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Abstract: To test the involvement of histone deacetylases (HDACs) activity in endothelial 

lineage progression, we investigated the effects of HDAC inhibitors on endothelial 

progenitors cells (EPCs) derived from umbilical cord blood (UCB). Adherent EPCs, that 

expressed the endothelial marker proteins (PCAM-1, CD105, CD133, and VEGFR2) 

revealed by flow cytometry were treated with three HDAC inhibitors: Butyrate (BuA), 

Trichostatin A (TSA), and Valproic acid (VPA). RT-PCR assay showed that HDAC 

inhibitors down-regulated the expression of endothelial genes such as VE-cadherin, 

CD133, CXCR4 and Tie-2. Furthermore, flow cytometry analysis illustrated that HDAC 

inhibitors selectively reduce the expression of VEGFR2, CD117, VE-cadherin, and ICAM-1, 

whereas the expression of CD34 and CD45 remained unchanged, demonstrating that 

HDAC is involved in endothelial differentiation of progenitor cells. Real-Time PCR 

demonstrated that TSA down-regulated telomerase activity probably via suppression of 

hTERT expression, suggesting that HDAC inhibitor decreased cell proliferation. Cell 

motility was also decreased after treatment with HDAC inhibitors as shown by  

wound-healing assay. The balance of acethylation/deacethylation kept in control by the 

activity of HAT (histone acetyltransferases)/HDAC enzymes play an important role in 

differentiation of stem cells by regulating proliferation and endothelial lineage commitment. 
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1. Introduction 

Epigenetic changes in the genome include DNA methylation and histone modifications (acetylation, 

methylation, phosphorylation, ubiquitination, sumoylation), two mechanisms that are often tightly 

linked in the regulation of gene expression and involved in many cellular processes [1–3]. 

Differentiation of endothelial progenitor cells (EPCs) is a process controlled by histone modifications 

that permit the fine tuning of cell fate specific gene expression [4,5]. Regarding the epigenetic changes 

on pluripotent stem cells, HDACs play important roles in stem cell self-renewal status, commitment 

and differentiation assessment. HDACs can reverse epigenetic traits that characterize genes involved in 

the regulation of self-renewal or differentiation and improve embryo developmental potential [1]. 

HDAC inhibitors down-regulated Nanog expression in undifferentiated embryonic stem cells (ESCs) 

and in ESCs induced to differentiate by retinoic acid for 1 or 2 days, but HDAC inhibitors had no 

effect on Nanog expression when ESCs were induced to differentiate by retinoic acid for 3 days. This 

could be due to the fact that the Nanog expression level in fully differentiated ESCs is too low to be 

further down-regulated. These results suggest that HDAC inhibitors may promote reprogramming 

partially through activating pluripotency genes at some intermediate stages [4,6]. 

The balance of acetylation/deacetylation kept in control by the activity of HAT (histone 

acetyltransferases) and HDAC (histone deacetylases) enzymes and play an important role in 

differentiation of endothelial progenitors by regulating proliferation and endothelial lineage 

progression [5–7]. Histone deacetylases (HDACs) are cofactors for the regulation of gene 

transcription. Human HDACs are grouped into four classes: Class I HDAC (1, 2, 3 and 8), with the 

possible exception of HDAC3, are predominantly nuclear in localization. Class II HDACs (HDACs 4, 

5, 6, 7, 9 and 10) have a high degree of homology to the yeast HDAC Hda-1, are larger in size  

(120–150 kDa) compared to Class I HDACs, and are expressed in both the nucleus and cytoplasm. 

HDAC11, which shares some but not sufficient homology to both Class I and II HDACs is assigned to 

its own class, Class IV. All these classes have zinc containing catalytic domain, compared with Class III 

(sirtuins) that needs NAD as cofactor for fulfill its function [8,9]. Nonselective inhibitors of Class I 

and Class II HDACs reduce tube formation of endothelial cells in vitro, inhibit postnatal 

neovascularization in response to hypoxia, and block tumor angiogenesis [10]. 

