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Abstract: Bacterial pathogens that are multi-drug resistant compromise the effectiveness 

of treatment when they are the causative agents of infectious disease. These multi-drug 

resistance mechanisms allow bacteria to survive in the presence of clinically useful 

antimicrobial agents, thus reducing the efficacy of chemotherapy towards infectious 

disease. Importantly, active multi-drug efflux is a major mechanism for bacterial pathogen 

drug resistance. Therefore, because of their overwhelming presence in bacterial pathogens, 

these active multi-drug efflux mechanisms remain a major area of intense study, so that 

ultimately measures may be discovered to inhibit these active multi-drug efflux pumps. 
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1. Introduction: Antimicrobial Resistance and Drug Efflux Pumps 

Morbidity and mortality rates caused by infectious microbial agents represent serious public health 

concerns. Pathogenic bacteria are causative agents of infectious disease in all body systems and are 

particularly serious due to their consequences economically, socially, and in regards to quality of  

life [1–3]. Thus, it is critical that a clear understanding of the biological aspects of infectious disease 

be made known so that eventually infectious disease morbidity and mortality are curtailed, if not 

eventually eradicated. Pathogenic bacteria have devised virulence factors, such as drug resistance 

determinants, that facilitate pathogenesis in human patients. Unfortunately, many of these bacterial 

virulence factors are poorly understood at the molecular level. Thus, it is critical that such virulence 

OPEN ACCESS 



Int. J. Mol. Sci. 2012, 13 4485 

 

factors be understood mechanistically so that they may be used as targets for chemotherapy. 

Antimicrobial agents are indicated for bacterial infectious disease treatment and represent a good 

means of combating infectious disease [4]. Regrettably, many pathogenic bacteria have acquired or 

developed resistance mechanisms, which work against anti-bacterial drugs [5,6]. Further, use and 

abuse of individual antimicrobial agents in clinical settings have selected for variant bacterial 

pathogens that are naturally resistant to anti-bacterial drugs [7]. In fact, selection of single-drug 

resistance often has led to selection of multi-drug resistance in pathogenic bacteria [8]. Such  

multi-drug resistant bacterial pathogens compromise chemotherapeutic efforts and enhance both 

morbidity and mortality rates in humans [5,6]. Therefore, multi-drug resistant mechanisms represent 

extremely good targets for studies towards the efforts in the effective treatment of infectious  

disease [9,10]. Among various reasons for the development of antibiotic resistance in bacteria, overuse 

is considered the most important, though this does not explain the presence of antibiotic resistance in 

non-pathogenic environmental bacteria which are not exposed to antibiotics [11]. Many species of 

bacteria are now known to have armed themselves with the means of fighting toxic compounds in 

nature, and such abilities have manifested as antibiotic resistance mechanisms in human pathogenic 

bacteria. While the evolution of antibiotic resistance in response to the toxic compounds is 

straightforward and easy to comprehend, bacteria on the other hand, possess complex machineries, 

which extrude antibiotics as their secondary function. These membrane bound multidrug resistance 

(MDR) efflux pumps are found in all bacteria and their primary functions could be other than 

antibiotic resistance, which include maintenance of intracellular solute concentrations or the cell 

homeostasis, extrusion of toxic byproducts of metabolism or transport of amino acids and  

nucleotides [12–15]. Efflux pump-mediated resistance to single or multiple antimicrobial agents has 

not only raised serious concerns but also has constricted the treatment options against bacterial 

infections [13]. Efflux pumps reduce the accumulation of antibiotics inside of the bacterial cells, and 

the slow phase in which the process of antibiotic efflux takes place provides sufficient time for the 

bacterium to adapt to the antibiotics and become resistant through mutations or alteration of antibiotic 

targets [16]. Further, the over-expression of efflux pumps enhances the resistances to antimicrobials [17]. 

Based on the sequence comparison, efflux pumps are grouped into five major categories: The major 

facilitator superfamily (MFS), the adenosine triphosphate (ATP)-binding cassette (ABC) family, the 

resistance-nodulation-division (RND) family, the small multidrug resistance (SMR) family and the 

multidrug and toxic compound extrusion family [18–27]. Efflux pumps are now known to confer 

resistance to almost all classes of antibiotics [19]. 

