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Abstract: Epstein-Barr virus (EBV) is associated with nasopharyngeal carcinoma (NPC), 

but it remains obscure whether EBV is a viral cause of, or only an accompaniment of, 

NPC. We will discuss the accumulated evidence pointing to the relationship between EBV 

infection and NPC initiation from epidemiologic, pathogenic, molecular oncogenic, and 

experimental animal studies. We believe that convincing evidence from these perspectives 

must be provided before we can ascertain the causal role of EBV infection in NPC. 

Specifically, (1) epidemiological studies should reveal EBV infection as a risk factor;  

(2) the introduction of EBV into an animal model should produce NPC; (3) in the animal 

model NPC, the main molecular event(s) or the involved signaling pathway(s) should be 

identical to that in human NPC; and (4) finally and most importantly, prevention of EBV 

infection or clearance of EBV from infected individuals must be able to reduce the 

incidence rate of NPC. 
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1. Introduction 

The viral cause of an infectious disease can be established by fulfilling Koch’s postulates as 

modified by Rivers [1], for which six criteria are required: universal presence of virus in every 

diseased host, isolation from hosts, cultivation in pure culture, production of a comparable disease by 

injecting the virus into a suitable recipient, re-isolation of the virus, and detection of a specific immune 

response to the virus. In 2003, when the new human infectious disease SARS (severe acute respiratory 

syndrome) broke out, these criteria helped to establish the causal relationship between SARS and 

SARS-associated coronavirus [2]. However, unlike infectious diseases, cancer occurrence is a complex 

and chronic process, and the association and causative relationship between virus and carcinogenesis 

was debated for a long time until viruses were verified in some cancers.  

Epstein-Barr virus (EBV) was the first virus detected within human cancer cells. In 1964, Epstein’s 

group discerned virus-like particles by electron microscopy in a cell line derived from Burkitt’s 

lymphoma [3]. During the following 20 years, significant discoveries helped to establish the 

relationship between viruses and tumors, including the recovery of hepatitis B virus (HBV) particles in 

the serum of patients with hepatitis [4]; the isolation of the human T-cell leukemia virus (HTLV-1) 

from lymphocytes of a patient with cutaneous T-cell lymphoma [5]; and identification of human 

herpesvirus 8 as the cause of Kaposi’s sarcoma [6]. However, the role of EBV in NPC initiation is far 

more difficult to be clarified. 

EBV is a member of the herpesvirus family and infects more than 90% of the world’s population [7]. 

Primary infection usually occurs in childhood and is asymptomatic in developing countries [8]. In 

western countries, EBV infection may be delayed until adolescence, usually with the occurrence of 

infectious mononucleosis [9]. EBV can exist in the human host without serious consequences for a 

lifetime. Nasopharyngeal carcinoma (NPC) is considered to be associated with EBV infection [10], but 

whether EBV plays a causal role in NPC or is only associated with its development remains 

controversial. In this article, we will discuss the relationship between EBV infection and NPC initiation. 

2. Inconsistent Epidemiologic Evidence for the Etiological Role of EBV 

Epidemiology studies provide the primary and essential evidence for the relationship between 

diseases and their causal agents. The initial link of EBV infection to NPC was discovered by 

serological analysis: antibody titers against EBV were higher in the sera of NPC patients than in sera 

from patients with Burkitt’s lymphoma [11]. Later it was found that NPC usually exhibits a high EBV 

serological profile wherever it occurs, whether in endemic or non-endemic areas [12,13]. Most NPC 

patients have high immunoglobulin A and/or IgG levels against various EBV antigens, including viral 

capsid antigen (VCA), diffused early antigen (EA-D), viral nuclear antigen 1 (EBNA1), glycoprotein 78 

(gp78), and the transcription activators Zta and Rta [12,14,15]. Elevated EBV antibody titers have 

been reported to precede the development of detectable NPC by several years [16], strengthening the 

impression that EBV might be the etiological factor of NPC. 