Despite advances in uncovering the molecular basis of these epigenetic mechanisms, their role in 

cardiovascular development, homeostasis and disease, and stem cell biology remain unclear [4]. The 

isolation and characterization of endothelial progenitor cells from peripheral blood was first reported 

by Asahara et al. in 1997. As the cells differentiate, they acquire endothelial lineage markers, such as 

vascular endothelium-cadherin, PECAM-1 (CD31), von Willebrand factor, endothelial nitric oxide 

synthase (eNOS), E-selectin, and vascular endothelial growth factor receptor (VEGFR2), and 

incorporate acetylated low-density lipoprotein cholesterol [11,12]. Because mature endothelial cells 

have limited ability to regenerate damaged endothelium since these cells are terminally differentiated, 

EPCs may play a significant role in vascular repair and healing, and reduce cardiovascular events 

associated with endothelial cell loss, including thrombosis, restenosis, and hypertension [13–15]. 

Understanding the mechanism induced by histones modifications that regulates pluripotency and 

differentiation of EPCs may help stem cell research for the elaboration of new hopeful treatments for 
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various cardiovascular, neurodegenerative, autoimmune diseases, spinal cord injuries, by 

transplantation therapies of progenitor’s cells [16–18].  

The aim of this study was to investigate the role of acetylation in endothelial lineage progression 

using HDAC inhibitors and to show that this process is necessary for endothelial commitment of 

progenitor cells. 

2. Results and Discussion 

2.1. EPC Proliferation and Motility  

The telomeres of human cells are composed of tandem repeats of the sequence 5'-GGTTAG-3' and 

protect chromosomal ends from fusion events, also playing an important structural and functional role. 

Telomere maintenance mechanism is provided by a specialized enzyme called telomerase. In human 

cells, telomerase functions as a reverse transcriptase to add multiple copies of the 5'-GGTTAG-3' motif 

to the end of the G-strand of the telomere. In human somatic cells, telomere length decreases with each 

cell division event. In the majority of tumor cells (85%–90%), this enzyme is overexpressed, correlated 

with a high proliferative profile [19]. Even in normal stem cells, the level of telomerase activity is 

lower than in cancer cells [14]. 

For evaluation of proliferative potential, we measured telomerase activity of EPCs. After being 

treated with HDAC inhibitors, EPCs displayed significantly diminished levels of telomerase activity 

compared with the control, illustrating a decreasing proliferative potential (Figure 1). Furthermore we 

observed that all HDAC inhibitors modulate proliferation in a dose-dependent manner (Figure 2). Cell 

motility, evaluated by classical wound-healing assay, at 24 h revealed that all three HDAC inhibitors 

decreased the migration ability of the EPCs. At 24 h after plate scratching, EPCs migration  

ability compared to control was reduce at a rate of 75% for TSA, 83% for BuA, and 89% for VPA 

respectively (Figure 3). The effect of telomerase activity on regenerative properties of endothelial 

progenitor cells (EPCs) in neovascularization is featured by angiogenic properties, mitogenic activity, 

migratory activity, and cell survival. HDAC inhibitors down-regulated telomerase activity probably via 

suppression of hTERT expression, leading to reduced proliferative and migratory activity of EPCs [20,21]. 

Figure 1. Telomerase activity in the presence of histone deacetylases (HDAC) inhibitors. All 

three inhibitors: Butyrate (BuA) (2 mM), Valproic acid (VPA) (0.5 mM) and Trichostatin A 

(TSA) (1 µM) decreased endothelial progenitors cells (EPCs) proliferation, significantly by 

BuA and VPA .Results are represented as mean ± standard error, n = 3, * p < 0.05. 
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Figure 2. EPCs proliferation in the presence of different concentrations of HDAC 

inhibitors and at different time intervals.  

