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Abstract: There is a widespread awareness that the wealth of preclinical toxicity data that 

the pharmaceutical industry has generated in recent decades is not exploited as efficiently 

as it could be. Enhanced data availability for compound comparison (“read-across”), or for 

data mining to build predictive tools, should lead to a more efficient drug development 

process and contribute to the reduction of animal use (3Rs principle). In order to achieve 

these goals, a consortium approach, grouping numbers of relevant partners, is required. The 

eTOX (“electronic toxicity”) consortium represents such a project and is a public-private 

partnership within the framework of the European Innovative Medicines Initiative (IMI). 

The project aims at the development of in silico prediction systems for organ and in vivo 

toxicity. The backbone of the project will be a database consisting of preclinical toxicity 
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data for drug compounds or candidates extracted from previously unpublished, legacy 

reports from thirteen European and European operation-based pharmaceutical companies. 

The database will be enhanced by incorporation of publically available, high quality 

toxicology data. Seven academic institutes and five small-to-medium size enterprises 

(SMEs) contribute with their expertise in data gathering, database curation, data mining, 

chemoinformatics and predictive systems development. The outcome of the project will be 

a predictive system contributing to early potential hazard identification and risk assessment 

during the drug development process. The concept and strategy of the eTOX project is 

described here, together with current achievements and future deliverables. 

Keywords: predictive toxicology; in silico toxicity; in vitro toxicity; in vivo toxicity; 

Knowledge Management; Expert Systems; Decision Support System; Data Integration; 

Manual Curation; ontology; histopathology; computational models; QSAR; data sharing 

 

1. Introduction: Shortcomings of Toxicology in Current Drug Development 

The main barrier for a new drug to enter into clinical development is the preclinical evaluation of 

toxicity, where the systemic rodent and non-rodent toxicity studies are the pivotal investigation 

paradigms (as described in various guidelines e.g. International Conference of Harmonisation Topic M 

3 (R2)) [1]. Approximately 35% of all drug development projects fail as a result of toxicity detected 

during preclinical safety studies [2], therefore animal studies are an important safeguard for the safety 

of patients. In order to front-load identification of toxic effects into earlier phases of development, 

where several candidates are under investigation and lead compounds can still be modified, in vitro 

screening assays have been developed for a variety of toxicological endpoints (for an overview see [3]). 

While predictive screening assays are useful for endpoints such as genotoxicity and hERG inhibition, 

the complex interplay of factors that lead to systemic or organ toxicity in vivo is not effectively 

represented in vitro. Assays for phospholipidosis [4], off-target pharmacology profiling and inhibition 

of the hERG channel [5] in vitro are useful to identify hazards and thus contribute to the design of 

more hypothesis-driven in vivo studies. However, while in vitro approaches can offer a certain 

mechanistic insight, they are rarely able to provide risk assessment information for the in vivo situation, 

i.e., a decision to terminate a compound or a chemical series is rarely based on the outcome of  

such assays. 

In terms of computational approaches, there are in silico models focusing on, for example, the 

prediction of genotoxicity, skin sensitization and hERG inhibition, that show a reasonable predictive 

accuracy [6–8]. Nevertheless, the available computational models to predict in vivo toxicity in general 

and organ toxicity in particular [9–12] typically cover only a narrow chemical space due to the small 

training sets available, and are of poor predictive value, thereby limiting their use in drug discovery 

projects. General issues with computational modeling of in vivo toxicity arise from the complexity of 

the endpoints, the need to implement a prediction of exposure for risk assessment and the lack of data 

sets with appropriate size, quality, and coverage of the large chemical space in which the prediction 

must be made (a prerequisite for building robust models). Indeed, most in silico models have been 
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developed for the prediction of simpler endpoints represented by binding to a single biomolecule, and 

their extension to in vivo endpoints will probably require the prediction of a variety of involved 

mechanisms or pathways and their subsequent integration using methods that simulate theunderlying 

physiology. 

As a result of the lack of reliable in silico and in vitro models for the prediction of in vivo toxicity, 

most pharmaceutical companies have introduced an early in vivo ‘minitox’ assay with repeated dosing 

over one or two weeks in rodents and/or non-rodents, in order to predict the outcome of the larger, 

more expensive GLP (Good Laboratory Practice) studies. The pervasiveness of this practice clearly 

demonstrates that there is still a need for better and earlier toxicity prediction. Improved in silico 

models could help to optimize the design of such systemic toxicity studies, or even replace some of 

them, thus contributing to the replacement, refinement and reduction of animal use in research and 

testing, known as the principle of the 3Rs [13]. 

Since the definitive introduction of the good laboratory practice (GLP) principles in 1981, all 

preclinical toxicity studies generated by the pharmaceutical industry strictly follow GLP rules, 

ensuring high data quality in the study reports. Whereas every company archives all generated data in 

a fully traceable manner, this information is not stored in a way that allows retrieval of study 

conclusion data in a structured format for the generation of simple statistics across the reports of a 

given company, let alone the entire industry. Indeed, it would be of great interest to the industry to be 

able to analyze this data and learn how to avoid costly failures in the future. The data in the collected 

preclinical toxicity reports of pharmaceutical companies represents the most important data source for 

improved in silico toxicity model building. Perhaps surprisingly, none of the 13 companies involved in 

eTOX project currently has the ability to answer simple questions from their own data such as: “What 

type of compound-induced liver toxicity is the most commonly observed in rat across all studies?” or 

“What is the translatability of toxicity findings across species?”. Such questions could be answered by 

extracting the data from study reports and putting this information into a structured database. This is 

especially true if all companies could share this data. Of course, many more complex and meaningful 

questions could be generated to exploit this toxicological “gold mine” and more may be learnt from the 

past to improve future medicines. Currently, very few pharmaceutical companies have unilaterally 

decided to reorganize their preclinical toxicity archives and extract the data to build searchable and 

mineable databases given the considerable investment in terms of time and money that is required. 

Hence, one of the main goals of eTOX was to also organize the extracted data into a searchable 

structure with appropriate tools.  

Since eTOX is still in the phase dominated by data extraction, collection and database construction, 

the achievements with regard to modeling and predictive tools are still limited. Therefore, the main 

objective of this article is to provide an overview on the concept and strategy of the eTOX project to a 

broader audience. In addition, the design of the database and the strategy to overcome the problems of 

data sharing in the context of intellectual property will be explained. Although the early predictive 

models will be reported, subsequent publications will focus on details of the modeling approaches and 

performance of the predictive tools developed in the frame of eTOX. 
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2. The Innovative Medicines Initiative as Framework For Improving Toxicity Assessment in 

Drug Development 

In 2008, a group of preclinical safety scientists from the pharmaceutical industry recognized that, 

collectively, they were sitting on the largest collection of unpublished, high quality in vivo toxicity 

data in existence. More importantly, they realized the potential benefit of a collaborative approach to 

the sharing of corporate toxicology data that could provide a significant advance in predictive 

toxicology by overcoming some of the shortcomings described above. Toxicity data acquired during 

drug development is not routinely published or shared in public databases owing to the confidential 

nature of the research that generates the data. However, sharing these data would not only allow the 

comparison of new structures to already existing data and thus contribute to the principle of the 3Rs by 

a more refined design of in vivo studies, but would also constitute the basis for the development of 

more reliable computer models to assist in the prediction of in vivo toxicity.   