This review is focused mainly on efflux pumps of the MFS from Gram-negative and Gram-positive 

bacteria, current trends, and the future prospects for understanding the structure-functions relationships 

in drug efflux proteins. 

2. Efflux of Tetracycline by TetA, A Key Drug Efflux Pump 

Active efflux of antimicrobial agents was first discovered by Levy in which active extrusion was 

demonstrated of the tetracyclines from bacterial host cells harboring plasmid pBR322 [28,29]. Bacteria 

are able to resist the tetracyclines by way of active efflux via the TetA family of efflux pumps [30]. 

The TetA family of efflux pumps are grouped into two major groups: The first group is comprised of 
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chromosomally-encoded 12-TMS efflux pumps, such as Tet(A), Tet(B), Tet(C) and Tet(D) [30–34], 

found in Gram-negative bacteria, while the second group comprises plasmid-encoded Tet(K) 

Staphylococcus aureus and Tet(L) found in Bacillus spp., Staphylococcus, and Streptococcus spp. [35]. 

Tet(K) and Tet(L) are 14-TMS efflux pumps [36,37]. Early work by Griffith and Henderson discovered 

shared homology between mammalian and bacterial sugar transporters [38,39], establishing the 

presence of the very large major facilitator superfamily of related symporters and antiporters with 

single- and multiple-drug substrates [24,40]. It was of tremendous interest that single- and multi-drug 

efflux pumps were homologous [24,41–44]. Implicit in this work was the presence of highly conserved 

amino acid sequence motifs shared in members of the MFS [24,27]. Later, a mutational analysis 

showed that a highly conserved glycine residue in the so-called antiporter motif (Motif C) of the 

TetA(C) efflux pump was necessary for conferring resistance to tetracycline [32]. This glycine was 

found in Motif C, a highly conserved motif in TMS5 in antiporters of the MFS [40]. Additional 

elements of Motif C were shown to be required for single and multidrug transport in the efflux pumps 

CaMdr1p, QacA, Mdt(A) from Lactococcus garvieae and Lactococcus lactis, Tet(B), Tet(K), Tet(L), 

and VAChT [32,45–54]. Inhibitors of tetracycline efflux were discovered [55–57]. Analyses of the 

structure-function relationships of single- and multi-drug efflux pumps may indentify key residues for 

discovery of efflux inhibitors. Therefore, identification of functionally conserved regions within efflux 

pumps should be useful for design of efflux pump inhibitors [58,59]. 

3. MdfA from Escherichia coli 

MdfA, found in Escherichia coli, is a secondary multidrug efflux pump made up of 410 amino 

acids encoded by a chromosomal gene cmr [60]. Based on phoA (alkaline phosphatase) and cat 

(chloramphenicol acetyl transferase) gene fusion studies, MdfA has 12 transmembrane helices [61]. 

Though a crystal structure is not currently available, predicted 3D structure has been able to reveal 

some interesting features of MdfA such as the presence of a large cavity with a putative substrate 

binding function with three amino acids Glu26, Asp34 and Asp132 with critical roles in the interaction 

of MdfA with the drugs [62]. Of these, Glu26 has been shown to be important for the transport of 

cationic substrates [60]. Mutations changing Glu26 into Ala, Asn, His, Leu, and Asp severely affects 

the efflux of neutral substrates, while the amino acids Gln26 and Ile26 confer higher levels of 

resistance by MdfA to the same substrates [61]. On the other hand, a Glu26Thr mutation completely 

abolishes cationic drug transport by MdfA, and this effect is greatly reverted by a second site mutation 

Val335Glu/Asp [61]. In addition to multidrug resistance, MdfA performs a further function of 

maintaining the physiological pH of the cell [62]. 

