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Abstract: The transcription factor NF-Y consists of the three subunits A, B and C, which 

are encoded in Arabidopsis in large gene families. The multiplicity of the genes implies 

that NF-Y may act in diverse combinations of each subunit for the transcriptional control. 

We aimed to assign a function in stress response and plant development to NF-YC subunits 

by analyzing the expression of NF-Y genes and exploitation of nf-y mutants. Among the 

subunit family, NF-YC2 showed the strongest inducibility towards oxidative stress, e.g. 

photodynamic, light, oxidative, heat and drought stress. A tobacco NF-YC homologous 

gene was found to be inducible by photooxidative stress generated by an accumulation of 

the tetrapyrrole metabolite, coproporphyrin. Despite the stress induction, an  

Arabidopsis nf-yc2 mutant and NF-YC2 overexpressors did not show phenotypical 

differences compared to wild-type seedlings in response to photooxidative stress. This can 

be explained by the compensatory potential of other members of the NF-YC family. 

However, NF-YC2 overexpression leads to an early flowering phenotype that is correlated 

with increased FLOWERING LOCUS T-transcript levels. It is proposed that NF-YC2 

functions in floral induction and is a candidate gene among the NF-Y family for the 

transcriptional activation upon oxidative stress.  
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1. Introduction 

Many promoters of eukaryotes contain the CCAAT–box motif, which is positioned between 

nucleotide –50 and –120, upstream of the transcription start site [1], and found also for multiple plant 

genes [1,2]. The CCAAT-box is recognized by the heterotrimeric transcription factor NF-Y (nuclear 

factor Y), which is also designated CCAAT-box-binding factor (CBF) or heme-activated proteins (HAP) 

2, 3 and 5 [3–5]. The NF-Y-complex consists of three subunits A, B and C, which are characterized by 

conserved protein domains: The C-terminus of NF-YA, the central region of NF-YB, and the N-terminus 

of NF-YC show sequence identities of more than 70% in a stretch of 56, 90 and 84 amino acids among 

the NF-Y subunit homologs, respectively [6]. 

NF-YB and NF-YC contain also motifs of the histone 2A (H2A) and histone 2B (H2B) subfamilies 

and form a heterodimer at the interface of the histone-fold-motif (HFM) of each subunit [7,8]. Both 

subunits build the platform for the subsequent association with the DNA-binding subunit NF-YA [9]. 

The regulatory functions of NF-Y on the CCAAT-box have been mainly investigated for mammalian 

and yeast genes [1,3,4]. Each subunit is represented by a single gene in these organisms. Specificity and 

modulation of transcription activation is expected by interaction with other down-stream trans-acting 

factors [4]. 

In contrast, the plant NF-Y subunits are encoded by large gene families [10,11]. Initially 29 

Arabidopsis thaliana genes encoding NF-YA, B or C subunits were presented [12], while subsequently 

a few additional genes were assigned to the NF-Y families comprising in total 10, 13 and 13 members 

of the NF-YA, NF-YB and NF-YC subfamilies, respectively [11]. Most of these genes are mainly 

characterized by diverse expression profiles in different tissues and during vegetative and generative 

development. The multiplicity of gene members in all three NF-Y families implies a complex role of 

plant NF-Y in transcriptional control. It has previously been proposed that the members of each gene 

family specifically contribute to activation of specific genes and the heterotrimeric NF-Y complex might 

act as combinatorial transcription factor. Thus, multiple genes could be regulated in space and time  

with a specific combination of different NF-Y subunits [12]. The combinatorial diversity of Arabidopsis 

NF-Y subunits was explored by interactome studies using the yeast-two-hybrid approach [13]. 

In heterogeneous NF-Y heterotrimers single subunits exhibit specific functions during transcriptional 

control, which could at least not entirely be substituted by another member of the same subunit family. 

This was demonstrated when a knock-out mutation of an individual NF-Y gene caused an obvious 

phenotype, e.g., during embryogenesis or stress adaptation. The A. thaliana mutants leafy cotyledon 1 

(lec1) and L1L (Lec 1-like) showed a defective embryonic development [14,15]. The mutant genes 

belong to the NF-YB family and are described as essential regulators during morphogenesis and 

maturation of developing embryos. The role of LEC1 was defined for desiccation tolerance of seeds. 

Ectopic expression of LEC 1 generates embryo-like structures on the leaf surface of transgenic 

Arabidopsis thaliana seedlings. Apart from this impact of NF-YB9 (LEC1) and NF-YB6  
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(LEC1-LIKE) other subunits were assigned to function in response to environmental stimuli or stress 

factors. NF-YA5 and NF-YB9 are required to control LHCB1-3 genes in response to blue light and 

abscisic acid (ABA) [16]. The photoperiodically induced flowering-time was modulated in knock-out 

mutants for NF-YB2 and NF-YB3 genes and in the nf-yc3/nf-yc4/nf-yc9 triple mutant under long day 

conditions [17,18]. It is proposed that a NF-Y complex bound to the promoter of FLOWERING LOCUS 

T (FT) is an important modulator of CONSTANS (CO)-mediated transcriptional activity of the  

FT gene [19]. 

Response to drought stress and endoplasmic reticulum (ER) stress has been reported to be mediated 

through NF-YA5 [20] and NF-YB1 [21] as well as NF-YA4, NF-YB3 and NF-YC2 [22]. Together with 

the transcription factor bZIP28, NF-Y binds to the endoplasmic reticulum stress responsive element I 

(ERSE-I) in combination with the CCAAT-box element [22]. 