Even though EBV infection is ubiquitous in humans, the incidence of NPC varies with geographic 

area. NPC is rare in many parts of the world, including Europe and North America. A moderate 

incidence is found in some African and Mediterranean populations, in Inuits from Greenland and 
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Alaska, and in Malays from Singapore and Malaysia. The highest incidence occurs in the people of 

southern China and Southeast Asia, particularly in the Cantonese [17]. While emigrants from southern 

China have a lower incidence, they still retain a higher risk of NPC than western populations [18]. 

Also, the risk of NPC among Caucasians born in China or southeast Asia is higher relative to that of 

western-born Caucasians [19]. Thus, the fact of universal EBV infection but specific endemic or racial 

NPC distribution suggests that nonviral factors such as environmental carcinogens or genetics may 

play more important roles in NPC initiation than EBV infection. 

Familial clustering of NPC, which is often observed, is considered as a good model for studying 

NPC etiology. If EBV is a causal factor, those at high risk for NPC should have higher EBV antibody 

reactivities than healthy controls in the same population. Although one study showed that unaffected 

individuals from high-risk NPC family had higher anti-EBV antibody titres [20], our study did not find 

any difference in EBV serology between the unaffected family members and healthy control 

populations [21]. The reason for this discrepancy remains unknown, but it suggests that EBV might 

not be the initial factor for NPC onset. Recently, one study based on epidemiological and in vitro 

experimental data showed that smoking could result in EBV activation [22]. It is therefore believed 

that some other non-viral factors (e.g., genetic factor) are required for host cell carcinogenesis 

accompanied by EBV activation. Genome-wide linkage scans have been run on distinct series of 

families from south China, and different predisposition loci were found [23,24]. Although these data 

are not consistent, susceptibility genes or a common lifestyle might contribute to NPC given the strong 

familial aggregation.  

3. Accumulated Pathological Evidence does not Support the Hypothesis of EBV Causing NPC 

The idea of EBV involvement in NPC initiation comes in part from the observation that NPC 

tissues contain monoclonal viral episomes with identical terminus numbers [25]. Upon entry into the 

cell, the linear EBV DNA circularizes through its terminal repeats to form the intracellular episome 

and for each circularization event, the fused termini are of a unique length [26]. Unlike the length 

heterogeneity in a cell population at primary infection, identical terminal repeat values of EBV DNA 

are found in NPC samples [25]. From clonality data, it was hypothesized that NPC tumors represent 

the outgrowth of a single infected progenitor at the time of initiation [10]. However, in vitro 

experiments of EBV infection into established epithelial cell lines have shown that NPC cell lines are 

initially polyclonal, but this is rapidly followed by the predominance of a clonal pattern [27,28]. Thus, 

EBV clonality may be a consequence of a selective growth advantage displayed by specific viral 

episomes [27], arguing against the hypothesis that EBV is present prior to the clonal expansion of 

malignant cells. Furthermore, although most of samples of invasive NPC or NPC in situ are positive 

when examined by in situ hybridization for EBV-encoded RNA (EBER) [29], EBV RNA-negative 

cells are observed in every NPC biopsy specimen [30]. Only a small fraction of NPC cells contain the 

virus in the EBV-positive cell lines, and several NPC cell lines are even EBV-free [30,31].  

Relative to B lymphocytes, epithelial cells do not express the C3d/EBV receptor, which makes a 

difference for EBV infection [32]. EBV can infect NPC cells through the contact between EBV-IgA 

and the polymeric immunoglobulin receptor (PIGR) [31]. Untransformed squamous metaplastic 

epithelial cells in the nasopharyngeal mucosa are PIGR-negative, so EBV cannot infect those cells [31], 
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and EBV infection of normal nasopharyngeal cells is rare. EBV was not detected in normal 

nasopharyngeal biopsies from individuals at high risk of developing NPC, nor in normal mucosa 

adjacent to EBV-positive NPC [33]. Yet, PIGR protein is expressed in some tumor cells and salivary 

gland epithelial cells [31], which might explain why the EBV genome is less frequently detected in 

untransformed nasopharyngeal epithelial cells [34,35]. 

Among the nasopharyngeal biopsy tissues at various neoplastic stages we analyzed by PCR, 145 of 

149 cases of invasive NPC and 2 of 4 cases of in situ NPC were positive for EBV DNase, but only 2 of 

202 healthy subjects who had elevated EBV antibody levels were DNase-positive [36]. Together with 

the long latency between primary EBV infection and NPC development, these results suggest that 

EBV infection is not the first event during NPC pathogenesis. 