 

Figure 3. Study of EPCs migration by wound healing assay, following stimulation with 

HDAC inhibitors. Cell migration was quantified at 24 h after stimulation, by measuring the 

wounded area (in pixels) that was covered by the cells during the indicated time points  

(A, Nikon, 4×). Results are represented as mean ± standard error, n = 6, * p < 0.05, (B). 

 

 

2.2. Expression of Molecules Involved in EPCs Differentiation  

Endothelial progenitor cells were isolated and characterized from Umbilical Cord Blood (UCB), 

Wharton’s Jelly, and adult peripheral blood [11,12,22], and showed that it may express cell surface 

markers shared by hematopoietic stem cells (HSC) since endothelial and blood cells share a similar 

mesodermal origin during embryonic development. [12,22] Using monoclonal antibodies and 

fluorescence activated cell sorting (FACS) to searching for cells expressing CD34 and KDR,  

Yoder et al. 2009, included CD133 expression as a discriminating marker. Cells expressing CD34, 

KDR, and CD133 were identified from mobilized adult peripheral blood, umbilical cord blood, and 
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human fetal liver samples. Duda et al. 2007, reported that EPCs can be defined as a discrete population 

of cells expressing CD31+CD45−CD34dimCD133+, along differentiation gaining endothelial cell 

markers like CD 144, VEGFR2, and Tie-2 [23].  

Our results show that TSA down-regulates the expression of CD117, CD133, CD144, CXCR4, Tie-2, 

and VEGFR2, whereas the expression of CD45 and CD34 remained unchanged, demonstrating that 

HDAC is involved in endothelial differentiation of progenitor cells (Figures 4 and 5). The expression of 

CD144 (VE-cadherin) was significantly decreased at mRNA level and also protein as shown by flow 

cytometry. A possible mechanism related to VE-cadherin expression may be explained by the 

impossibility of transcription factors such as HoxC6 to interact with acetylated histones and activating 

the VE-cadherin promoter [24]. CXCR4, Tie-2, and VEGFR2 gene expression was significantly 

decreased by HDAC inhibitor TSA. A mechanism that could abrogate endothelial differentiation of 

progenitor cells is by reducing the expression of homeobox transcription factor (Hox) that are implicit 

in the activation of endothelial genes. Knockdown and overexpression studies revealed that HoxA9 is a 

critical regulator of postnatal neovascularization and acts as a master switch to direct expression of the 

endothelial-committed genes [24–27]. 

Figure 4. Effect of TSA (1 μM) on mRNA expression of EPCs markers. The expression of 

VE-cadherin, CD133, CXCR4, and Tie-2 mRNA was significantly decreased. Results are 

represented as mean ± standard error, n = 3, * p < 0.05. 

 

In adult, fetal and progenitor stem cells recent studies show that HDAC inhibitors are also involved 

in stem cell pluripotency, but the mechanisms are still unclear [4,28]. It seems that HDAC inhibitors 

block the interaction of certain transcription factor with the genes involved in differentiation towards a 

specific cell line. In our study we want to see which genes are down-regulated in commitment of a 

particular cell type represented by endothelial progenitor cells derived from umbilical cord blood. 

Rössig et al., shows that inhibitors of histone deacetylation downregulate the expression of endothelial 

nitric oxide synthase (eNOS) and compromise endothelial cell function and angiogenesis; also 

showing that HDAC inhibitors reduce the expression of VEGFR2, down-regulates HoxA9 expression 

and EPC formation, and blocks the formation of a vascular network using ex vivo analysis of new 

vessel growth in the allantois assay [24]. Burba et al. showed that HDAC inhibitors determine changes 

in CD34+ phenotype due to activation of different pathways involved in cell proliferation and 

clonogenicity, and in modulation of stem cells markers such as CD34, CD38, CD133 and KDR [28]. 
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Using small interfering RNAs, Mottet et al. observed that HDAC7 silencing in endothelial cells altered 

their morphology, their migration, and their capacity to form capillary tube-like structures in vitro but 

did not affect cell adhesion, proliferation, or apoptosis [29]. Let et al., showed that global deacetylation 

of histones is necessary for in vitro differentiation of endothelial progenitor cells; removal of TSA 

from medium led to a 3.7-fold increase in the of alkaline phosphatase activity [30].  