Following the hypothesis that the differential expression pattern of each member of the three NF-Y 

gene families may indicate specific functions of single subunits, which cannot necessarily be replaced by 

other representatives of the same family [11], we aimed at evaluating the expression of NF-YC genes 

during adverse growth conditions, such as abiotic stress or herbicide treatments. A tobacco NF-YC gene 

was initially identified among early inducible genes upon accumulating porphyrin intermediates as a 

result of deregulated tetrapyrrole biosynthesis. Then, we intended to examine Arabidopsis genes 

homologous to this tobacco NF-YC gene. Arabidopsis T-DNA insertion mutants were selected and 

analyzed for phenotypic alterations during plant development and different oxidative stress conditions. 

2. Results  

2.1. Identification of Early Inducible Genes in Response to Photooxidative Stress Triggered by 

Accumulation of Coproporphyrin in Tobacco 

Transgenic tobacco lines expressing ectopically CPO (coproporphyrinogen oxidase) antisense RNA 

suffer from photodynamic cell death in leaf tissue [23]. CPO catalyzes the oxidative decarboxylation 

of two propionate side chains to vinyl groups of coproporphyrinogen leading to protoporphyrinogen. 

The necrotic cell death phenotype of CPO-antisense lines (Figure 1A) is explained by accumulation of 

the photoreactive CPO substrate coproporphyrinogen and the oxidized coproporphyrin. In continuation 

to the initial characterization of CPO-deficient tobacco plants we were interested to identify early 

inducible genes in response to coproporphyrin-induced cell death. We made use of a light-dose 

dependent phenotypical change of coproporphyrin-accumulating lines for the search of early inducible 

genes upon photooxidative stress. The leaf phenotype of wild-type and the CPO-antisense line #41 

grown under short day condition (6 h light/18 h dark) at 200 µmol photon m
−2

·s
−1

 differed from that of 

plants exposed to long day condition (16 h light /8 h dark) at the same light intensity of  

200 µmol photon m
−2

·s
−1

. Although, the plants already accumulate coproporphyrin under short day 

condition, leaf necrosis is not detectable. The shift from low light to a higher light dosage under the 

same light intensity led to visible cell death symptoms within 24–48 h (Figure 1A) [23,24].  
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Figure 1. Tobacco NF-YC2 is inducible early in CPO (coproporphyrinogen oxidase)-antisense 

plants. (A) CPO-antisense RNA expressing plants and control plants were grown under 

low light condition (left panels) before adult plants were transferred to high light. After 

exposure to high light, CPO-antisense plants show leaf necrosis; (B) Quantitative RT-PCR 

analysis of NtNF-YC2 transcripts of CPO antisense and SNN wild-type plants before and 

6 h after transfer from low (40 µM photon m
−2

·s
−1

) to high light intensities (400 µM 

photon m
−2

·s
−1

). 

  

(A) (B) 

To identify genes induced early under photooxidative stress conditions in the porphyrin-accumulating 

CPO-antisense tobacco plants, eight-week-old control and CPO-antisense plants (line 1/41) were grown 

under short day condition before the light exposure was extended for six additional hours and leaf 

samples were harvested for RNA extractions. Total RNA of control and wild-type plants was subjected 

to subtractive suppression hybridization. The approach resulted in the identification of, in total, 184 

cDNA sequences with differential expression pattern between CPO antisense line 1/41 and wild-type 

plants, which encode 70 different proteins (Table S1). Sixty-one percent of the cDNA sequences were 

confirmed by reverse northern blotting to be expressed with elevated levels in the CPO antisense RNA 

expressing line.  

Among the genes with increased expression in the transgenic line, NtHAP5b was identified as 

encoding the tobacco transcription factor subunit NF-YC. For consistency with the designation of  

the homologous Arabidopsis genes for the NF-Y subunits, we named this gene NtNF-YC. The induced 

NF-YC expression upon porphyrin-derived photooxidative stress was confirmed with quantitative 

reverse transcriptase polymerase chain reaction (qRT-PCR) analysis of tobacco wild-type and CPO 

antisense plants before and after transition to high light doses. The three-week-old plants were grown 

first under short day and low light condition (6 h light/18 h dark). Then control and transgenic plants 

were exposed six hours to low and high light before they were harvested for mRNA quantification 

(Figure 1B). NtNF-YC expression was induced during high light and the mRNA accumulated 4-fold 

compared to low light condition of control and CPO antisense seedlings as well as to high light-exposed 

wild-type seedlings. In conclusion, this screen enabled identification of a putative candidate gene 

encoding the C-subunit of the transcription factor NF-Y, which is inducible upon photoreactivity of 

accumulating tetrapyrrole intermediates.  
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2.2. Transcript Analysis of 36 Arabidopsis Genes Encoding NF-Y Subunits 

Taking advantage of the previous exploitation of the entire Arabidopsis genome we searched  

for NtNF-YC homologs among the members of the Arabidopsis NF-YC gene family. To benefit from 

the complete collection of the NF-Y gene families for the three subunits we aimed at the identification 

of the candidate gene among the NF-YC family that is also induced upon porphyric stress. The highest 

similarity to NtNF-YC exists among a subgroup of the NF-YC family consisting of NF-YC1, NF-YC2, 

NF-YC3, NF-YC4 and NF-YC9 (Figure 2C). These investigations for the identification of the  

NtNF-YC-homologous gene were embedded in a comprehensive analysis of the transcriptome of the 

complete set of all NF-Y genes in response to different adverse growth conditions including low 

temperature, heat, low and high light intensities and treatments of photodynamic herbicides,  

e.g., acifluorfen, norflurazon (inhibitor of carotenoid synthesis), DCMU (inhibitor of the linear 

photosynthetic electron transport chain), as well as oxidants, e.g., hydrogen peroxide. We quantified 

the transcript levels of all 36 NF-Y genes encoding the NF-YA, NF-YB and NF-YC subunits, which 

are currently known in Arabidopsis with qRT-PCR.  