As a consequence, the European Innovative Medicines Initiative (IMI), a public-private partnership 

of the European Union and the European Federation of Pharmaceutical Industries and Associations 

(EFPIA), launched a call for a project to be funded to achieve this goal of data sharing and building of 

new in silico safety models. IMI [14] plays an important role in this endeavor, being Europe's largest 

public-private initiative aiming to speed up the development of better and safer medicines for patients. 

IMI supports collaborative research projects and builds networks of industrial, small and medium 

enterprises (SMEs) and academic experts in order to boost pharmaceutical innovation in Europe. 

Eleven expressions of interest from consortia of academic institutions and small-to-medium 

enterprises (SMEs) were submitted for the above-mentioned topic and subsequently evaluated by 

independent experts during 2008. The project selected was “Integrating bioinformatics and 

chemoinformatics approaches for the development of expert systems allowing the in silico prediction 

of toxicities” (eTOX, “electronic toxicity” [15]) submitted by the academic institutions and SMEs 

listed in Table 1. The main objectives of this project are: to identify and implement ways for data 

sharing while safeguarding intellectual property; to build a harmonized toxicological database; and to 

use this database for the development of predictive models. In total, thirteen EFPIA companies have 

decided to participate in the project consortium (see Table 1).  

Proprietary structural and pharmacological knowledge on chemical entities represent the main 

assets of each pharmaceutical company. It was therefore crucial to identify during the preparatory 

phase of the project, ways to share this knowledge without endangering a company’s competitive 

advantage. After overcoming this initial hurdle, the eTOX project officially started on 1 January 2010.  
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Table 1. Partners in the eTOX project.  

Private Public 

EFPIA Companies Academic Institutions SMEs 

 
Novartis Pharma  

Fundació Institut Mar d’Investigacions 
Mèdiques, Barcelona, Spain  

Lhasa Limited, Leeds, UK 
 

AstraZeneca Fundación Centro Nacional de 
Investigaciones Oncológicas Carlos III, 

Madrid, Spain 

Inte:Ligand GmbH, Vienna, Austria
 

Boehringer Ingelheim 
 

European Molecular Biology Laboratory 
(European Bioinformatics Institute), UK 

Molecular Networks GmbH, 
Erlangen, Germany 

 

Bayer HealthCare 
 

Liverpool John Moores University, 
Liverpool, UK 

Chemotargets SL, Barcelona, Spain
 

Laboratorios del DrEsteve 
 

Technical University of Denmark, 
Kopenhagen, Denmark 

Lead Molecular Design SL, Sant 
Cugat del Vallès, Spain 

GlaxoSmithKline Universität Wien, Vienna, Austria  

Janssen Pharmaceutical 
 

Vrije Universiteit Amsterdam, The 
Netherlands 

 

UCB Pharma   

H. Lundbeck   

Pfizer Ltd.   

F. Hoffmann-La Roche   

Sanofi *   

Les Laboratoires Servier *   

(Organizations leading the project are depicted in bold, * Companies that joined eTOX after its 

inception. Note: Sanofi, formerly Sanofi-Aventis).  

3. Improving Toxicity Prediction—The eTOX Project 

The eTOX project is focused on the development of innovative strategies for the in silico prediction 

of the in vivo toxicities of drugs, and their implementation into integrated and customizable software 

tools. The intended predictive system, eTOXsys (see section 3.7), aims to significantly improve the 

quality of the current state-of-the-art computational predictions [16,17] for the pharmaco-toxicological 

profiles of new drug candidates. The eTOX project has some aspects in common with other European 

projects and initiatives such as, OpenTox (focused on environmental toxicity) [18] or the OSIRIS 

project [19]. However, eTOX is substantially different in terms of the concept, strategy and scientific 

and technological approaches applied as described below (see Figure 1 for an overview of the eTOX 

project strategy):  
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 Creation and maintenance of an integrated database of high-quality data of in vivo preclinical 

toxicology and in vitro pharmacology for drug-like molecules [20]. The selection and 

classification of the records to be shared among the EFPIA companies, the development and 

application of appropriate standards and ontologies (with a focus on histopathology 

descriptions), and setting up of strategies for data quality assessment, will be key tasks for the 

establishment of the intended, integrated database. This database will be hosted by one of the 

partners (Lhasa Limited), acting as “honest broker” of the data. 

 Development and implementation of strategies (procedural and technological) for protecting 

sensitive information coming from the participating pharmaceutical companies. Since part of 

the molecular structures will be particularly sensitive information to be protected, encoding by 

means of the irreversible transformation of structures into molecular descriptors is to be 

considered [21].  

 Development and application of text mining techniques required for the automatic exploitation 

of biomedical literature and legacy reports of the pharmaceutical industry. The intended text 

mining techniques will go beyond the classical co-occurrence analysis by incorporating natural 

language processing [22]. 

 Application of computational techniques for the prediction of pure chemistry-related 

toxicology (e.g. cationic amphiphilic drugs and phospholipidosis) by means of sub-structure or 

fragment-based approaches, as well as by the detection of toxicophores.  

 Implementation of strategies for the prediction of off-target pharmacology by means of the 

automatic analysis of similarities between the studied compounds and extensive collections of 

biologically annotated ligands stored in chemogenomic databases, as well as by performing 

docking simulations of the studied compounds in structural models of key off-target interaction 

such as the hERG K+ channels [23]. 

 In silico prediction of the interaction of drugs with a relevant panel of drug transporters [24] as 

well as metabolism predictions will be developed, since drug transport and metabolism play a 

key role in triggering or avoiding some of the toxic or side effects of drugs [25]. Aspects of 

metabolism will be covered using the Meteor software (Lhasa Limited, Leeds, UK), also see 

Marchant et al. [26], MetaSite (Molecular Discovery Ltd., Pinner, UK), also see Cruciani et al. 

[27] and CRAFT (Molecular Networks GmbH, Erlangen, Germany) programs. 

 Development of large-scale QSAR models for the prediction of toxicity outcomes. Molecular 

and physicochemical descriptors and multivariate analysis techniques, hierarchical and block-

oriented methods will be applied, as well as neural networks and Bayesian methods [28]. 

 Incorporation of -omics data and cross-omics mapping in order to understand and model 

toxicological phenomena observed in vivo [29]. The modeling of biological pathways in a way 

that allows for the assessment of the perturbations produced by drugs is one of the aims of this 

project. Comparative genomics analysis will also be implemented to address the variations in 

the toxicological features observed in different species.  