4. EmrD-3 from Vibrio cholerae 

Many of the antibiotic efflux pumps identified in the pathogenic V. cholerae belong to the MATE 

and RND family of efflux proteins [63–65]. EmrD-3, identified in an O1 strain of V. cholerae, is an 

efflux pump of MFS family with 12 transmembrane segments (TMS) [66]. Membrane proteins 

homologues of EmrD-3 are widely distributed among the Gram-positive and -negative bacteria, 

including several Vibrio and Bacillus spp. EmrD-3 is closely related to the Bcr/CflA subfamily of 

membrane proteins, which includes Bcr (bicyclomycin resistance protein) in E. coli, FloR 



Int. J. Mol. Sci. 2012, 13 4487 

 

(chloramphenicol and florfenicol resistance), in Salmonella enterica serotype Typhimurium DT104 

and CmlA (chloramphenicol resistance) in Pseudomonas. The H
+
-antiport activity of EmrD-3 has been 

demonstrated by ethidium bromide efflux and accumulation assays [66]. Among the various 

antimicrobials actively extruded by EmrD-3 are linezolid, rifampin, trimethorprim, erythromycin, and 

chloramphenicol. Of these, the highest resistance was conferred to the oxzolidinone drug linezolid and 

it is speculated that linezolid may be the preferred efflux substrate by EmrD-3. The ability of EmrD-3 

to actively extrude linezolid and the presence of its homologues in Gram-positive bacteria raises new 

concerns since the oxazolidinone class of drugs, to which linezolid belongs, are used to treat  

Gram-positive bacterial infections by Streptococcus spp., vancomycin-resistant Enterococcus faecium, 

and methicillin-resistant Staphylococcus aureus (MRSA) [67]. Resistance to linezolid is attributed to a 

point mutation in the peptidyl transferase of 23S rRNA and the involvement of efflux pumps is not 

well known [68]. Efflux pumps, being integral membrane proteins, were thought to extrude only 

hydrophobic compounds. However, efflux of linezolid, which is a hydrophilic drug, by EmrD-3 and 

other efflux pumps such as AcrAB, has changed this hypothesis [66,69]. The discovery of the role of 

EmrD-3 in linezolid resistance will lead to the identification of similar efflux pumps in Gram-positive 

bacteria. Currently no crystal or predicted 3D structures are available for EmrD-3. 

5. LmrS from Staphylococcus aureus 

LmrS is an efflux pump of the MFS family with 14 TMS identified in a clinically-isolated 

methicillin-resistant Staphylococcus aureus strain [70]. Unlike the QacA-family of plasmid-encoded 

efflux pumps, LmrS is encoded by a chromosomal gene. Proteins homologous to LmrS are widely 

distributed among the Gram-positive group of bacteria that includes Staphylococcus, Enterococcus, 

Bacillus, Lactobacillus and Listeria. The cloned lmrS gene conferred high antibiotic resistance to 

lincomycin, kanamycin, fusidic acid, linezolid, trimethoprim, florfenicol, chloramphenicol, 

erythromycin, streptomycin, fusidic acid, and kanamycin. The lincomycin resistance conferred by 

LmrS is further supported by an amino acid sequence similarity of 62% with the lincomycin resistance 

protein LmrB of Bacillus subtilis. Significantly, LmrS confers clinical levels of resistance to linezolid 

and fusidic acid, two important antimicrobials with strong activity against MRSA. Interestingly, the 

lmrS gene is present in both methicillin-resistant and -sensitive S. aureus strains. Thus, it needs to be 

determined if other regulatory factors play any role in the expression of lmrS in S. aureus.  

A preliminary study has shown constitutive expression of lmrS in clinical strains of S. aureus [70]. 