Figure 2. (A) Transcript profiles of AtNF-Y genes after acifluorfen treatment and high light 

exposure. Three-week-old A. thaliana (Col-0) seedlings were exposed to either 3 h of 

500 µmol photon m
−2

·s
−1

 or treated with 50 µM acifluorfen for 3 h. The transcript levels 

were normalized to a member of the SAND gene family (At2g28390). RNA levels were 

assayed by qRT-PCR in comparison to those of control seedlings. Representatives of the 36 

Arabidopsis NF-Y genes not listed in the graph were not detectable in seedlings. Only the 

AtNF-YC2 transcript strongly accumulates after high light exposure and acifluorfen treatment; 

(B) AtNF-YC2 transcript levels after exposure to various stress conditions and after treatment 

with herbicides. The NF-YC2 RNA contents were compared in stress-exposed and control 

seedlings after normalization to transcript levels of the SAND gene. The different stress 

conditions and applications are described in Material and Methods. AtNF-YC2 shows a 

strong accumulation of RNA in response to several adverse conditions; (C) Phylogenetic tree 

of selected NF-YC proteins. Full-length amino acid sequences of Arabidopsis NF-YC 

proteins and HAP5b (NtNF-YC) of Nicotiana tabacum were used for alignment (using 

MUSCLE 3.7 and Gblocks 0.91b), phylogenetic analysis (PhyML3.0 aLRT) and tree 

rendering (TreeDyn 198.3) performed with the phylogeny resource www.phylogeny.fr. [25]. 

 

(A) 

http://www.phylogeny.fr/
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Figure 2. Cont. 

  

(B) (C) 

Table 1 surveys the results of the expression analyses and highlights those NF-Y genes which show 

a rapid and stronger change in expression (<0.5 or >2.0) (or >5.0 for drought stress) after the exposure 

to different stresses and effectors. The different stress conditions and applications are described in 

Material and Methods. Among the NF-Y genes only a few representatives of the NF-YA, NF-YB and 

NF-YC subfamilies reveal pronounced changes of their transcript levels upon application of several 

inducible stress conditions in comparison to normal growth condition. Drought stress and heat 

treatments lead to induction of more NF-Y genes, most likely because of the intensity of the stress 

(heat) and the extended stress period (drought). Among those genes with enhanced accumulation of 

mRNA content in response to stress, NF-YA1 and NF-YC2 responded more extensively with increased 

mRNA levels than other NF-Y genes.  

Table 1. Overview of AtNF-Y genes with altered expression in response to abiotic stress. 

AtNF-Y genes revealing relative expression of >2.0 (>5.0 at drought stress) or <0.5 are 

listed in combination with the determined values. Lower and upper limit of the confidence 

interval in accordance with [26] appear in parentheses. Growth conditions under stress 

treatment are described in Material and Methods.  

Stress condition 
AtNF-Y with increased expression AtNF-Y with lower expression 

AtNF-Y  relative expression AtNF-Y  relative expression 

10 mM H2O2 ATNF-YA1 5.0 (1.6–15.8) ATNF-YB7 0.3 (0.2–0.7) 

 ATNF-YC2 3.1 (1.9–5.1) ATNF-YC12 0.5 (0.4–0.7) 

20 µM Norflurazon ATNF-YA1 2.3 (1.3–3.9) ATNF-YB1 0.4 (0.2–0.7) 

 ATNF-YA10 3.1 (2.0–4.9) ATNF-YB6 0.4 (0.2–0.6) 

 ATNF-YC2 2.9 (1.7–5.1) ATNF-YC12 0.5 (0.3–0.8) 

50 µM Acifluorfen ATNF-YC2 5.8 (4.7–7.1) ATNF-YA2 0.5 (0.2–1.3) 

   ATNF-YB6 0.3 (0.3–0.4) 

   ATNF-YB7 0.2 (0.2–0.2) 

   ATNF-YC12 0.4 (0.2–0.6) 
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Table 1. Cont. 

Stress condition 
AtNF-Y with increased expression AtNF-Y with lower expression 

AtNF-Y  relative expression AtNF-Y  relative expression 

High light 500 µE ATNF-YA1 2.1 (1.1–4.0) ATNF-YC1 0.4 (0.2–0.6) 

 ATNF-YC2 4.0 (1.9–8.3) ATNF-YC4 0.1 (0.1–0.3) 

   ATNF-YC8 0.4 (0.1–1.1) 

Low light 20 µE ATNF-YC4 2.1 (1.2–3.5) ATNF-YC2 0.5 (0.4–0.7) 

   ATNF-YC13 0.4 (0.3–0.5) 

Heat stress 38 °C ATNF-YA1 4.2 (2.6–6.8) ATNF-YB7 0.3 (0.2–0.5) 

 ATNF-YA5 2.5 (1.7–3.7) ATNF-YC13 0.1 (0.0–0.1) 

 ATNF-YA7 2.3 (1.2–4.6)   

 ATNF-YB13 2.5 (1.4–4.4)   

 ATNF-YB6 3.6 (1.9–6.6)   

 ATNF-YB8 4.1 (2.7–6.3)   

 ATNF-YC10 2.1 (1.3–3.3)   

 ATNF-YC2 4.8 (2.5–9.0)   

 ATNF-YC4 9.4 (6.6–134)   

Cold stress 4 °C   ATNF-YB2 0.4 (0.3–0.5) 

   ATNF-YB3 0.2 (0.2–0.4) 

   ATNF-YB8 0.4 (0.2–0.7) 

   ATNF-YC12 0.4 (0.2–0.6) 

   ATNF-YC4 0.4 (0.2–0.6) 