Figure 5. Flow cytometry analyses of EPCs treated with TSA (1 μM). Immunophenotype 

profile shows an inhibition of CD117 (94.3%), CD 144 (93.8%) and VEGFR2 (88.2%). 

Results are represented as mean ± standard error, n = 3, p < 0.05. 

control TSA 
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HDAC inhibitors are potent inducers of histone acetylation, a consequence of inhibition of HDAC 

activity and altering the cellular balance between HATs and HDACs, in favor of HATs [8].  

Lagger et al. 2002, demonstrate that one of the key functions of HDAC1 is to prevent the expression of 

antiproliferative genes in cycling cells such as CDK inhibitors p21 and p27. Their findings indicate 

that deacetylases are essential for unrestricted cell proliferation by repressing the expression of 

selective cell cycle inhibitors [31]. Furthermore histone deacetylases inhibitors act as anti-angiogenic 

agents altering vascular endothelial growth factor (VEGF) signaling. TSA and SAHA were shown to 

prevent human umbilical cord endothelial cells (HUVEC) from invading a type I collagen gel and 

forming capillary-like structures, inhibiting the formation of a CD31-positive capillary-like network in 

embryoid bodies and angiogenesis in the CAM assay. TSA also prevented, in a dose-response 

relationship, the sprouting of capillaries from rat aortic rings. TSA inhibited in a dose-dependent and 

reversible fashion expression of VEGF receptors, VEGFR1, VEGFR2, and neuropilin-1 [32]. Thus 

HDAC inhibitors begin to be used as anti-cancer drugs in human cells. The Butyric Acid has been 

shown to induce classical maturation and anti-tumor effects in colon cancer cell lines, including the 

inhibition of cell proliferation and the stimulation of differentiation and apoptosis. In colon tumors 

expression of several HDACs are upregulated, by deregulation of fundamental signaling pathway  

β-catenin- TCF-myc [8].  

Treatment with HDAC inhibitors have emerged as an important new class of potent  

anti-inflammatory agents in a number of cell types, including endothelial cells. For example, HDAC 

inhibitors have shown promise for the treatment of a growing number of chronic inflammatory 

diseases such as inflammatory bowel disease, systemic lupus erythematosus, and rheumatoid arthritis. 

So far the mechanism of action remains unclear but may involve modulation of NF-B transcriptional 

activity, in addition to chromatin-based mechanisms [33]. Interestingly a recent publication 

demonstrates that inhibition of HDACs increases dendritic sprouting, learning, and memory [34]. 

Elucidation of these mechanisms is expected to open new opportunities in the interface between 

chemistry and stem cell biology providing valuable tools to improve stem cell applications for tissue 

regeneration therapies. 

3. Experimental Section  

3.1. Cell Culture 

Endothelial progenitor cells derived from human umbilical cord blood were obtained by Histopaque 

(Sigma-Aldrich, St. Louis, MO, USA) density gradient centrifugation at 400× g, for 30 min at room 

temperature as previously describe [11,13]. After centrifugation, the mononuclear cells (MNCs) layer 

was harvested and washed twice in Dulbeco’s Modified Eagle’s Medium (DMEM, Sigma-Aldrich) 

supplemented with 10% fetal bovine serum (FBS). The MNCs were plated on plastic dishes coated 

with fibronectin (1 μg/cm3, BD Biosciences, San Jose, CA, USA) in endothelial differentiation 

medium (MV2, Promocell, Heidelberg, Germany), supplemented with 15% FBS, 40 ng/mL vascular 

endothelial growth factor (VEGF), 100 μg/mL endothelial cell growth supplement, 100 U/mL 

penicillin, 100 μg/mL streptomycin, and 50 μg/mL neomycin (all purchased from Sigma-Aldrich). Cell 

cultures were maintained at 37 °C with 5% CO2 and 21% O2 in a humidified atmosphere. One day 
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after plating, the non-adherent cells were discarded and fresh medium was applied. To maintain 

optimal culture conditions, medium was changed twice a week. For the proposed studies was used one 

characterized EPC line, at passages 6 and 7. For inhibition of HDACs we used 3 HDAC inhibitors: 

