
Int. J. Mol. Sci. 2012, 13, 3650-3660; doi:10.3390/ijms13033650 

 
International Journal of 

Molecular Sciences 
ISSN 1422-0067 

www.mdpi.com/journal/ijms 

Article 

Prediction of Bioluminescent Proteins Using Auto Covariance 

Transformation of Evolutional Profiles 

Xiaowei Zhao 
1,2

, Jiakui Li 
1
, Yanxin Huang 

3,
*, Zhiqiang Ma 

2,
* and Minghao Yin 

1,
* 

1
 School of Computer Science and Information Technology, Northeast Normal University, 

Changchun 130117, China; E-Mails: zhaoxw303@nenu.edu.cn (X.Z.); lijk136@126.com (J.L.) 
2 

School of Life Sciences, Northeast Normal University, Changchun 130024, China 
3 

National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal 

University, Changchun 130024, China 

* Authors to whom correspondence should be addressed; E-Mails: huangyx356@nenu.edu.cn (Y.H.); 

zhiqiang.ma967@gmail.com (Z.M.); minghao.yin197@gmail.com (M.Y.);  

Tel./Fax: +86-0431-845-36338 (Z.M.). 

Received: 10 January 2012; in revised form: 21 February 2012 / Accepted: 5 March 2012 /  

Published: 19 March 2012 

 

Abstract: Bioluminescent proteins are important for various cellular processes, such as 

gene expression analysis, drug discovery, bioluminescent imaging, toxicity determination, 

and DNA sequencing studies. Hence, the correct identification of bioluminescent proteins 

is of great importance both for helping genome annotation and providing a supplementary 

role to experimental research to obtain insight into bioluminescent proteins’ functions. 

However, few computational methods are available for identifying bioluminescent proteins. 

Therefore, in this paper we develop a new method to predict bioluminescent proteins using 

a model based on position specific scoring matrix and auto covariance. Tested by 10-fold 

cross-validation and independent test, the accuracy of the proposed model reaches 85.17% 

for the training dataset and 90.71% for the testing dataset respectively. These results 

indicate that our predictor is a useful tool to predict bioluminescent proteins. This is the 

first study in which evolutionary information and local sequence environment information 

have been successfully integrated for predicting bioluminescent proteins. A web server 

(BLPre) that implements the proposed predictor is freely available. 
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1. Introduction 

Bioluminescence is a process in which light is produced in an organism by means of a chemical 

reaction [1,2]. Bioluminescence has been found in various organisms like squid, bacteria, fungi, 

ctenophore, algae and fish, etc. [3,4]. All bioluminescent reactions occur in the presence of oxygen.  

At least two chemicals are required in the bioluminescence process. The one which produces the light 

is genetically called a luciferin and the one that drives to catalyze the reaction is called a luciferase [5]. 

In the basic reaction, the luciferase catalyzes the oxidation of luciferin, resulting in light and an 

inactive oxyluciferin. In order to produce more luciferin, energy must be provided to the reaction 

system. Sometimes the luciferin and luciferase (as well as co-factor such as oxygen) are bound 

together in a single unit called a photoprotein. When a particular type of ion is added to the system, 

this molecule can be triggered to produce light. 

Bioluminescence serves various functions, such as attraction of mates, attraction of prey, camouflage, 

finding food, signaling other members of their species and illumination of prey [3–5]. The application 

of bioluminescence can greatly promote the progress in the field of medical and commercial areas. 

Thus, identification of bioluminescent proteins could help to discover many still unknown functions 

and design new commercial and medical applications. 

Until now, both experimental and computational methods [6,7] have been developed to investigate 

the bioluminescent proteins. But in vitro and in vivo methods are often time-consuming, expensive and 

have very limited scopes due to some restrictions for many enzymatic reactions. On the other hand,  

in silico prediction of bioluminescent proteins from computational approaches may provide fast and 

automatic annotations for candidate bioluminescent proteins. However, there are few studies using 

computational approaches to discriminate bioluminescent proteins and non-bioluminescent proteins. 

Kandaswamy et al. [8] have tried to solve this problem using support vector machine (SVM).  