 

As each of the aforementioned approaches on their own will generate a prediction that forms part of 

a bigger picture, or prediction, for the chemical, a key activity of the project will be the development 

of integrative algorithms (including decision trees, reasoning and consensus models), together with 



Int. J. Mol. Sci. 2012, 13  

 

3826

expert systems reasoning (i.e., Derek Nexus [30]), in order to combine the series of particular 

predictions into a more powerful and comprehensive strategy and software framework for 

toxicological assessment. However, in contrast to projects that are open to the public, the eTOX 

project contains a large amount of proprietary data donated by the consortium members which requires 

a level of confidentiality with respect to chemical structures and targets (see Figure 2). This requires a 

specific effort to protect sensitive information that is not of concern to a web based open information 

system as that provided by OpenTox. The eTOXsys will use web services not exposed to the public. In 

the final version, the system will be installed behind corporate firewalls, protecting the confidentiality 

of compounds under investigation.   

An iterative process consisting of system development, experimental validation, critical assessment 

and system improvement will be devised. The experimental validation rounds will be carried out on 

series of compounds not used for the development of the applications. The characterization, evaluation 

and validation of QSARs will be performed following the OECD principles [31], taking advantage of 

the participation of one of the eTOX partners in the OECD Expert Group. 

Figure 1. Overview of the eTOX project strategy. eTOX collects toxicological data from 

pharmaceutical (EFPIA) companies and public sources, and incorporates them into a 

database hosted by the “honest broker” to safeguard IP issues related to these data. The 

database will then serve as a source for the development of in silico models to predict the 

in vivo toxicity of new drugs. 
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Figure 2. The sensitivity classifications used in the eTOX project 

 

3.1. Construction of the eTOX Database 

The eTOX consortium is currently building a large database containing proprietary compound and 

animal safety data from pharmaceutical companies, previously inaccessible to anyone but the 

respective owners. This will be integrated with publicly available data sources. As mentioned above, 

the database will be hosted by Lhasa Limited, which acts as “honest broker”. Lhasa Limited was 

selected on the basis of their previous experience in data sharing projects and the fact that Lhasa had 

already developed a searchable toxicological database that could be used and modified for the 

purposes of eTOX. Lhasa Limited is a not-for-profit, charitable organization that exists to promote the 

sharing of data and knowledge in chemistry and life sciences. This organization has extensive 

experience in the role of honest broker for the sharing of mutagenicity data on impurities stemming 

from the drug manufacturing process and the results of repeated dose studies on pharmaceutical 

excipients [26]. Lhasa Limited has previously developed the Vitic Nexus software, a chemically 

intelligent toxicity database, to facilitate such sharing. 

The schema of this database is self-describing and can easily be modified to meet the specific 

requirements of individuals or groups. Vitic Nexus incorporates editing tools to enable in-house data to 

be imported and edited, together with an SDFile import utility for uploading new data in batch mode. 

The software supports similarity as well as exact match and substructure searching. Sophisticated 

searches can be built up by defining multiple criteria and combining them using Boolean logic. In this 

way, chemical structure searches can be combined with text searches, including toxicological criteria 

and experimental protocol constraints. Multiple databases can be searched simultaneously and the 

results from all searched databases displayed together. 

The establishment of data-sharing strategies requires agreement on the format and extent of data to 

be contributed by each participating organization. The primary focus for data collection are the 

systemic toxicity studies (1–4 week repeated dose studies in rodent, dog and other non-rodent) but data 

collection is intended to be extended to longer studies, as well as to pharmacokinetic/toxicokinetic 

studies, in vivo safety pharmacology and gene expression data sets during the course of the project. Of 
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the several thousand systemic toxicity studies already identified across all the participating EFPIA 

companies, most are rat studies. In addition, approximately 925 new repeat dose toxicity studies are 

performed in total each year within the participating EFPIA partners, of which about 550 are rat 

studies. It is hoped that the majority of these studies will also be made available to the project. 

The schema for the database has been developed in an iterative manner. The first draft, created by 

Bayer Healthcare, was implemented into Vitic Nexus by Lhasa Limited and several improvements 

were made during the course of a pilot study, based on the feedback received from participating 

contract research organizations (CROs) extracting the data together with the EFPIA partners. 

A further review of the schema is planned when the database is more fully populated. As a next step, 

schemas covering non-rodent species and further types of preclinical studies such as receptor and 

enzyme screening data will be implemented. Additional tables, if needed, will be defined, based on 

examples of the data to be captured. Subgroups will be set up consisting of consortium members with 

experience of the data being captured who will advise on: 

 Those values/fields users are likely to include in their queries; 

 Formats for displaying or reporting the results; 

 Those values/fields important for determining data quality; 

 Those values/fields important for developing predictive models. 

3.2. Safeguarding Intellectual Property 

The development and implementation of procedural and technological strategies for the protection 

of sensitive information is required in order to allow sharing of information among the participating 

pharmaceutical companies. A combination of legal contracts, physical access controls, software 

controls, sensitivity levels (Figure 2) and structure masking were elaborated to ensure the optimal 

protection of the sensitive, shared data. Obtaining permission to release data from EFPIA legacy 

reports to the consortium represents a crucial and potentially time-limiting step for the eTOX project. 

The procedures for getting such permissions vary between companies: compounds which have fallen 

into the public domain may be considered as the least critical and, whilst some companies regard data 

on marketed substances as most sensitive, for others it is data from development projects. Structures 

from terminated projects may gain importance, as they may be ‘re-discovered’ for different projects or 

indications. Most companies need to get permission for each structure and/or for each report 

individually from their R&D heads and their patents & licensing groups. Bayer Healthcare has 

elaborated a procedure to get a general permission for full or restricted sharing. Classification of 

structures or reports according to confidentiality levels is being run in parallel to data extraction in 

order to speed progress towards the final goal, the donation of data to the eTOX database. 

Data classified as “non-confidential shared data” will be accessible to all project participants. Data 

classified as “confidential shared data” will be held by the honest broker, but will be accessible only by 

the original owner of the data. Modelers who intend to mine these data will have to agree a secrecy 

agreement with the data owner. The honest broker will not only provide the physical barrier system but 

also manage the secrecy agreements and control subsequent data access. In addition, all partners have 

signed an agreement to not attempt to reverse engineer masked structural information that they will 

obtain during the project. 
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3.3. Data Extraction and Gathering 

 

Extracting and gathering the data from legacy reports represents the rate-limiting step for all 

subsequent data mining and predictive model building. The process was initiated in parallel with the 

development of the database and will continue throughout the duration of the project. In line with the 

priorities set in the project proposal, data collection commenced with summary data from systemic 

toxicity studies in rodents. It is planned to incorporate raw data into the final database wherever 

possible in order to be able to mine for previously unknown relationships and on an individual animal 

basis, if needed. A survey of the EFPIA partner companies at the start of the project estimated the 

number of repeat dose toxicity reports (1 to 4 weeks administration) eligible for the project to be 

roughly 10,736, comprising around 1,900 different chemical structures. The current evaluation of the 

existing reports and the accompanying intellectual property situation suggests that approximately 20% 

of non-confidential data sets can be fully shared among the partners. 