In one study, 22 of 24 specimens of nasopharyngeal lymphoid hyperplasia contained EBV DNA, 

but no NPC was found among the 22 individuals after five years of follow-up [37]. Considering the 

losses of chromosome 3p and 9p in normal nasopharyngeal mucosa and in low-grade dysplastic lesions 

from individuals from high-risk NPC regions [38,39], it is possible that genetically abnormal 

nasopharyngeal epithelium causes a predisposition to EBV infection originating from adjacent 

lymphoid tissues and circulating B-cells [10]. As an example, if NPC cell lines were immortalized by 

overexpression of the cellular oncogene Bmi-1, EBV could infect such cells at a higher efficiency, 

suggesting that host oncogenes could favor EBV infection [40]. 

4. EBV Might Only Assist in Promoting NPC Progression 

Studies of oncogenic mechanisms in cell lines are important for verifying information derived from 

epidemiologic observations. LMP1 is considered as the EBV oncogene because it can transform rodent 

fibroblast cell lines such as Rat-1 [41]. LMP1 produces a loss of contact inhibition in Rat-1 cells and 

causes anchorage-independent growth in both Rat-1 and BALB/c 3T3 cells, so they clone with high 

efficiency in vitro [42]. Rat-1 cells transformed by LMP1 are tumorigenic in nude mice, while cells 

without LMP1 are not [41]. The expression of LMP1 also has significant effects on epithelial cell 

growth, inducing epidermal hyperplasia when expressed in the skin of transgenic mice [43]. However, 

LMP1 does not transform epithelial cells efficiently: it is detected only in 50% of NPC cases [44]. 

Some evidence indicates that LMP1-positive NPCs are more aggressive than LMP1-negative  

tumors [44,45], and there are recent reports that LMP1 and LMP2A can induce NPC stem-like cancer 

cells and then cause high tumorigenicity and rapid cell proliferation [46,47]. Thus, LMP1 might 

contribute to NPC progression by activating various signal pathways and then regulating the 

expression of the host genes that encode proteins involved in tumor progression and invasion, such as 

p16, cyclin D1, VEGF, and MMP9 and some pro-inflammation cytokines [48–50].  

Although EBV can infect and transform B lymphocytes efficiently in vitro, epithelial infection is 

much less efficient [51]. The transformation of normal human epithelial cells by EBV depends on the 

presence of phorbol esters, which are produced by plants, and particularly by plants used for herbal 

medicines; such plants grow within the geographic area of NPC prevalence in South China [52]. The 

establishment of a cell model for EBV infection of epithelial cells that replicates the in vivo situation 

would provide important insights into the relationship of EBV and NPC. 
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5. Lack of a Convincing NPC Animal Model Induced by EBV Infection 

Animal experiments can provide direct information on the relationship between carcinogenic agents 

and carcinomas: successful examples include Mongolian gerbils infected with H. pylori for studying 

gastric carcinoma [53] and HBV transgenic mice for studying liver cancer [54]. Appropriate animal 

models play an important role in the evaluation of infectious agents in carcinogenesis.  

EBV is a human virus with a high degree of species specificity, and the study of this virus in vivo is 

difficult. There are two strategies for building animal models of EBV or EBV-like infection that  

could partly reproduce the cell/virus relationships of either symptomatic primary infection or human  

EBV-associated carcinomas: one is to challenge the animals with EBV, and the other is to study the 

virus/host relationship using the host’s resident γ-herpesviruses. 

Inoculation of severe combined immunodeficient (SCID) mice with EBV-infected B cells can result 

in viral loads and the development of malignant lymphomas [55]. But in this model system, the host 

cells have never been infected by EBV, so this model is inappropriate for testing the initiation of NPC 

by EBV infection. A humanized mouse model for EBV infection has been established. In this model, 

human T, B and natural killer cells were reconstituted and EBV could infect and grow in the B cell and 

result in B cell lymphoproliferative disorder [56]. Whether this model could be used to study EBV-NPC 

relation warrants further investigation. 