To the best of our knowledge, that is the first and the only paper utilizing machine learning technique 

to deal with the prediction of bioluminescent proteins. With the model BLProt, they obtained 80% 

accuracy from training dataset and 80.06% accuracy from test dataset. A list of 544 physicochemical 

properties [9] was used to encode each protein sequence. The problem is worthy of further investigation 

because the prediction performance is not always satisfactory and there were no online web servers up 

until now. 

In this study, we develop a new computational method to predict bioluminescent proteins.  

First, sequential evolution information in the form of position specific scoring matrix (PSSM) 

generated from the inquired sequences is obtained by PSI-BLAST. Second, the PSSM is transformed 

into a fixed-length feature vector by auto covariance (AC) transformation. This encoding strategy 

(PSSM-AC) has been successfully utilized to predict protein structural classes [10] and discriminate 

membrane proteins [11]. Finally, these resulting vectors are input to an SVM classifier to perform the 

prediction. Tested by 10-fold cross-validation and independent test, the accuracy of the proposed 
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predictor reaches 85.17% for the training dataset and 90.71% for the testing dataset respectively, which 

are significantly higher than those by the existing predictors. We reckon that this efficient performance 

enhancement is largely due to the good discrimination capabilities of the feature extraction strategy 

PSSM-AC and the learning capabilities of SVM. The proposed predictor is freely accessible to the 

public at the web server BLPre [12]. 

2. Materials and Methods 

2.1. Datasets  

To evaluate the prediction model proposed in this study and compare it with state-of-the-art 

methods, two publicly available datasets are used here [8]. And anyone can freely download it at [13]. 

The training dataset contains 300 bioluminescent proteins and 300 non-bioluminescent proteins, and 

the test dataset contains 139 bioluminescent proteins and 18202 non-bioluminescent proteins.  

To avoid homology bias and remove the redundant sequences from the benchmark dataset, a cutoff 

threshold of 25% is imposed by [14,15] to remove those proteins from the benchmark dataset that have 

≥ 25% sequence similarity. However, we do not use such a stringent criterion in this study because the 

number of available protein sequences does not allow us to do so (40% in this paper).  

In addition, the protein sequences containing less than 50 amino acids are also screened out. 

2.2. Position Specific Scoring Matrix 

Evolutionary information, one of the most important types of information in assessing functionality 

in biological analysis, has been widely used in many studies [16–21]. To extract the evolutionary 

information, the profile of each protein sequence is generated by running Position Specific Iterated 

BLAST (PSI-BLAST) program [22–24]. Then this information can be represented as a two 

dimensional matrix which is known as the PSSM of the protein. PSSM has been widely used to predict 

protein fold pattern [25], protein quaternary structural attribute [26], disulfide connectivity [27,28], 

half-sphere exposure [29], protein fold recognition and superfamily discrimination [30], ATP binding 

residues of a protein [31], and catalytic residues [32]. As a result, we also use it to predict 

bioluminescent proteins. 

In this paper, the PSSM of each protein sequence in the constructed dataset is generated against the 

non-redundant Swiss-Prot database (version 56, released on 22 July 2008) using the PSI-BLAST 

program with three iterations (−j 3) and e-value threshold 0.0001 (−h 0.0001). This matrix is composed 

of L × 20 elements, where L is the total number of residues in a peptide, the rows of the matrix 

represent the protein residues and the columns of the matrix represent the 20 amino acids.  

In view of the fact that SVM requires the fixed length feature vectors as their inputs for  

training [10], we generate a vector of 400 dimensions, called PSSM-400 from the PSSM. PSSM-400 is 

the composition of occurrences of each type of amino acid corresponding to each type of amino acids 

in protein sequence. Thus for each column we have a vector of dimension 20. Figure 1 shows the 

schematic representation of transformation of each protein sequence into PSSM-400. Besides the 

PSSM-AC encoding strategy, PSSM-400 is also used to encode each protein sequence in this study. 
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Figure 1. Schematic representation of transformation of each protein sequence into  

PSSM-400 matrix. 