Drought stress ATNF-YA1 21.7 (7.3–64.6) ATNF-YC1 0.4 (0.2–0.8) 

 ATNF-YA10 48.0 (6.7–345.6)   

 ATNF-YA3 5.9 (3.1–11.4)   

 ATNF-YA4 5.4 (3.6–8.1)   

 ATNF-YA5 9.7 (4.1–23.1)   

 ATNF-YA7 7.9 (5.4–11.5)   

 ATNF-YB1 9.0 (5.0–16.0)   

 ATNF-YB10 22.6 (8.9–57.7)   

 ATNF-YB6 57.4 (30.7–107.3)   

 ATNF-YB7 5.2 (2.8–9.5)   

 ATNF-YC10 15.2 (9.0–25.8)   

 ATNF-YC2 6.2 (4.0–9.5)   

 ATNF-YC3 7.6 (4.3–13.4)   

 ATNF-YC4 5.7 (3.3–10.2)   

In default of a coproporphyrin-accumulating Arabidopsis cpo mutant we applied acifluorfen to 

wild-type seedlings. Acifluorfen is a peroxidising herbicide that inhibits protoporphyrinogen oxidase, 

an enzyme of tetrapyrrole biosynthesis [27]. Figure 2A displays the transcript profile of all NF-Y genes 

3 h after application of 50 µM acifluorfen and in a different experiment after 3 h of high light stress. 

Among these genes ultimately only NF-YC2 accumulates six-fold higher RNA levels in response to 

acifluorfen treatment and high light stress (Figures 2A,B). Figure 2B depicts the transcript level of  

NF-YC2 after multiple stress treatments indicating the strong oxidative stress inducibility. In summary, 
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elevated NF-YC2 transcript levels often correlate with oxidative stress (H2O2, heat, drought) or photooxidative 

stress (acifluorfen, norflurazon, high light), whereas NF-YC2 mRNA amounts are slightly reduced under 

conditions which predominantly possess a reduced potential for oxidative stress (low temperature, low light). 

Among the NF-YC subfamily (Figure 2C) NF-YC2 seems to have the strongest responsiveness against 

oxidative stress conditions. Enhanced NF-YC2 expression upon porphyrins-induced photooxidative 

stress resembles the expression of NtNF-YC in CPO-antisense plants.  

2.3. An Arabidopsis nf-yc2 Mutant and NF-YC2 Overexpressor Plants upon Oxidative Stress 

Among the potential T-DNA-insertion mutant lines for NF-YC2 (SALK_11422; GABI_369E03, 

GABI_669A05) we identified only one mutant line with a T-DNA-insertion in the coding region 

(GABI_669A05). This line was designated nf-yc2. The exact T-DNA insertion site of nf-yc2 could be 

confirmed 90 base pairs upstream of the translation stop codon (Figure 3A,B), while the inserted  

T-DNA of SALK_11422 and GABI_369E03 interrupted NF-YC2 in the 5' and 3' untranslated region, 

respectively. The transcript levels of all T-DNA mutant lines were similar to wild-type seedlings (data 

not shown). But qRT-PCR revealed an increased content of the 3' part of the cDNA downstream of the 

T-DNA-insertion site which can be explained with enhanced transcriptional activity due to promoter 

activity on the T-DNA (Figure 3C). It was expected that homozygous nf-yc2 synthesizes a truncated 

protein. But the size, the amount and the stability of NF-YC2 in control plants and the homozygous  

nf-yc2 mutant could not be determined. An antibody raised against a small non-conserved peptide 

sequence of NF-YC2 did not specifically recognize a protein of the expected size in the nuclear extract or 

total extracts of Arabidopsis wild-type seedlings. Efforts to enrich the specific antibody by purification 

attempts failed. 

Seedlings of nf-yc2 and wild type exposed to different abiotic stress conditions did not show 

differences of the macroscopic phenotype. This holds true, regardless, whether mutant and control 

plants were either treated with acifluorfen or Rose Bengal as well as exposed to high light or heat 

stress. When toxic amounts of herbicides were applied to the plants, formation of necrotic tissue upon 

acifluorfen treatment or bleaching in response to applied norflurazon were quantitatively similar in 

leaves of mutant and wild-type seedlings. We derived from these experiments that an obvious 

phenotypic diversification between nf-yc2 and control seedlings could not be observed. 

Additionally, more physiological properties of nf-yc2 were examined in comparison to wild-type 

seedlings. Analyses of chlorophyll fluorescence parameters of mutant and wild-type seedlings revealed 

no significant differences in photosynthetic properties (Figure S1). Additionally, levels  

of tetrapyrrole intermediates were determined after a 36 h acifluorfen treatment. But the seedlings  

did not display significant differences in the content of tetrapyrrole intermediates (Figure S2). These 

results indicate that nf-yc2 was not more sensitive towards photooxidative stress than control seedlings. 
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Figure 3. Analysis of the Arabidopsis nf-yc2 mutant and NF-YC2 overexpressor lines:  

(A) Schematic T-DNA-insertion site in AtNF-YC2; (B) Experimental confirmation of 

homozygosity of the T-DNA-inserted allele in nf-yc2 in comparison to wild type. A PCR 

product of the endogenous NF-YC2 gene could not be generated from DNA of nf-yc2;  

(C) The content of NF-YC2 RNA in nf-yc2 and control seedlings. The content of the NF-YC2 

RNA was determined with primer pairs upstream and downstream of the T-DNA insertion 

site in NF-YC2. A T-DNA-mediated stimulation leads to accumulation of 3' transcripts in 

nf-yc2 compared to control; (D) The 35SCaMV::AtNF-YC2 transgene was detected in the 

genomic DNA of the three representative transgenic lines #21, #24 and #33 in comparison 

to the wild-type genome; (E) Immunodetection of NF-YC2: Among the primary 

transformants the lines #21, #24 and #33 were selected to examine the NF-YC2 expression. 