In order to make the data available in a machine-readable format, a data extraction process is 

required. Manual data extraction inside the EFPIA companies was previously proven to be both time 

and cost-intensive and was identified as a potential, major bottleneck of the project. 

Several subcontractors offering manual or semi-automated data extraction were evaluated in a 

feasibility study using a small number of reports with diverse characteristics. The aim of this ‘data 

extraction pilot study’ was to identify contract research organizations (CROs) with sufficient capacity, 

good quality standards, assurance of confidentiality and competitive offers with respect to time and 

costs. Following the evaluation, the EFPIA partners agreed a shortlist of three CROs and it will be at 

the discretion of each EFPIA partner to decide whether they will enter the data themselves or employ 

one of the shortlisted CROs to do the data extraction for them. The data extraction process is briefly 

outlined in Figure 3. Currently, there are 2091 reports identified for sharing within the project, of 

which 1648 have been submitted to CRO’s for extraction. Of these, 106 of which have been already 

completed and 15 are in the Vitic database. It is expected that the majority of identified reports will be 

accessible to the modelers in the project by the end of this year. 

Figure 3. Summary of the data transfer process. 
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Efforts are underway to gather relevant data from public sources (e.g. scientific literature and  

non-proprietary databases, see Figure 4). Published datasets that are thought to be of good quality and 

appropriate for the project as training and validation datasets for predictive models have been 

identified and made available in a repository within the eTOX intranet. This repository, monthly 

updated and maintained by Fundació Institut Mar d’Investigacions Mèdiques (FIMIM), will be 

gradually included into the ChOX database. ChOX [32] is an internal repository based on the 

ChEMBL [33] database implementation, developed by European Molecular Biology Laboratory 

(EMBL). The first version contains 2D structural and physicochemical information on 153,520 distinct 

compounds annotated with bioactivity data on 384 proteins (particularly populated with CYP450, 

transporters and off-target data with relevance to toxicity assessment). The biological information that 

is currently incorporated corresponds to 415,051 bioactivity data points across seven species, extracted 

from 9,101 publications. 

The considered bioactivities are essentially binding data (IC50 and Ki) and pharmacological data 

(EC50). The pharmacokinetic (PK) data so far included in ChOX is for bioavailability, clearance, 

volume of distribution and half-life, and includes data from four species. There are several ways to 

browse and to analyze the data, including exact, substructure and similarity structural searches, 

specific physicochemical parameters (MW, AlogP, PSA), type of activity (IC50, Ki, EC50) and 

molecular target. 

Future plans include the addition of publicly available data from toxicogenomics experiments via 

array express or GEO (Gene Expression Omnibus) [34] with links provided from the ChOX interface. 

The user will also have the ability to query ChemProt and ChEMBL in parallel to ChOX. 

 

Figure 4. Gathering and harmonization of data from EFPIA partners and public sources: 

Strategy to populate the eTOXdb with data suitable for model building. 
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3.4. Development of Database Standards 

The pilot data extraction study highlighted the need for a consensus to be reached on how the 

database schema should be populated. Therefore, the questions and answers generated during the pilot 

study have been used to define data entry guidelines to ensure consistency among the various CROs 

and EFPIA partners entering data. For modeling purposes, it is important to enter both positive and 

negative findings and to include data for control groups. Any evidence of background findings such as, 

for example, cardiomyopathy will also be captured. 

The EFPIA partners and Lhasa Limited will carry out quality assessments and consistency checks 

on the extracted data. Owing to the heterogeneity of the study data, it has been necessary to identify 

ways to harmonize the measurement units used for quantitative data and to develop ontologies. 

3.5. Ontologies for Preclinical Safety 

Ontologies are formal representations of knowledge within a specific domain that show the 

relationships between different concepts in that domain. Ontologies and controlled vocabularies with 

synonym mapping are extremely important for a project like eTOX because they allow the terms that 

have evolved over time, across all the different companies, and those in public literature to be mapped 

to a single preferred term. As a result of their hierarchical structure, ontologies allow the grouping of 

findings from different studies at different levels of the tree, which can help solve the issue of different 

pathology descriptions of a finding with different levels of specification (e.g. “chronic inflammation” 

vs. “inflammation”). This is essential for cross study data analysis as well as the development of 

models. It is hoped that this work will also contribute to an industry standard ontology for  

preclinical findings.  

In previous efforts to create microscopic finding ontologies, a finding was always linked with an 

organ, i.e., “Liver necrosis” and treated as a single term. This means that the term “necrosis” must be 

entered many times into the ontology as it can occur in different tissues. In eTOX, it was decided to 

separate the finding from the anatomy so that the term necrosis stands alone and the term liver stands 

alone. Based on previous experience accumulated in Novartis, it was decided to follow a different 

approach for developing a preclinical safety ontology, taking into account the following requirements: 

The ontology must, 

 Be easy to maintain.  

 Allow a flexible mapping of findings for later computer modeling. For the example of liver 

necrosis when using a machine learning approach, the feature “finding” (e.g. necrosis) will be 

treated separately from the feature “anatomical region” or “organ” (e.g. liver) which will allow 

the machine learning algorithm to automatically analyze compounds causing necrosis across all 

tissues or all findings in liver.  

 Enable the creation of hard links (where needed) between the different ontologies (i.e. to link 

the pathology finding “hyperostosis” to the rather high level anatomy term “bone”). 

 

While the ontologies are important for later modeling, they are not required for initial data capture 

from study reports. Most of the EFPIA companies do not have access to the lists of terms used in their 
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company until the verbatim terms are captured from the reports. Therefore, it was decided to extract 

verbatim, findings terminology from the reports and to map them into the ontologies afterwards. The 

listing of ontologies/vocabularies that need to be created and some key characteristics are  

described below: 

 The Anatomy Ontology: A list of terms and relationships that describe the anatomical locations, 

organs or tissues from any animal used in preclinical safety experiments. Starting with the 

Adult Mouse Anatomy Ontology created at the Jackson Laboratories [35], all the terms in use 

in the Novartis preclinical databases have been mapped to this ontology as synonyms and 

expanded with new terms where appropriate. This is a relatively complete ontology and it was 

found that of the 1,600 terms from all species existing in the Novartis database, almost 90% 

were mapped as synonyms and only about 150 had to be added as new preferred terms. While 

the anatomy ontology is based on a mouse ontology, it is useful for all species used in 

preclinical safety studies with only minor modifications, such as the creation of links to a 

particular species for some terms (i.e. linking “harderian gland” to “rodents” in the species 

ontology). 