 

2.3. Auto Covariance 

Auto covariance (AC) is a correlation factor coupling adjacent residues along the protein  

sequence [11]. It’s a kind of variant of auto cross covariance. As a powerful statistical tool used to 

analyze sequences of vectors [33], the AC transformation has been widely applied in various fields of 

bioinformatics [34–39]. AC variables are able to avoid producing too many variants. In the PSSM-AC 

encoding strategy, the AC transformation is applied to each column of PSSM to incorporate the local 

sequence-order information. In this study, AC is employed to transform the PSSM into equal length 

vector. Given a protein sequence, AC variables describe the average interactions between residues with 

a series of lag. Here, lag is the distance between one residue and its neighbors in the protein sequence P. 

The AC variables can be calculated by Equation (1). 
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Value of GA=∑ value of G in column A (shown in Italics) 

Value of KR=∑ value of K in column R (shown in Italics) 

 

 

PROTEIN A R N ∷ V 

T -4 -1 0 ∷ 0 

V -1 -3 -3 ∷ 4 

V 0 -3 -3 ∷ 4 

F -2 -3 -3 ∷ -1 

C 0 -4 -3 ∷ -1 

G 0 -3 0 ∷ -3 

K -1 5 0 ∷ -3 

L -2 -3 -4 ∷ -1 

S 1 -1 1 ∷ -2 

G -1 -3 0 ∷ -3 

K -1 2 0 ∷ -3 

P -1 -2 -2 ∷ -3 
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R -2 6 -1 ∷ -3 
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where P represents the PSSM generated by running the PSI-BLAST program, i represents the position, 

j represents one descriptor and n is the length of the sequence. Thus, the number of AC variables D can 

be calculated as D = lg × q (lg is the maximum lag (lag = 1, 2, …, lg) and q is the number of 

descriptors). Using Equation 1, each protein sequence can be represented by a vector of AC variables, 

whose length equals to the value of D. Here, the value of q is 20, which corresponds to the number of 

the columns of the PSSM. Ultimately, each protein sequence was characterized by the PSSM-AC model. 

2.4. Support Vector Machine 

Support vector machine (SVM) is a popular learning approach mainly used in pattern recognition 

areas [40–42]. SVM [43] belongs to the family of margin-based classifier and is assumed to be a very 

powerful method to deal with prediction, classification, and regression problems. SVM looks for the 

optimal hyperplane which maximizes the distance between the hyperplane and the nearest samples 

from each of the two classes. Let xi  R
n
 be training instance and yi  {−1, +1} be the corresponding 

class labels, i = 1, ..., n. The class label for a new instance x can be determined by the sign of the 

following function. 

1

( ) ( , )
m

i i i

i

f x y K x x b


   (2)  

where m is the number of training instances, i are the obtained by solving a optimization problem on 

the input instances, and b is the bias term. In this paper, LIBSVM package [44] with radial basis 

kernels (RBF) is used. 

2

( , ) exp( )i j i jK x x x x    (3)  

Two parameters, the regularization parameter C and the kernel width parameter  are optimized 

based on 10-fold cross-validation using a grid search strategy. 

2.5. Model Construction 

The work flow of the proposed model is described in Figure 2. For the left part of Figure 2, firstly, 

sequential evolution information in form of PSSM profiles on the training dataset is obtained by  

PSI-BLAST. Secondly, the AC transformation is applied to the obtained PSSM with optional values of 

lg to incorporate local sequence order information. Finally, SVM is applied with ten-fold cross 

validation. With different lg, we can get different prediction models. In this study, we select the one 

which corresponds to the highest accuracy as the final model. The right part of Figure 2 shows the 

process of how to predict each one protein sequence using the BLPre predictor. 
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Figure 2. Detailed system flow of the prediction system. 
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2.6. Performance Evaluation 

Ten-fold cross validation [45] is used in this work. The dataset is randomly divided into ten equal 

sets, out of which nine sets are used for training and the remaining one for testing. This procedure is 

repeated ten times and the final prediction result is the average accuracy of the ten testing sets. Besides 

the ten-fold cross validation on the training set, we also utilize independent dataset test [46] to evaluate 

our model.  