By means of anti-NF-YC2 antibodies the overproduction of NF-YC2 could be examined  

in plant extracts. The wild-type extract contains non-detectable amounts of NF-YC2;  

(F) Relative expression level of AtNF-YC2 in wild-type and transgenic lines. Progenies of the 

T2 generation of the three transgenic lines were subjected to semi-quantitative RT PCR. 
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In order to examine the effect of ectopic AtNF-YC2 overexpression on photooxidative stress 

response, the full-length cDNA sequence of NF-YC2 was inserted downstream of a CaMV 35S 

promoter in the pCAMBIA 3301 vector and introduced into the genome of Arabidopsis thaliana 

(Figure 3D). Selection of transformed lines with high expression of the transgene revealed lines #21, 

#24 and #33 with highly elevated NF-YC2 mRNA levels (Figure 3F). Using the anti-NF-YC2 antibody, 

the overproduced protein was immunologically detectable in total cell extracts (Figure 3E), while the 

content of the endogenous NF-YC2 remained below the detection level in total wild-type extracts. The 

selected NF-YC2 overexpressor lines were sprayed with 100 µM acifluorfen. However, no phenotypic 

differences were detectable on leaves of transgenic lines in comparison to wild-type leaves. Upon 

application of different concentrations of acifluorfen transgenic and wild-type seedlings showed 

always a similar formation of leaf necrosis after herbicide treatments. The viability of transgenic lines 

was also not elevated upon acifluorfen treatments in comparison to control seedlings after herbicide 

application (data not shown). Also the expression of the stress related APX genes (APX1, APX2 and 

APX4), which are involved in the detoxification of reactive oxygen species (ROS) [28] and are induced 

by oxidative stress [29], were neither in nf-yc2 nor in 35SCaMV::NF-YC2 significantly increased in 

relation to wild-type plants independent if acifluorfen were applied or not (data not shown).  

2.4. Characterization of Other nf-yc Mutants Related to nf-yc2 

In addition, the impact of photooxidative stress was also tested in other Arabidopsis T-DNA insertion 

mutants of the Arabidopsis NF-YC family with high sequence similarity to NF-YC2 (Figure 3). T-DNA 

insertion mutants for the family members AtNF-YC1 (GABI_004H11, SALK_86334), AtNF-YC3 

(GABI_51E10), AtNF-YC4 (SALK_32163) and AtNF-YC9 (SALK_058903) were isolated and 

homozygous lines were generated. With the exception of nf-yc9, homozygous nf-yc1, nf-yc3 and nf-yc4 

mutant plants could always be identified with the T-DNA insertion in the coding region. In these  

T-DNA insertion lines no transcript of the respective AtNF-YC gene was detected (data not shown).  

nf-yc3 (GABI_51E10) and nf-yc4 (SALK_32163) as well as nf-yc1-1 (GABI_004H11) and nf-yc1-2 

(SALK_86334) T-DNA insertion mutants neither showed phenotypically changes in response to 

treatments with acifluorfen nor to the exposure to high light. The growth of these mutants resembled 

that of wild-type and nf-yc2 seedlings.  

2.5. Modified Flowering Time of NF-YC1 and NF-YC2 Overexpressor Lines 

Apart from the transcript analysis and the assessment of phenotypic differences between mutant and 

control seedlings upon abiotic stress, NF-YC2 overexpressor lines and the T-DNA insertion mutant  

nf-yc2 were examined for induction of flowering under short and long day conditions. In parallel,  

nf-yc1-2 as well as AtNF-YC1 overexpressor lines were also tested as representatives of the NF-YC 

subfamily with high homology to NF-YC2. Genotyping of nf-yc1-2 revealed the T-DNA insertion in 

the exon region (Figure S3A). Homozygous nf-yc1-2 does not contain detectable amounts of NF-YC1 

transcripts (Figure S3B). 35SCaMV::NF-YC1 expression in transgenic Arabidopsis lines yielded a 

strong accumulation of the specific mRNA. The lines #41, #42 and #57 represent transformants with 

over-expression of NF-YC1 (Figure S3C,D).  
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Thirty-eight-day-old seedlings of the transgenic lines 35SCaMV::NF-YC1 #41, #42, #57 and 

35SCaMV::NF-YC2 #21, #24 and #33 showed a significant early flowering phenotype under long day 

condition compared to wild-type plants and nf-yc2 and nf-yc1-2. Figure 4A shows always one 

representative plant of each set of overexpressor lines. The overexpressor lines flowered at least  

16 days earlier than wild type (Figure 4B). Under short day condition all mutants and overexpressor  

lines did not significantly modulate the flowering time (Figure 4C). Flowering was set when petals 

started to be seen during flower development. As a control, co-1, a mutant of CONSTANS (co-1) 

showed a significantly delayed flowering than wild-type plants under long day condition (Figure 4B). 

In consistencies with a previous report co-1 flowered significantly earlier under short day condition 

(Figure 4C) [30] . 

Figure 4. (A) Developmental stage and flowering phenotype of Arabidopsis wild-type 

(Col-0), nf-yc2, nf-yc1-2, co-1 and representatives of transgenic lines overexpressing 

ectopically NF-YC2 or NF-YC1 38 days after germination. Expression of 35S::NF-YC1 and 

35S::NF-YC2 leads to induction of early flowering under long day condition in comparison 

to wild-type plants (B). Time period between germination and development of first visible 

petals is indicated under long day (B) or short day condition (C). 