 The Microscopic Pathology Ontology: This was the most difficult ontology to create, as it has 

to be built from ‘de novo’. An attempt was made to find an existing public ontology that met 

the needs of preclinical safety pathologists but none were available that matched the 

terminology currently used. Therefore, eTOX worked closely with pathologists at Novartis and  

GlaxoSmithKline to create the backbone of a new ontology. This ontology will be used to map 

all terms existing in the Novartis preclinical safety database (approximately 20,000 terms). It 

will form the basis for the mapping of all other findings extracted from the preclinical study 

reports of the different EFPIA partners as described in section 3.3 above. 

 Clinical Chemistry and Toxicology Ontology: This ontology will be based on the terminology 

described recently in the CDISC Standard for Exchange of Nonclinical Data (SEND) 

documentation [36]. This is a relatively simple ontology compared to the other ontologies as 

there are only about 270 terms in the Novartis database, all of them being relatively unique (i.e., 

not many synonyms), hence it will be straightforward to map the terms of all companies to this 

ontology. An advantage of using the SEND terminology consists in the optional automatic 

mapping of preclinical to clinical data. 

 Cell and Tissue Type Ontology: Novartis is also working on a cell and tissue type ontology to 

complement the anatomy ontology that is intended to be shared within the eTOX consortium. 

The rationale behind separating this ontology from the main anatomy ontology is similar to that 

for separating findings from organs, namely that the same cell types occur in many different 

tissues. For example, epithelial cells exist everywhere in the body. Creating a ‘child’ in the 

anatomy ontology with epithelial cells will link many different terms throughout the body – 

skin epithelium, lung epithelium, vascular epithelium, etc. Managing those links would be 

almost impossible. Simple keyword searches/text mapping searches in the cell type ontology 

will automatically provide the links and, since this ontology is rather small, it should not result 

in a loss of performance. As starting point for developing this ontology, Novartis has taken the 
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ontology maintained by the Jackson Laboratories, which is available from the OBO  

Foundry [37]. 

 Macroscopic and In-Life (“Clinical Findings”) Ontology: This is another ontology that needs 

to be built from the beginning which will allow the standardization of macroscopic 

observational findings, e.g., skin lesions or hair loss observed during preclinical studies. It is a 

relatively simple ontology, as here too there are only a few hundred, relatively unique, related 

terms in the Novartis database, making easier the mapping of the terms of all companies to this 

ontology. Whether the terms used here may also be mapped to the MedDRA terminology [38] 

is also under investigation. 

 Species and Strain Ontology: This is a simple ontology that describes different characteristics 

of the animals used in preclinical safety studies. While it will be based on the complete 

taxonomy ontology [39], it will consist of simpler associations, such as the term “rodents,” as 

the parent of different rat and mouse strains, as well as hamster, gerbil etc., to allow for simple 

grouping of species. 

 Study Design Vocabularies: They will describe the basic study design parameters, such as time, 

dosage, route etc., and will consist of preferred terms and synonyms, but will not be 

hierarchical.  

3.6. Development of in Silico Models for Prediction of Toxicity & Off Target Pharmacology 

As described above, currently available in silico models cover only a small proportion of the 

toxicological endpoints relevant for drug discovery and development in pharmaceutical companies as 

there are huge differences in the prerequisites for their successful development. Basically, difficulties 

in model development comprise (i) the lack of suitable data for model training and (ii) the complexity 

of the physiological phenomena involved in the in vivo endpoints. 

Regarding difficulty (i), the training of predictive models typically requires the availability of a 

large amount of high quality data, and a substantial series of compounds for which the value of the 

endpoint has been accurately determined. Ideally, the compounds included in these series should be 

designed to cover a significant part of the druggable chemical space and the determinations should be 

made using standardized, reliable experimental methodologies yielding comparable results. In practice, 

the data available from public sources is far from ideal in practically all these aspects and typically, the 

series are small and contain highly similar compounds, often representing congeneric series. The 

aggregation of these series only permits the creation of non-homogeneous datasets in which the 

experimental results have been obtained with highly diverse experimental procedures, thus being non-

comparable and not amenable to statistical analysis. For instance, the data generated using simple 

procedures (e.g., in vitro hERG inhibition) can be used for modeling, since the results (e.g., IC50 > Ki) 

are standardized and comparable between compounds. Nevertheless, data extracted from toxicological 

reports cannot be compared, for several reasons. First and foremost, the doses are adjusted for each 

compound in order to obtain visible toxic results; this is done using non-homogeneous criteria (e.g. 

multiples of expected therapeutic doses, or doses around the value for which toxic effects have been 

observed in preliminary assays). Moreover, the reports tend to suffer from a “positive bias” in the 

sense that they particularly record “positive” findings, i.e., deviations from normal values. Likewise, 
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animals from control groups are not devoid of abnormalities, therefore constituting a heterogeneous 

background of “normal values”.  

The difficulty (ii) is related to the complexity of the phenomena that the in silico models are 

intended to predict. In some cases, the toxicological outcome depends on relatively simple properties 

of the drug candidate. A good example of this is drug-induced phospholipidosis (PL). Even if the 

mechanism involved in PL is unclear, most of the drugs producing phospholipidosis are cationic 

amphiphilic drugs (CADs) [40,41]. Therefore, any method able to recognize the presence of a positive 

charge and a lipophilic moiety in the drug is able to produce reasonably good predictions and, not 

surprisingly, these models are in the catalogue of models applied in the pharmaceutical industry with 

good results. However, since not all CADs induce phospholipidosis and some drug inducing PL are 

not CADs [42,43], even in this case improvements can still be made. Furthermore, there are many 

other toxicological outcomes, such as hepatotoxicity, that depend on numerous diverse known 

biological mechanisms [44–49] and probably many more unknown ones. Clearly, no single in silico 

approach can be expected to produce a general description of a mechanistically heterogeneous 

endpoint comprising various phenotypes, pointing to the need for a more comprehensive approach. 

The strategies implemented in eTOX for overcoming the first category of difficulty are intrinsic to 

the project design. The pharmaceutical industry has generated a large amount of data during the 

process of drug development, most of which has never been compiled in aggregated electronic formats 

or exploited in any way. Therefore, the data extracted during the project will be collected and compiled 

in a general database, in formats allowing its use for building in silico predictive models. With respect 

to the second category of difficulty, the consortium will use standard methodologies for simple 

endpoints. For complex endpoints, the strategy will be directed to the identification of the simpler (key) 

mechanisms involved and the derivation of predictive models addressing them specifically. These 

predictions will then be integrated, taking advantage of our knowledge about the physiological 

mechanisms involved, for yielding a prediction of the main, observable toxicological outcome. That 

this theoretical approach will have difficulties for its practical application is acknowledged, however, 

some proof of concept applications have already been investigated [8]. In the study undertaken by 

Obiol et al., simulated electrocardiograms were obtained and direct estimations of the induced QT 

elongation produced by the administration of a compound by integrating in silico blocking predictions 

for two separate ion channels (hERG and KCNQ1) using electrophysiological models that represent 

the effect of the drug at cell and tissue levels. This kind of approach, much more representative of the 

complex chain of events leading to cardiotoxicity, produced better prediction for some test compounds 

than in vitro methods based on hERG inhibition only. 