Three parameters, sensitivity (Sn), specificity (Sp), and accuracy (AC) are used to measure the 

performance of our model. They are defined by the following formulas: 

n

TP
S

TP FN



 (4)  

p

TN
S

TN FP



 (5) 

TP TN
AC

TP TN FP FN




  
 (6) 

where TP, TN, FP and FN stand for true positive, true negative, false positive and false negative, 

respectively. Moreover, we create ROC (receiver operating curve) for all of the models in order to 

evaluate the performance of models using different encoding strategies. 
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3. Results and Discussion  

3.1. Selecting the Optimal lg for the Prediction Model 

As mentioned in Section 2.5, for prediction performance, the value of lg of AC transformation is an 

important parameter needed to be considered. Generally, the value of lg varies in different datasets, 

and must be smaller than the length of the shortest protein sequence in the corresponding dataset. Since 

all the protein sequences collected in this paper contain more than 50 amino acids, a series value of lgs 

(lg = 1, 5, 10, 15, …, 50) are investigated to construct the optimal prediction model. The results on the 

training set constructed in this study are presented as Figure 3.  

Figure 3. Accuracies of the prediction model with AC of different lgs. 
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It can be seen in Figure 3, the prediction performance increases from 79.33% to 85.17% when the 

value of lg increases from 1 to 30 and decreases when the value of lg is larger than 30. The accuracy of 

the prediction model becomes stable when the value of lg equals 45. It is obvious that the best value of 

lg is 30 corresponding to a peak with accuracy of 85.17%, so that the value of lg is set to 30 in the rest 

of this study. 

3.2. Comparison with Simple PSI-BLAST Search Method 

In this section, we compare the PSSM-AC encoding strategy with the PSSM-400 encoding strategy 

mentioned in Section 2.2, thus to highlight the advantage of our prediction model. The results 

evaluated by ten-fold cross validation on the training dataset are shown in Table 1 and Figure 4. It can 

be seen in Table 1, compared with the accuracy of 79.32% gained by PSSM-400 method, the accuracy 

obtained by our method PSSM-AC is 85.17%.  

As shown in Figure 4, we achieve the area under the ROC curve (AUC) of 0.92, which is 

significantly better than that of the PSSM-400 method with AUC of 0.88. These results indicate that 

the superior performance of the AC transformation encoding when being applied to the PSSM to 

incorporate the local sequence-order information. 



Int. J. Mol. Sci. 2012, 13             

 

 

3657 

Table 1. The performance comparison of different encoding strategies on the training dataset. 

Method Sn (%) Sp (%) AC (%) 

PSSM-400 72.00 86.33 79.32 

PSSM-AC  79.33 91.00 85.17 

BLProt [8] 74.47 84.21 80.00 

Figure 4. The ROC curves calculated from the ten-fold cross validation of PSSM and 

PSSM-AC encoding strategies. 
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3.3. Comparison with Other Methods 

In this section, the proposed predictor is further compared with a recently reported predictor  

BLProt [8] on the training dataset and the independent test dataset. As can be seen in Table 1, our 

model achieves the accuracy of 85.17%, which is about 5% higher than the BLProt method. The 

number of bioluminescent proteins and non-bioluminescent proteins in the test dataset are highly 

imbalanced, and this situation is close to reality. Compared with the accuracy of 80.06% gained by 

Kandaswamy et al. [8], the accuracy obtained by our method is 90.71% which has been significantly 

improved. The better prediction performance may be credited to the appropriate protein sequence 

encoding strategy adopted in our prediction model. 

4. Conclusions  

Prediction of bioluminescent proteins could help to discover many still unknown functions and 

design new commercial and medical applications. Though some researchers have focused on this 

problem, the accuracy of prediction is still not satisfied. In this study, AC is applied to PSSM, and this 

encoding strategy PSSM-AC could contain both sequential evolution information and the local 

sequence order information which adequately reflect the local environment during the evolution. The 

accuracy of our prediction model is higher than those of state-of-the-art bioluminescent proteins 

prediction tools. Experimental results have shown that our method is very promising and may be a 

useful supplement tool to existing methods.  
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