 

(A) 

  

(B) (C) 
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2.6. Modified Expression of Genes Involved in Flowering Induction in 35SCaMV:NF-YC2 and 

35SCaMV:NF-YC1 Overexpressor Lines 

In 21-day-old mutant seedlings with modified expression of NF-YC1 and NF-YC2 we explored 

transcript levels of FLOWERING LOCUS (FT) and SUPRESSOR OF OVEREXPRESSION OF CO1 

(SOC1) [31], two genes in the photoperiodic control of flowering by qRT-PCR. Growth under long 

day condition (14 h light/10 h dark) leads to a 20-fold accumulation of FT transcripts in the earlier 

flowering periods of the 35SCaMV::NF-YC1 and 35SCaMV::NF-YC2 lines (Figure 5A). The two 

mutants nf-yc1-2 and nf-yc2 also showed elevated FT RNA levels, which do not correlate with a 

significant variation in flowering time in comparison to wild-type properties. As control co-1 contained 

lower FT mRNA levels under long day condition, which correlate with the late flowering phenotype 

(Figure 5A). Short day exposure (10 h light/14 h dark) of the NF-YC1 and NF-YC2 overexpressor  

lines did not result in modified expression of FT (Figure 5B). The SOC1 transcript levels were not 

modulated under long or short day condition in overexpressor plants and T-DNA insertion mutants in 

comparison to wild-type plants (Figure 5A,B). 

Figure 5. Relative expression profiles of FLOWERING LOCUS T (FT) and SUPRESSOR 

OF CONSTANS1 (SOC1) in Arabidopsis wild-type (Col-0), nf-yc2, nf-yc1-2 and a 

representative line each of NF-YC2 and NF-YC1 overexpressor plants. RNA was isolated 

in plants grown under long day (A) and short day condition (B). The leaf material was 

harvested before the expected induction of flowering. Quantitative RT-PCR revealed 

increased FT RNA contents in NF-YC2 and NF-YC1 overexpressing lines relative to  

wild-type RNA. In each RNA sample FT and SOC1 RNA were normalized to constitutive 

expression of SAND (At2g28390). 
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3. Discussion 

Among the members of the Arabidopsis NF-YC family, only NF-YC2 shows an induced expression 

under oxidative stress conditions and is a candidate for the transcriptional activation in response  

to oxidative stress. Besides its inducibility upon several oxidative stress conditions, AtNF-YC2 

expression was drastically enhanced after acifluorfen treatment. The inactivation of protoporphyrinogen 

oxidase leads to accumulation of the photoreactive protoporphyrinogen, which, upon light exposure, is 

autooxidized to protoporphyrin and generates reactive oxygen species. The photodynamic stress generated 

by acifluorfen treatment resembles the photosensitization of tobacco CPO-antisense RNA-expressing 

plants under high light conditions [23,24]. Furthermore, AtNF-YC2 shares the responsiveness to 

photooxidative stress with the tobacco homologous NtNF-YC gene (Figure 1). The tobacco NF-YC 

subunit belongs to the same phylogenetic subclade as the A. thaliana proteins NF-YC1, 2, 3, 4 and 9 

(Figure 2C), but among the Arabidopsis NF-YC subfamily NF-YC2 does not show the highest 

similarity to NtNF-YC. 

Porphyrin-accumulating transgenic plants as well as acifluorfen-treated plants trigger a necrotic cell 

death phenotype indicating a mechanism that integrates accumulation of photooxidative stress during a 

time period of light exposure. It is suggested that the reactive oxygen species generated during these 

photodynamic processes might induce the NF-YC2 expression. The elucidation of additional roles of 

both homologous representatives of NF-YC subunits in both plant species requires further investigations. 

Apart from the stress-induced NtNF-YC it remains also elusive, how many additional genes belong to the 

NF-YC family in Nicotiana tabacum.  

Despite of the clear induction pattern of AtNF-YC2 and its tobacco NF-YC homolog, the Arabidopsis 

nf-yc2 mutant and the NF-YC2 overexpressor seedlings do not show phenotypic modulation in their 

response to (photo)oxidative stress. Derived from the expression data nf-yc2 mutants can most likely 

still express a truncated protein which lacks part of the transcription activation domain of NF-YC  

but still possesses the histone-fold motif. It is not excluded that the truncated NF-YC2 still contributes 

to the assembly of intact NF-YC heterotrimers. But also NF-YC2 overexpressors did not show a 

positive or adverse effect upon exposure to oxidative stress. These missing phenotypical alterations in 

response to oxidative stress are likely explained with the redundancy among NF-YC subunits. When 

expression of one NF-YC gene is depleted, another member of the family might compensate the 

deficiency. The compensatory capacities among transcription factor families have been proposed in the 

literature [32]. Neither mutants for NF-YC1, NF-YC3 and NF-YC4 nor nf-yc1/nf-yc2 double mutants 

(data not shown) or NF-YC1 overexpressor mutants showed an impaired response upon or increased 

sensitivity to oxidative stress. 

Instead of phenotypical changes during oxidative stress, NF-YC2 and NF-YC1 overexpressors 

displayed early flowering during long day condition (Figure 4). This is correlative with the increased FT 

expression in the overexpressor lines (Figure 5). It is suggested that NF-YC2 and NF-YC1 contribute to 

the transcriptional control of FT. Along these lines co-1 mutants show an extended flowering time during 

long day condition which correlates with strong reduction of FT expression (Figures 4 and 5) [30]. 

Day length dependent flowering in Arabidopsis is predominantly regulated by two transcription 

factors CO and FT. Under long day condition CO activates transcription of FT in the leaves, whereas 

the FT protein is transported as phloem mobile flowering signal to the shoot apex. In the apical shoot 
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meristem, FT together and another transcription factor FLOWERING LOCUS D (FD) are responsible 

for induction of SOC1 and APETALA 1 (AP1) encoding two major regulators of the conversion into 

the inflorescence meristem [33].  