In essence, the implementation of the eTOX modeling strategy in practice will require the 

development of a large collection of single models, each one producing predictions for a relevant 

toxicological endpoint (for the simplest cases) or a single mechanism involved in a complex 

toxicological effect, together with an evaluation of pharmacological aspects with diverse validated 

computational approaches to predict the affinity profile of small molecules against those proteins with 

a somehow intrinsic role in toxicity events. Special attention to well-known target and off-target 

behavior will help anticipate those drug side effects caused by exaggerated pharmacology and extend 

reasoning criteria to complete the toxicological risk assessment for each molecule queried in  

eTOXsys [50]. The pharmacological analysis will be focused on the set of cytochromes P450, 
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transporters and others targets like nuclear receptors, G protein-coupled receptors, phase II enzymes, 

kinases, proteases, etc. provided by different EFPIA partners as relevant proteins in those toxicological 

events that the eTOX project aims to predict. 

3.7. The Integrated Prediction System: eTOXsys 

As stated in the introduction, one of the main outcomes of the project will be an in silico prediction 

system, the so-called eTOXsys. The eTOXsys can be described as a software tool able to provide 

useful toxicological risk and hazard assessment, starting from a simple input that, typically, is limited 

to the 2D structure of a compound. For the prediction of complex in vivo endpoints, which require the 

calculation of several variables from the structural information (e.g. log D, volume of distribution, 

absorption, etc.), it is intended to provide the possibility to alternatively input these experimental data, 

if available, to reduce uncertainty in the prediction. 

The core of the eTOXsys will be a data mining tool, which will interface the database to deliver 

nearest neighbors of the compound to be predicted in terms of chemical structure, but also  

pharmaco-toxicological similarities. In addition, the data mining interface will provide the data set for 

subsequent model building or evaluation. The tool will contain a task record facility (audit trail). 

Technical validation aspects laid down in OECD guideline (95)115 will be considered.  

The current strategy for the development of predictive tools for organ toxicity from the collected 

data of systemic toxicity studies is to assign the individual parameters measured in an in vivo study to 

specific organs (e.g. transaminases, bilirubin to liver, troponin to heart, etc.). Subsequently, the 

observed changes of these parameters will be attributed to levels of severity based on the conventional 

toxicological knowledge and the assessment provided in the original reports. Based on the analyses, 

data sets will be created from which models for each organ can be constructed. If several models exist 

for individual organs, the intention is to combine these with a reasoning engine, again built on classical 

toxicological experience (e.g., if, for “compound x,” “transaminase” is “weakly elevated” and “no 

histopathological findings in liver” then, “low probability for liver toxicity”).   

 

3.7.1. The Conceptual Design of the eTOXsys 

From a technical point of view, eTOXsys will be a unified software platform integrating the various 

tools, databases and results achieved during the course of the project. This integrated software system 

will provide access to all existing and developed predictive models and databases through a uniform 

user interface to support the hazard identification and risk assessment of drug candidates. 

To define the requirements of the predictive system, the eTOX partners FIMIM and Molecular 

Networks carried out surveys to assess both EFPIA partners’ expectations in such a system, as well as 

the expertise, know-how and skills of the academic organizations and SMEs which will mainly be 

involved in the development of the predictive models and software. 

On the EFPIA side, the results of the survey indicated that the software will be used in the drug 

discovery & development stages to save money, time and animals and to design new compounds, 

prioritize compounds and to decide testing strategies. The system may also be applied for the 

assessment of impurities or synthesis intermediates. A user group consisting of toxicologists, 
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medicinal and computational chemists, pharmacologists and biologists is envisaged. Real use cases 

will be compiled by means of another questionnaire that will be presented to the consortium members 

alongside a User Centered Design methodology. 

As the modelers are using a diversity of programming languages, software tools and techniques, the 

results of the surveys suggested the implementation of a distributed and decoupled system architecture 

based on the web services paradigm. The eTOXsys platform is managed by a lightweight server 

(eTOXsys server) centralizing the communication between the end user and the components of the 

system: the prediction models, the eTOX database, other external databases and the reasoning module 

consolidating the data and the predictions. At present, every module is being hosted by the partner in 

charge of its development, but in the final version, the whole system will be installed within the 

company facilities, ensuring that no sensitive information is transferred via the internet. Furthermore, 

authentication is handled by a web service linking existing company user management systems (such 

as LDAP or Active Directory) to the eTOXsys. All web service modules will communicate through a 

well-defined REST Application Programming Interface (API).  

The conceptual design and potential workflow of the eTOX system are outlined in Figure 5. On the 

client (user) side, the interface to the eTOX system is run in a standard web browser. In general, the 

eTOX system is chemical structure-centered and workflows are oriented on operations related to 

chemical structures and their features and properties, but in a fully flexible and user-defined manner. 

For an investigation, the user can submit queries to the system by either entering a 2D structure sketch 

through a graphical molecule editor or by uploading a structure file (e.g., a single or multi-record 

SDFile). The eTOX database (eTOX DB) is plugged into the system by a web service hosted by Lhasa 

Limited that provides unified access to the stored data. For structure queries, the eTOX database can 

be searched in full structure or substructure mode. Furthermore, the system supports text-based 

searches, such as for registry numbers, names or properties of chemicals. In the final version of the 

system, the user will optionally also be able to enter measured data with the query, e.g., from in vitro 

experiments, which are then used in the prediction services as these values are likely to be more valid 

than calculated values. The results from a database query are presented in chemical table and 

compound views which can be sorted, further refined and adjusted to the needs of the user. Missing 

data points and information that is required for analyzing the risk potential of a chemical can be 

predicted by various in silico models for toxicity endpoints and ADME parameters (see section 3.7.2 

"The predictive models battery") which are registered and available in the system as web services. In 

addition, the concept of DMPK-related toxicity is taken into account. Potential phase I and II 

metabolites of the query (parent) compound(s) can be either retrieved from the eTOX database or, if 

no or limited information is available, generated by a metabolite prediction web service. The retrieved 

and predicted metabolites can be re-submitted to the above-described database query and toxicity 

prediction processes. After all necessary and available information has been gathered, a reasoning 

engine will optionally consolidate the data and predictions obtained from the various services in order 

to support the user to assess the potential hazard or safety of the queried compound(s). Compound 

datasets and associated information that have been compiled from search results can be stored, 

managed and shared among user groups or exported in spreadsheet-compatible formats (e.g., tab or 

comma-separated value files) for further analysis from which reports can be generated. 
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In summary, the final eTOXsys will be a Decision Support System collecting the individual 

predictions of each separate service, evaluating the overall outcome and providing guidance to the user 

on the basis of the evaluation and consolidation of the data available. At each step, the system will be 

sufficiently transparent to enable the user to drill down into the result to determine the underlying data 

and information and methodologies that led to the predictions. However, confidential data of the 

individual partners will not be disclosed at any stage. For the eTOX database and database web service 

in particular, encryption, strict authentication and access rights policies and secure communication 

protocols will be employed to secure proprietary information and data. 