Butyrate (BuA, 2 mM), Trichostatin A (TSA, 1 µM), and Valproic acid (VPA, 0.5 mM)  

(Sigma-Aldrich, St. Louis, MO, USA). 

3.2. Cell Proliferation and Cytotoxicity Assay 

Cell proliferation and cytotoxicity of EPCs stimulated with HDACs inhibitors was asses using 

CellTiter 96® Non-Radioactive Cell Proliferation Assay (Promega, Madison, WI, USA) according to 

the manufacturer’s specifications. We test different concentration of HDACs inhibitors (TSA 0.3 µM,  

1 µM, 2.5 µM; VA 0.5 mM, 1 mM, 2mM; BuA 0.5 mM, 1 mM, 2 mM ) at different time interval. 

Briefly, 96 well plate with 2.500 EPCs were treated with different concentration of HDACs inhibitors 

for 24 h and 72 h. 15 µL of solution I was added in each well and incubate for 4 h, following by 

addition of solution II and incubate for another 1 h. The color intensity of formazan was determinate 

by spectrofotometry at 570 nm. 

3.3. Reverse Transcription-Polymerase Chain Reaction (RT-PCR) 

To assess the expression of endothelial genes involved in EPCs differentiation, cells grown in 

DMEM medium supplemented with 10% FBS were stimulated for 48 h with TSA (1 μM). Total RNA 

extraction was performed using GeneElute Mammalian Total RNA Miniprep Kit (Sigma-Aldrich) and 

reverse-transcription reaction was made using M-MLV polymerase (Invitrogen, Carlsbad, CA, USA); 

RT-PCR was assessed using a PCR kit (Promega, Madison, WI, USA), following manufacturer’s 

protocol. The sequences of GAPDH, CXCR4, Tie-2, VE-cadherin, and CD133 primers (Metabion 

GmbH, Martinsried, Germany) are listed in Table 1. PCR reactions were carried out in a Corbett 

Thermal Cycler (Qiagen, Hilden, Germany) with the following schedule: denaturation step at 95 °C for 

5 min, 35 cycles of amplification (denaturation at 94 °C for 45 s, annealing at 60 °C for 45 s, extension at 

72 °C for 45 s), and incubation step at 72 °C for 10 min. Synthesized DNA fragments were detected by 

1.5% agarose gel electrophoresis with ethidium bromide staining. Quantification was performed by 

densitometry using an Image Master Total Lab Software (Pharmacia Biotech, Buckinghamshire, UK). 

The experiments were done in triplicate, with controls represented by samples not stimulated with 

HDAC inhibitors. 

3.4. Real Time-PCR Quantification of Telomerase Activity 

Telomerase activity was determined using the telomerase amplification protocol assay performed 

with the TRAPeze@RT Telomerase Detection Kit (Chemicon, Temecula, CA, USA), according to the 

manufacturer’s instructions. Cells were grown to 70%–80% confluence and lyses with CHAPS buffer. 

For each reaction was used 1.5 µg protein. The real-time parameters includes 1 cycle at 30 °C, 30 min, 

1 cycle at 95 °C 2 min and 45 cycles (94 °C 15 s, 59 °C 60 s, 45 °C 10 s).  
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Table 1. Sequences of the oligonucleotide primers (Metabion, Martinsried, DE) used  

for RT-PCR. 