The current model of transcriptional control of FT includes the function of CO as major regulator 

via a specific cis element inside the FT promoter, also described as CONSTANS responsive element 

(CORE) [19]. The Arabidopsis NF-Y complex is assumed to act as modulator of the CO-mediated 

transcription activation of FT. As a potential recruitment site a CCAAT-box inside the FT promoter 

was hypothesized [17], which is not responsible for the transcription activation by CO [19]. 

Nevertheless diverse NF-Y proteins physically interact with CO and other representatives of the  

CO-like family [34,35].Therefore, both transcription factors, CO and NF-Y, are suggested to mutually 

influence each other in their function on the FT-promoter.  

The exact molecular function of NF-Y proteins during the day length-dependent flowering induction 

remains still unclear. Down-stream contribution of NF-Ys in other flower-inducing pathways are not 

excluded. In this context it is worth to be mentioned that gibberellins (GAs) play an important role 

during the conversion of vegetative to floral tissue at the apical shoot meristem. GAs are embedded in 

different pathways influencing flower induction in Arabidopsis [36]. On the one hand GAs promote 

flowering independent from the CO/FT-mediated regulatory mechanism under short day conditions in 

a non-photoperiodic manner [37]. On the other hand GA-mediated effects on flowering time can be 

observed under short and long day conditions [38]. Moreover, a GA-dependent mechanism regulating 

the expression of FT cannot be excluded [36], especially due to the fact that GAs application can result 

in increased FT transcript levels and early flowering under long day conditions in Arabidopsis [39]. 

The physiological relevance of NF-Y during photoperiodic flower induction became obvious by 

investigation of several nf-y mutants showing modified flowering time. This clear phenotype can be 

contributed to the mutants nf-yb2 and nf-yb3 as well as the nf-yb2/b3 double and nf-yc3/c4/c9 triple 

mutants [17,18]. While the deficit of one or several of the above mentioned NF-Y subunits leads to a 

delayed flowering phenotype under long day conditions, overexpressing of NF-YB2 or NF-YB3 yielded 

in an early flowering phenotype under identical conditions. On the other hand no effect can be 

observed in these overexpressor lines in short day light periods [17]. 

The early flowering phenotypes of both NF-YC2 and NF-YC1-overexpressing mutants underline a 

similar function of NF-YC2 and NF-YC1 in day length depending floral induction. Similar to NF-YC3, 

NF-YC4 and NF-YC9, single knock-out mutation of NF-YC2 or NF-YC1 did not lead to phenotypical 

changes in flower induction. While the effect of NF-YC3, C4 and C9 on flower induction could only be 

observed by simultaneous knock out of all three subunits in the nf-yc3/nf-yc4/nf-yc9 triple mutant [18], 

nf-yc1/nf-yc2 double mutant plants did not show a similar phenotype (data not shown).  

4. Material and Methods 

4.1. Growth of Plants 

Arabidopsis thaliana plants grew for 14, 21 or 34 days under light/dark conditions (120 µM 

photons m
−2

·s
−1

, 12 h light/ 12 h dark at 23 °C) before they were exposed to high light (HL—500 µM 

photons m
−2

·s
−1

), low light (LL—50 µM photons m
−2

·s
−1

), increased (38 °C) or low temperature (4 °C) 
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respectively. Alternatively, plants were treated with 50 µM acifluorfen, 10 mM DCMU, 10 mM H2O2 

or 20 µM norflurazon by spraying leaves with these agents. Leaf material was harvested after exposure 

time of 3 h. Drought stress was induced when plants were not watered for 8 days. 

For RNA quantification Nicotiana tabacum var. Samsun NN (SNN) and CPO-antisense plants [23] 

were initially cultured for 14 days under low light conditions (40 µM photons m
−2

·s
−1

, 12 h light/ 12 h 

dark at 27 °C) before exposure to high light (400 µM photons m
−2

·s
−1

, 12 h light/ 12 h dark at 27 °C). 

Leaf material was harvested before and 6 h after exposure to high light. For suppression subtractive 

hybridization experiments tobacco plants were cultivated for 8 weeks with a low light dose (200 µM 

photons m
−2

·s
−1

, 6 h light/ 18 h dark at 25 °C) and were subsequently exposed to a high light dose  

(400 µM photons m
−2

·s
−1

) for 12 h before leaf material was harvested. 

4.2. RNA—Quantification 

For qRT-PCR total RNA of 100 mg leaf material was extracted with RNeasy mini kit (Qiagen, 

Germany) in accordance to the supplier’s manual. The amount of 1.250 ng of total RNA were treated 

with 2U TURBO DNA-free (Ambion, USA) for removing genomic DNA contaminations before first 

strand cDNA synthesis was performed using SuperScript III reverse transcriptase (Invitrogen, USA) in 

the presence of 50 ng oligo dT18-primer (Sigma, Germany). As a template for qRT-PCR analysis ten 

times diluted cDNA were used in 20 µL reactions (1 µL cDNA, 500 nM each primer, 0.4 µL  

50 × SYBR Green and 10 µL ImmoMix TM (Bioline, Germany) performed with the Rotor Gene 2000 

(Corbert-Research, Australia) or 5 µL PCR reactions (0.5 µL cDNA, 200 nM each primer and 2.5 µL 

SYBR Green PCR Master Mix (Applied Biosystems, USA) performed in 384 wells plates using the ABI 

PRISM 7900HT sequence detection system (Applied Biosystems, USA). The amplification program 

consisted of an initial hot-start activation at 94 °C for 10 min, 45 cycles including 15 s denaturing at 

94 °C, 20 s annealing at 60 °C and 20 s elongation phase at 72 °C. Primers of the Arabidopsis thaliana 

NF-Y gene families were kindly provided by the Max-Planck Institute of Molecular Plant Physiology 

Golm. Oligonucleotide sequences are listed in the Table S2. Transcript levels of each  

gene were normalized to an Arabidopsis member of the Arabidopsis SAND gene family (At2g28390) or 

Nicotiana tabacum ACTIN gene respectively. Primer efficiency was determined by linear regression 

on the Log(fluorescence) of each PCR reaction using the LinRegPCR software [40] and PCR 

efficiency was defined as mean value for each primer pair. For semi-quantitative RT-PCR, total RNA 

were isolated with TRIsure (Bioline, Germany) and treated with 1U DNAseI (Fermentas, Germany). 