Figure 5. Conceptual design and a potential workflow of the eTOX system (eTOXsys, 

prediction system established by eTOX). 

 

The eTOX system will support the inclusion of different types of predictive models including 

QSAR algorithms, machine learning techniques and knowledge-base expert systems. A mixed license 

environment will be operated so that proprietary and open source web services can be incorporated for 

greatest extensibility. However, web service providers will be asked to use open source components 

whenever possible. 

The models available as web services in the eTOX system will mostly incorporate their own 

algorithms and descriptor generators. However, to avoid unnecessary duplication of computational 

resources, the integrated system will also support the inclusion of common algorithms and descriptor 

generators that are frequently used. 

The intention is for the models to initially be hosted by each of the model developers and as the 

project progresses to move towards the models being installed in-house on the user organization’s own 

server to allow training or validation of models using in-house data. 
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Dynamic registries of available prediction web services and database services are foreseen. These 

registries will continuously check the availability of known services and dynamically register newly 

deployed services. If a service is not available during the status check, the service provider will be 

notified about the problem. 

As there are likely to be differences in the acceptance of particular models by different users, for 

example on the basis of internal validation exercises, the user will be able to select the models and 

services to be applied in the queries. The default option will be to run all available and applicable 

models, but the user will also be able to choose to run just one (e.g., after a model has been upgraded) 

or only a sub-selection. If no predictions are available, the system will report this. 

The advantages of the eTOXsys result from two major achievements initiated and implemented by 

the eTOX consortium. First, the flexibility of a state-of-the-art web service-based system allows for a 

seamless integration of various distributed modules and services provided, maintained and further 

developed by different expert groups as well as the inclusion of company-adopted authentication 

mechanisms or data access policies. Secondly, the level of quality and originality of the data and 

information provided by the EFPIA partners enables the computational chemists and toxicologists to 

better capture real-life challenges with their models and to transfer information into valuable 

knowledge. 

 

3.7.2. The Predictive Models Battery 

In the previous sections, the eTOX strategy for the development of in silico prediction methods was 

advanced. The implementation in practice will require the development of a large collection of single 

models, each one producing predictions for a relevant toxicological endpoint (for the simplest cases) or 

a single mechanism involved in the toxicological effect. 

In eTOXsys, the in silico methods used for deriving the predictions fall into three main categories: 

(i) pure-chemistry based methods (ii) QSAR models (iii) structure-based or mechanistic methods. 

Pure-chemistry approaches are based on the recognition of molecular fragments or substructures linked 

to the presence of toxicity (toxicophores). Methods based on the calculation of molecular properties 

(e.g., pKa) fall also in this category. In QSAR methods, a training set of compounds of known 

biological properties is used to train a statistical model, describing the relationship between such 

biological properties and the compound structure. In the last approach, the structure-based or 

mechanistic methods, the toxicity of the compounds is predicted based on simulations involving the 

structure of a biomolecule important for the events leading to the toxic effect (e.g., blocking a bile 

transporter or the potassium hERG ion channel). The choice of the methods depends mainly of the 

availability of a priori knowledge, the relationship between the presence of fragments and toxicity in 

pure-chemistry methods, a good training series in QSAR methods, and the identity and three-

dimensional structure of a highly relevant biomolecule, in structure-based methods. Clearly, this 

knowledge is not readily available for all relevant toxicological endpoints, and a large part of the effort 

of developing eTOXsys will be devoted to the compilation and harmonization of knowledge from 

public and private sources, as described in previous sections. 

In a subsequent step, the results produced by the different models will be integrated to enable higher 

order predictions. The methods used for this integration are diverse. In cases in which several models 
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produce predictions for the same endpoint, the integration only aims to combine the predictions by 

obtaining a more accurate consensus result. In other cases, the results of DMPK prediction will 

determine the expected exposure of the targets to the drug. Even further, metabolic models can predict 

the presence of a given metabolite for which a full panel of predictions will be carried out in turn. 

Probably, more sophisticated integration approaches will be required for the complex endpoints. In 

these cases, the predictions describing individual mechanisms will be integrated using mathematical or 

logical models reflecting a priori knowledge about the physiology of the process. As indicated above, 

in spite of some success of the previously mentioned proof of concept application [8], this latter case 

suggests a high degree of difficulty and it is unlikely that the present project will generate this type of 

sophisticated approach for the prediction of all the relevant in vivo toxicological outcomes. 

 

3.7.3. The Prediction Models Web Services 

The concept of the prediction engine as a collection of independent models fits well with the 

software architecture described above. Every model is implemented as an independent web service, 

receiving a well-defined input (typically, the structure of the candidate compound) and yielding an 

output consisting of a prediction value, together with some additional information necessary for the 

correct integration of the results (e.g., some scoring of the prediction quality). Moreover, this 

architecture allows the distributed development of every prediction model, which can be performed in 

parallel by diverse partners and can be easily extended in the future by the pharmaceutical companies 

and/or other third parties. 

The integration of every single prediction, as depicted in the eTOXsys conceptual design, is carried 

out by a separate module, also working as a web service, producing an output that will be processed in 

order to present the results in understandable format. This latter step is also very important, since the 

end users need to obtain a clear picture of the prediction results, translated in terms of toxicity risks. 

Different approaches have been published for this task in the field of toxicology [51–54]. In eTOXsys, 

it is planned to carry out systematic tests to choose the most suitable method or combination of 

methods. An important factor in the choice of integrative tools is the ability of the method to provide 

reliability indices and the ability to mine for detailed information on the background of any particular 

prediction (e.g., the method used, the details of the computation, structure of the nearest compound in 

the training series, etc.). 

4. Current Achievements and Future Deliverables 

The achievements obtained so far in eTOX can be classified in three domains: data gathering and 

collection, database building, and development of the predictive system. 