Gene 
GeneBank 

accession number 
Sequences of oligonucleotide primers 

Predicted 
size (pb) 

GAPDH NM_002046 
S: 5'-ACCACAGTCCATGCCATCAC-3' 
A: 5'-TCCACCACCCTGTTGCTGTA-3' 

450 

CXCR4 NM_003467 
S: 5'-GATGACAGATATATCTGTGACCGC-3' 
A: 5'-TTAGCTGGAGTGAAAACTTGAAGA-3' 

519 

Tie-2 NM_000459 
S: 5'-CATACTGGGGAAAGCAATGAAAC-3' 
A: 5'-ACCACTGTTTTTCACCTTCCAAA-3' 

281 

VE-cadherin NM_001795 
A: 5'-CTTTGCCTCCAGGCAGATAG-3' 
S: 5'-CCTTGGGATAGCAAACTCCA-3' 

283 

CD133 NM_006017 
S: 5'-CAGTCTGACCAGCGTGAAAA-3' 
A: 5'-GGCCATCCAAATCTGTCCTA-3' 

200 

3.5. Flow Cytometry 

Expression of EPCs surface molecules was assessed by flow cytometry (MoFlo FACS, Dako, 

Glostrup, Denmark) using 1 × 105 cells stained with fluorochrome-conjugated (Phycoerythrin, PE; 

Fluorescein isothiocyanate, FITC) antibodies against CD34, CD45, CD117, VEGFR2, VE-cadherin, 

and ICAM-1 (Dako). Accutase-detached cells were washed in phosphate buffered saline (1× PBS) and 

incubated for 30 min at 4 °C with either PE- or FITC-conjugated antibodies. For negative controls, the 

cells were stained with the corresponding isotype-matched IgGs (IgG1, IgG2a/b, Dako). Flow 

cytometry data were analyzed using the Summit 4.0 software (Dako). 

3.6. In vitro Wound-Healing Assay 

An equal number of cells (1 × 105) were plated in triplicates on 6-well plates. Cells were grown in 

DMEM medium with 10% FBS, until the cells reached the confluence. The monolayer of confluent 

cultures was lightly scratched with a 1000 μL pipette tip and photographed by phase-contrast 

microscopy at timed intervals for up to 24 h. The assay was performed in triplicates with controls 

represented by EPCs grown in the same culture conditions, but without HDAC inhibitors. 

Quantification was done using the AxioVision software (4.8.1 version, Carl Zeiss MicroImaging 

GmbH, Jena, Germany) by measuring the number of pixels in the wound area and calculating the 

decrease in the scratched areas. This was achieved by subtracting the number of pixels at the 24 h time 

points from the number of pixels in the corresponding wound area at the 0 h time point. 

3.7. Statistical Analysis 

Statistical analysis was performed by a one-way analysis of variance (ANOVA) using the OriginPro 

7.5 software. Differences were considered statistically significant when p < 0.05. The results are 

presented as means ± standard error (SE), where n represents the number of experiments. 
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4. Conclusions  

The discovery of epigenetic differentiation programming gave rise to new treatment strategies, such 

as the mechanism of gene silencing being reversible. Certainly, pharmacological inhibitors of Class I 

and II HDAC activity have been identified as potent inducers of growth arrest, differentiation and 

apoptosis. HDAC inhibitors are able to potentiate both stem cell differentiation and somatic cell 

reprogramming to pluripotency. This may suggest that common mechanisms are involved in opposite 

changes of the differentiation status. Elucidation of these mechanisms is expected to open new 

opportunities in the interface between chemistry and stem cell biology. 

The enzymatic activity of histone deacetylases is necessary for endothelial commitment of 

progenitor cells, HDAC inhibitors, leading to reduction of the proliferative and migratory activity of 

EPCs and reducing the expression of endothelial markers. HDAC inhibitors could prove to be valuable 

tools in improving stem cell applications for tissue regeneration therapies. 
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