Primates are similar to humans, and three species of New World monkeys can be experimentally 

infected by EBV. For example, after inoculation with EBV at high titer, the cotton tamarin, the 

cottontop marmoset, and the owl monkey can develop an ill-defined infectious mononucleosis-like 

syndrome or multiple lymphomas [57,58]. However, these species are generally challenged by the 

intraperitoneal route (rather than the oral), meaning that the virus/cell relationship is established 

differently than that on human mucosal surfaces. Furthermore, these primate models can not establish 

a persistent EBV infection, and some of them have cross-species virus infection, suggesting they 

cannot precisely mimic the human response to EBV infection [59].  

Both murine γ-herpesvirus 68 (γHV68) and rhesus lymphocryptovirus (LCV) contain genetic 

sequences and immune controls similar to those in human EBV, so they have been used to model 

persistent B-cell infection and B-cell lymphomagenesis [60,61]. LCV epithelial cell infection of the 

esophagus and/or tongue was observed in immunosuppressed rhesus macaques, similar to EBV-induced 

epithelial cell abnormalities in AIDS [62]. However, there are no reports of LCV infection that have 

resulted in nasopharyngeal malignancy. 

6. Proposed Criteria to Confirm the Etiological Role of EBV in NPC 

To establish an etiological factor for a certain malignancy, in particularly, the etiological role of 

EBV in NPC initiation, we believe the following criteria modified from Koch’s postulates should  

be fulfilled. 

1. Epidemiological study should provide evidence of the proposed factor being an independent risk 

factor for the cancer’s incidence; 

2. Introduction of the proposed factor into animal models should produce the malignancy, 

mirroring the human disease; 
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3. In the animal-model disease, the main molecular events or the main signaling pathway(s) 

involved should be identical to those of the human malignancy; 

4. Finally and most importantly, preventing the proposed factor from entering a susceptible 

population, or clearance of the proposed factor by treatment (by vaccination in the case of EBV) 

in high-risk populations, must significantly reduce the incidence rate of the malignancy. 

Vaccines are the most effective and economical preventive approach against viral infections, and 

vaccines against cancer viruses have the potential of reducing the cancer rate. Successes in the 

development of the HBV and HPV vaccines have demonstrated this concept. The HBV vaccine has 

been used for about 20 years to prevent viral transmission to newborns and the resulting life-long 

infections [63]. The effectiveness of the HBV vaccine in reducing liver cancer will be clear 20 years 

from now. HPV vaccines provide more than 90% protection against persistent HPV infection for up to 

five years after vaccination [64].  

In order to clarify the etiological role of EBV in NPC, we believe the most convincing evidence 

should be the decline of the NPC incidence rate in endemic areas by prevention of EBV infection. In 

the 1980s, it was first reported that the immune response to purified native or recombinant gp350 

(previously termed gp340) EBV protein could protect against EBV-induced lymphoma in cottontop 

tamarins [65]. Later, a vaccinia-delivered gp350 vaccine was reported to protect infants from EBV 

infection in a clinical trial of 16 months [66]. In recent years, EBV vaccines containing different 

antigens have been developed and tested in phase I/II clinical trials [67], but no vaccine has been taken 

to advanced-stage trials. Although the recombinant gp350 vaccine could reduce 78% incidence of IM, 

it could not prevent asymptomatic EBV infection [67]. More importantly, no evidence thus far shows 

that EBV vaccines are effective in protecting animal models from NPC initiation.  

7. Conclusions 

Tumor initiation is usually a complex, multistep process involving environmental, biological, and 

genetic factors. Tumor viruses may play important roles in carcinogenesis; they might also contribute 

toward uncovering the cell growth pathways of cancer [68].  

Although the clinical serological data suggest an association of EBV with NPC, the evidence from 

mechanistic studies and animal bioassays for the role of EBV infection in NPC occurrence is weaker 

than that for the role of EBV in lymphomas. Furthermore, the fact of universal EBV infection and the 

marked geographic and racial distributions of high-incidence NPC suggest that other co-factors may 

play more important roles in NPC initiation. Future studies to fulfill our proposed criteria are needed to 

clarify the role of EBV infection in NPC initiation, which would not only solve some of the mysteries 

of EBV biology, but also provide benefits in NPC prevention and treatment. 
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