The data gathering and collection, as a result of the aforementioned need to retrieve and release 

proprietary data, is progressing at a low pace, slower than envisaged. However, having now completed 

the pilot study to assess data extraction by potential subcontractors, the project is now in position to 

move forward rapidly. Also in this domain, the protection of data considered sensitive by their owners 

and the potential usefulness of diverse state-of-the-art structure masking methods have been tested, 

analyzing their strengths, weaknesses and potential threats. From this study, it was concluded in 
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agreement with other authors that no structure masking method on its own would provide the level of 

protection required. However, the particular set-up of the project and the participation of a trusted 

partner will allow the implementation of original structure protection protocols suitable for the 

purposes of the project. 

Regarding the database building, a first version of the eTOX database using the schema and 

database infrastructure (Vitic Nexus) described in previous sections is fully operative, and is being fed 

with real data extracted from the legacy reports. Also, a significant amount of publically available 

toxicological data has been collected in the ChOX database, which at present contains information for 

more than 153,520 single compounds. Plans to merge the contents providing a single access point to 

all the data collected in the project are already in progress. This integrated database will also be 

accessible as a web service, in accordance to the designed system architecture; a first version of this is 

undergoing testing. 

With respect to the eTOXsys platform, the overall architecture and the communication protocols 

have been defined (see section 3.7). Several of the modules configuring the system have been 

developed and are provided as web services independently at the sites of the respective developing 

partners. A pilot study, focused on the prediction of a simple in vivo endpoint (phospholipidosis), was 

run among the partners with positive results. A first proof of concept (POC) version of the eTOXsys 

has been implemented and presented to the consortium to demonstrate the interplay of user interface 

and predictive models provided as web services. Figure 6 shows a screenshot of this POC version. A 

first prototype of the eTOXsys for internal review by the consortium is planned for delivery by end of 

February 2012. 

 

Figure 6. Screenshots of the current version of the eTOX system (eTOXsys). 

 

 
 



Int. J. Mol. Sci. 2012, 13  

 

3841

Additionally, a great deal of effort has been put into building the project intranet, which constitutes 

a portal to numerous and valuable resources, including an updated index of toxicological bibliography, 

links to diverse toxicology databases and public datasets. The portal also hosts collaborative tools 

(wiki, discussion forums, etc.) and a central repository of management documents. 

5. Discussion and Outlook 

For the first time in pharmaco-toxicological research, a wealth of unused or poorly used, highly 

relevant preclinical drug safety data will be combined to improve the quality of drug candidates and 

the processes for their development leading to better safety, a faster process to the benefit of patients 

and a reduction of animal use.  

The database arising from the project is likely to be the largest repository for high quality repeat 

dose toxicity data currently existing. The number of entries in such a database is obviously important 

for accurate drug side effects prediction. However, the quality and the chemical space coverage is 

equally, if not more important. The pharmaceutical toxicity data that will be used have been produced 

with compounds that have become drugs and many more chemicals that have failed to reach the 

market. These compounds may have been dropped from further development for many reasons, 

including safety issues. No matter what, these molecules cover a large chemical space thought to be 

the best fit for druggable structures. Hence, the nature of the toxicity data collected for the eTOX 

database represent the best possible space coverage for toxicity prediction of future potential drugs. 

The relevance of these data is reinforced by the high quality required for GLP studies. Furthermore, 

existing relevant databases for eTOX, as well as collated, published data, complements in many ways 

the EFPIA data by increasing the chemical space and the parameters of the eTOX database. These two 

distinct aspects, relevance of the covered chemical space and data quality, bring together the essential 

background for accurate in silico toxicity prediction. 

The computerized software that is being developed in the eTOX project (eTOXsys) will take 

advantage of these data. Meanwhile, many aspects have to be taken into account for accurate 

predictions of toxicity. Toxicological events are very complex phenomena which depend on the 

chemical structure of the drug, the biological targets, their location within the cells, the perturbation of 

the biological pathways that include the targets, the function of these targets in different organs, the 

physiology of the whole organism, the pharmacokinetic characteristics of the compound, the potential 

toxic metabolites, the route of administration, the dose, the dose regimen, the duration of the treatment 

and the recipient species, all of which play a role which, at present, is far from being well understood 

and characterized. Therefore, the in silico predictions will be based on both relevant knowledge and 

observations of the overall outcome to animal treatment as described in the toxicity legacy reports. The 

synergy between the expert knowledge from the pharmaceutical toxicologists and professional input 

from academic and SME modelers will be critical to the success of the project. 

At present, the pharmaceutical industry partners are gathering their proprietary data to be used in 

eTOXsys and, as mentioned before, thorough security measures have been taken to protect intellectual 

property rights and secrecy of sensitive data, while still allowing their usage in the training of the 

predictive system. This specific feature establishes a major difference between eTOX and any open 

platform like the OpenTox project [18]. Once authorized to be sent out to the consortium, toxicity 
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report data will be accurately extracted, capturing heterogeneous data, acquiring data in a coherent 

manner from highly different formats from various companies, utilizing the standards and 

harmonization of procedures already developed. Likewise, to be able to exploit the extracted data, a 

standardization of terminology is necessary and hence much time and resource has been spent in the 

development of an accurate ontology for mapping all used terms, from the straightforward description 

of the study design to complex histopathology findings. Academic partners are also gathering and 

capturing data and are experiencing difficulties inherent to published data where a quality judgment 

has to be made. Re-using existing databases for the sake of eTOX also requires careful manipulation of 

structure and format to prevent compatibility issues.  

Overall, the eTOX database is being populated with preclinical toxicology data, mainly from 

rodents, as well as conventional non-rodent species: dog and more occasionally, monkey. The initial 

studies collected are classical GLP repeat dose studies and drug metabolism and pharmacokinetics 

studies in the same species. However, the in vitro pharmacology data are mostly from human receptors 

and targets. There will be necessary additional work to allow translation from pre-clinical to clinical 

prediction. Furthermore, more complex studies such as reprotoxicity and carcinogenicity reports could, 

and should, also be included in eTOX. For all these reasons, together with the fact that pharmaceutical 

companies are constantly generating new toxicity reports, the possibility of extending the scope and 

duration of this project is being envisaged. In any case, the eTOX database will not be a frozen system 

at the end of the consortium. Maintenance and improvement of prediction systems, as well as the 

permanent incorporation of new data, will have to be accommodated. 

Within three years from now, the eTOX project and with it, the database and the exploitation 

systems (both toxicity prediction and data mining), will be close to its scheduled end. At this point it 

will be clear how many of the identified hurdles will have been overcome and whether or not this 

consortium will have delivered its promises. However, one battle is already won: pulling together 

highly competent forces to move forward drug discovery and development to its best possible outcome 

is already in place and moving forward. Indeed, more than three years ago now, when this project was 

being conceived, bringing together competing pharmaceutical companies, with academic partners 

usually more focused on pure sciences than in concrete applications, together with SMEs whose 

normal function is as providers rather than partners, under a European institution (IMI), was perhaps 

the biggest challenge of all. This challenge has been taken up by the eTOX consortium with one 

common goal: improving medicine quality. 
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