First strand cDNA synthesis was performed by RevertAid M-MuLV reverse transcriptase (Fermentas, 

Germany) in accordance to the manufacturer instructions.  

4.3. Plant Mutants 

Full length cDNA constructs of AtNF-YC1 and AtNF-YC2 were amplified by PCR using specific 

primers (AtNF-YC1: 5'-ACCATGGATACCAACAACCAGC-3' and 5'-TGACGTCCACCTTGGCCG 

TCGAGA-3'; AtNF-YC2: 5'-ACCATGGAGCAGTCAGAAGAGG-3' and 5′-TGACGTCCAGACTC 

ATCAGGGTGTTG-3') and ligated into NcoI and ActII restriction sites of the multiple cloning site of the 

modified pCAMBIA3301 plasmid. The correct sequence of the 35SCaMV::AtNF-YC1 and 35SCaMV:: 

AtNF-YC2 gene constructs was confirmed by sequencing and used for A. tumefaciens-mediated stable 
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transformation of Arabidopsis (ectoype Col-0) plants by means of the floral-dip transformation method 

described previously [41]. Transformed plants were selected by successive treatments of two, three  

and four-week-old seedlings with 0.1% (w:v) BASTA (Bayer CropScience AG, Germany). T-DNA 

insertion mutants of the SALK and GABI-Kat collection were obtained from the European 

Arabidopsis Stock Centre (Nottingham, UK) or Bielefeld University, Germany. Homozygous T-DNA 

insertions were validated by PCR using specific oligo primer for either the wild-type allele or the  

T-DNA left boarder and for indication of different genes (primer sequences in Table S2). Transcript 

levels of the affected genes in mutant plants were analyzed as described above. AtNF-YC2 protein 

amounts of pCAMBIA3301::AtNF-YC2 plants were determined by immunoblot analysis in accordance 

to standard methods [42].  

4.4. Chlorophyll Fluorescence Analyses 

In vivo chlorophyll fluorescence was measured with attached leaves of dark-adapted plants as 

previously described [43]. The following fluorescence parameters were assessed: the maximum 

photochemical efficiency of PS II in the dark-adapted state Fv/Fm = (Fm − F0)/Fm, effective quantum yield 

of photochemical energy conversion in PSII (ФPSII = (Fm′ − Ft) Fm′
−1

) and non-photochemical quenching 

(NPQ = (Fm − Fm′) Fm′
−1

 ) in accordance to [44]. Photon flux densities were measured using a quantum 

sensor (LI-189A, Li-Cor, Lincoln, NE).  

4.5. Analysis of Porphyrins 

Extraction and analysis of accumulated tetrapyrroles in tobacco leaves were essentially performed 

as described [23]. Modifications regard the extraction of liquid nitrogen-ground leaf material with  

50 mM potassium phosphate buffer (pH 7.8), methano1:0.l M NH4OH (9:1, v/v) and acetone: 0.l M 

NH4OH (9:1, v/v). The porphyrins were separated by HPLC (Agilent, Germany) on a RP 18 column 

(Novapak C18, 4 µm particle size, 4.6 × 250 mm). Column eluent was monitored by fluorescence  

(λex 405 nm, λem 625 nm) and porphyrins were identified and quantified by authentic standards. 

4.6. Suppression Subtractive Hybridization  

Two μg polyA
+
 RNA of the sixth tobacco leaf (counting from the top of the plant) from wild-type 

(driver) and CPO antisense # 41 (tester) plants was extracted and applied to the forward subtracted and 

the reverse subtracted approach according to the protocol of the supplier (Clontech, , Germany). After  

E. coli transformation with pCRII vector (Invitrogen, USA) containing forward subtracted cDNA 

fragments 1993 colonies were obtained, which were subjected to a colony hybridization using the labeled 

probes from forward and reverse subtracted cDNA. Finally, 234 bacterial colonies were confirmed and 

their cDNA sequenced. 

4.7. Statistical Analysis 

All data shown in graphs are mean values and corresponding standard deviations are displayed as 

error bars calculated using the Excel 2007 software (Microsoft Corp., USA). For relative expression 

analysis three biological replicates were used, whereas fluorescence parameter, tetrapyrrole intermediates 
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and days to visible petals were determined by evaluation of 12 biological replicates (different plants). 

Differences between WT and mutant lines were tested using a two-tailed Student’s t test and were 

regarded as significant for p < 0.05.  

5. Conclusion 

As a conclusion, it seems to be reasonable that the subunits NF-YC1, NF-YC2, NF-YC3, NF-YC4 

and NF-YC9 are involved in the control of day length dependent floral induction. These five members of 

the Arabidopsis NF-YC family can be clustered in one phylogenetic branch possessing a high similarity 

of their amino acid sequence. The elucidation of specific roles of the individual NF-YC subunits remains 

a challenging task, due to the obvious overlap of their functional properties.  
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