI. Alternatively, retrograde axonal transport of GDNF from the myofibers to 

motoneurons in the rostral stumps may be enhanced after SCI. In fact, rAAV-derived GDNF was 

substantially expressed and distributed in a large number of myofibers, mainly in the vicinity of the 

sarcolemma after intramuscular infection of the rAVV-GDNF gene and predominantly concentrated at 

the sites of neuromuscular junctions [36], suggesting retrograde axonal transport of GDNF from 

muscle to motoneurons. In any case, GDNF accumulated in the rostral stump after SCI may participate 

as neurotrophic factors to facilitate nerve regeneration of CST and/or RST.  
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Injury-induced alterations in localization and distribution of neurotrophic factors were observed  

in the sciatic nerve [37–40]. In particular, nerve growth factor, a prototype of neurotrophins, is known 

to be retrogradely transported within the sciatic nerve from peripheral end organs/tissues to the  

dorsal root and/or sympathetic neurons as a target-derived neurotrophic factor [37,40]. The transection 

of the sciatic nerve caused a rapid and marked increase in NGF protein levels, only in the distal  

stump adjacent to the injury site within 1 day POI, and this increase occurred independent of mRNA 

expression. This was probably due to the fact that the machinery for axonal transport worked for a 

while after nerve transection and resulted in the accumulation of transporting NGF. NGF synthesis 

gradually started broadly in the distal parts of the injured sciatic nerve. NGF accumulated in the distal 

stumps was used for sprouting and extension of axons from the proximal stump. Similarly, the axonal 

flow of GDNF would gradually weaken 12 h and not likely to last more than 3 days after transection 

(Figure 2B). The transient axonal flow not followed by local production of GDNF protein may result 

in a poor nerve regeneration or insufficient locomotor improvement that characterizes SCI. In the 

peripheral nervous system, we previously examined the changes in GDNF content in the sciatic nerve 

after its transection, and found that GDNF protein transporting in the sciatic nerve may be too small to 

accumulate in the injury site; however, the injury caused a high level of de novo GDNF synthesis [11]. 

Injury-activated Schwann cells in the distal areas expressed GDNF mRNA to produce large amounts of 

GDNF protein, which were negatively regulated by interaction with axonal contact [11]. 

Information about distribution of GDNF before and after injury may be important in understanding 

the physiological roles of GDNF. Zhou et al. [9] showed that GDNF in the spinal cord may be 

involved in the mechanisms underlying nerve regeneration and recovery of locomotor activity because 

these ameliorative effects are lost by an anti-GDNF antibody. They demonstrated that GDNF protein 

was more abundant in rostral part than caudal part at 3 days after operation, but in similar level in both 

parts at 7 days by Western immunoblot. These results were well coincident with ours obtained by the 

EIA at 3 and 7 days after operation (Figure 2). However, Zhou et al. did not analyze at 12 h and 1 day 

after operation, which failed to compare with our results at those times. Eventually, their results 

obtained by Western immunoblot are well correlated with our results obtained by the EIA, supporting 

our idea that GDNF synthesized in the red nucleus and/or somatosensory cerebral cortex is 

anterogradely transported from the rostral side to caudal side within the nerve tracts in the spinal cord 

as a neurotrophic factor. Such GDNF may act on spinal neurons, including motoneurons and/or 

neurons of the red nucleus and cerebral cortex and GDNF-synthesizing neurons in an autocrine fashion. 

Therefore, injury-induced accumulation in the rostral side of GDNF may contribute to reduced 

spasticity and improved functional outcomes in SCI [41].  

4. Experimental Section 

4.1. Animals and Surgery 

Animals were handled in accordance with the Guidelines of Experimental Animal Care issued by 

the Office of the Prime Minister of Japan. All efforts were made to minimize the number of animals 

used. Female Wistar rats (7 weeks old, n = 51 animals, Nippon SLC) were anesthetized with 

pentobarbital (35 mg/kg i.p.), and the spinous process and the vertebral lamina were removed to 
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expose the whole cord at the laminectomy site. Half of the spinal cord (left side) was then transected at 

thoracic position (T) 10 with a razor blade. After surgery, the superficial back muscles were sutured 

along the midline and the skin was closed with Michel wound clips. The animals were fed for various 

periods of time and then anesthetized again. The left side or right side of the spinal cord was separately 

dissected from each animal, cut into 6 pieces of 5 mm in length and stored at −80 °C until  

subsequent analysis.  

4.2. Preparation of Tissue Samples 

Each sample was pulse-sonicated in 5% (w/v) 0.1 M Tris-HCl buffer, pH 7.6, containing 1 M NaCl, 

0.1% bovine serum albumin (BSA), 2 mM EDTA, 80 trypsin inhibitor units/L aprotinin  

(Sigma-Aldrich, St. Louis, MO, USA), and 0.02% NaN3 and centrifuged at 100,000× g for 30 min. 

The supernatant was mixed with an equal volume of chloroform to remove lipids and centrifuged  

again at 20,000× g for 30 min, following which the aqueous phase was used for the measurement of 

GDNF protein.  

4.3. Measurement of GDNF Content by Enzyme Immunoassay  

Enzyme immunoassay (EIA) was performed according to a method described previously [11]. In 

brief, anti-GDNF antiserum was prepared from rabbits immunized with recombinant GDNF (provided 

by Amgen Inc., Thousand Oaks, CA, USA), and anti-GDNF antibody was purified from the antiserum 

using a GDNF-linked column (Affi-gel 10; Bio-Rad, Hercules, CA, USA). Affinity-purified  

anti-GDNF antibody (10 mg/mL) in 0.1 M Tris-HCl buffer (pH 9.0) was coated onto the well of  

96 U-bottom multiwell plates (5 mL/well) and incubated at 25 C for 2 h. For evaluation of the 

background signal, control wells were treated with normal rabbit IgG. The wells were washed with  

0.1 M Tris-HCl buffer (pH 7.6) containing 0.4 M NaCl, 0.1% BSA, 1 mM MgCl2, and 0.02% NaN3 

(washing buffer), and non-occupied space was blocked by incubation with 100 mL/well of 1% (w/v) 

skim milk for 1 h. After washing, 30 mL of test sample or serially diluted recombinant GDNF  

was incubated in the wells for 2 h at 25 C. Then, 30 mL of affinity-purified biotinylated antibody  

(10 ng/mL) diluted in the washing buffer was incubated for 12–18 h at 4 °C. Finally, 30 mL of  

β-D-galactosidase-conjugated streptavidin was added to each well. After incubation at 25 °C for 1 h, 

bound β-D-galactosidase activity was measured by incubation with 30 mL of 30 mM  

4-methylumbelliferyl-β-D-galactoside. The intensity of fluorescence was monitored at 360 nm 

excitation and 448 nm emission (Model F-2000, Hitachi, Tokyo, Japan). The standard curve of GDNF 

was used for determination of concentrations. 

4.4. Immunohistochemical Procedures 

Rats were anesthetized and successively perfused with cold phosphate-buffered saline (PBS,  

50 mL) and cold 4% (w/v) paraformaldehyde solution prepared in 0.1 M phosphate buffer, pH 7.3  

(200 mL). In the case of injured rats, 5 mm sections of the spinal cord were cut out from the 

transection site rostrally or caudally. These segments were postfixed for 2 h in the same fixative and 

frozen in embedding compounds (Miles, Elkhart, IN, USA). Coronal sections of 20-μm thickness were 
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prepared with a cryostat (Model CM 1800, Leica, Wetzlar, Germany). For immunostaining, sections 

were rinsed in 0.1 M Tris-HCl buffer, pH 7.6, containing 0.3% (v/v) Triton X-100 (TT buffer) at 4 C 

for 1 day to render the cell membrane permeable to antibodies and incubated with anti-GDNF rabbit 

antibody (0.3 μg/mL; D-20, Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA) or anti-CD68 

antibody (ED1) to recognize the antigen of microglia/macrophages (0.5 μg/mL; Antigenix America 

Inc., Huntington Station, NY, USA) in TT buffer at 4 C for 1 day. The epitope of the antibody (D20) 

was mapped near the C-terminus of GDNF of human origin and recommended for detection of mouse, 

rat, and human GDNF. The sections were successively treated with 0.3% (v/v) H2O2 at 25 C for  

30 min to quench endogenous peroxidase activity, and 2% skim milk to minimize non-specific 

binding. They were further reacted with rhodamine-conjugated goat anti-rabbit IgG (Invitrogen, 

Carlsbad, CA, USA) and fluorescein isothiocyanate (FITC)-conjugated goat anti-mouse IgG (Invitrogen). 

Images were observed with a confocal laser microscope (LSM 510, Zeiss, Oberkochen, Germany). 

4.5. Reverse Transcription-Polymerase Chain Reaction (RT-PCR) 

RT-PCR was performed as described [3]. The specific primers used were as follows: forward primer 

5'-GAGAGGAATCGGCAGGCTGCAGCTG-3' and reverse primer 5'-CAGATACATCCACATCGTT 

TAGCGG-3' for GDNF (product size: 337 bases); forward primer 5'-CCGGGCAGTCCCGTTCATA-3' 

and reverse primer 5'-TCAGTCCCGAGTAGGCCAGGAG-3' for GNRα1 (product size: 482 bases); 

and forward primer 5'-CGGAGTCAACGGATTTGGTCGTAT-3' and reverse primer 5'-AGCCTTCT 

CCATGGTGGTGAAGAC-3' for glyceraldehyde-3-phosphate dehydrogenase (G3PDH) (product size: 

309 bases). The G3PDH gene was used as an internal control. After amplification, PCR products were 

subjected to 2% agarose gel electrophoresis and visualized by ethidium bromide staining. Images were 

captured with FLA-5100 (Fuji Film, Tokyo, Japan). 

4.6. Statistical Analyses 

Data are presented as mean ± SE. The statistical significance of the differences between the two 

groups was assessed using Student’s t-test. 

5. Conclusions  

GDNF is distributed in the spinal cord from 150 to 400 pg/g tissue in a regionally dependent 

manner. Hemi-transection of the spinal cord (right side) caused a rapid increase in GDNF content in 

the rostral but not the caudal part of the spinal cord; however, injury-induced GDNF mRNA was 

distributed evenly in both rostral and caudal stumps. Collectively, our present results suggest that 

increased GDNF in the rostral part is responsible for the accumulation of GDNF that is constitutively 

transported from the rostral to caudal side within the spinal cord, and may contribute to nerve 

regeneration and improvement of locomotor activity.  
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