6. Mdt(A) from Lactococcus lactis and L. garvieae 

The multiple drug transporter Mdt(A) is a plasmid-encoded efflux pump found in  

Lactococcus lactis [51]. The protein has 418 amino acids that fold into 12 TMS, and is a member of 

the MFS with some interesting structural differences [51]. Mdt(A) has two antiporter motifs (motif C) 

on TMS5 and TMS9, and also a putative ATP-binding site. The substrates for Mdt(A) include 14-,  

15- and 16-membered macrolides, lincosamides, streptogramins and tetracyclines [51]. Recently,  

a multidrug-efflux pump EfmA of Enterococcus faecium has been reported to have very high sequence 

similarity (86%) with Mdt(A) [71]. However, it is not known if Mdt(A) is H
+
 dependent, though the 

addition of glucose resulted in efflux. However, protonophores such as CCCP did not inhibit the efflux 
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activity [51]. The molecular mechanism and the structure-function relationship responsible for drug 

transport by Mdt(A) remains to be elucidated. A recent study describes the presence of a mutated Mdt(A) 

in Lactococcus garvieae that did not confer elevated resistance to erythromycin or tetracycline [48]. The 

mutations were Val154Phe and Ile296Val in TMS5 and TMS9 respectively, the two antiporter motifs 

(motif C) of Mdt(A) [48]. Unlike in L. lactis, Mdt(A) of L. garvieae is chromosomally encoded [48]. 

7. QacA and QacB from Staphylococcus aureus 

QacA is encoded by plasmid-borne genes in multidrug resistant Staphylococcus aureus [72–74]. 

Subsequently, the qacA gene was found to be widespread among Staphylococcus aureus strains 

isolated from clinical environments [75]. The QacA efflux pump extrudes structurally diverse 

monovalent and divalent cationic substrates, the most prominent among them being the quaternary 

ammonium compounds or the Qacs [76,77]. QacA is 514 amino acids long, traverses the membrane  

14 times and is energized by protons (H
+
) [78]. QacA was the first efflux protein of the MFS family 

with 14 TMS. QacB, which is also plasmid-encoded, confers resistance only to monovalent cationic 

substrates, confers little or no resistance to divalent cationic substrates, and the nucleotide sequence 

that encodes QacB differs from QacA only by seven nucleotides [79]. Structure-function analyses have 

demonstrated the functional importance of key amino acid residues in the transport of drug substrates 

by QacA, making these critical residues prime targets for drug design studies of putative efflux pump 

inhibitors [49,80–85]. The presence of acidic residues at amino acid positions 322 or 323 is essential 

for QacA or QacB to efflux divalent cations [79]. The expression of qacA genes is regulated by a 

transcription regulator, QacR, which belongs to the tetR family of regulators [86]. 

8. NorA, NorB and NorC from Staphylococcus aureus 

NorA, the first chromosomally-encoded efflux pump identified in Staphylococcus aureus is made 

up of 388 amino acids, with 12 TMS [87,88]. The norA gene is present in all of the whole genome 

sequences of Staphylococcus aureus strains currently available in the GenBank. Initially, norA was 

thought to specifically efflux the quinolone drug norfloxacin, but subsequently was found to confer 

resistance to a number of antimicrobials, including chloramphenicol [75,85]. The expression of norA is 

regulated by mgrA, a member of a marR group of transcriptional regulators [89]. NorB and NorC are 

each made up of 462 amino acids, both efflux pumps are organized into 14 TMS and confer resistance 

to quinolones, such as ciprofloxacin, norfloxacin, and sparfloxacin [90,91]. 

9. Conclusions and Future Directions 

Bacterial multi-drug efflux pumps constitute a major mechanism for conferring multi-drug 

resistance in pathogenic bacteria that cause infectious disease [76,92]. Multi-drug efflux pumps reside 

in the biological membrane and actively extrude antimicrobial agents from pathogenic bacterial cells [92], 

thus conferring multi-drug resistance. Thus, multi-drug efflux pumps reduce the efficacy of 

chemotherapy for infection caused by bacteria that harbor these pumps, resulting in a serious health 

concern [93,94]. In order for translational science efforts to come to fruition, it will become necessary 

to identify key targets within efflux pumps to make effective inhibitors, which can then be used in 
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modulation chemotherapy [9,10]. Unfortunately, it is poorly understood how these multi-drug efflux 

pumps function in terms of the structure-function relationships. Thus, lack of a clear molecular 

analysis of the multi-drug efflux pumps prevents investigators from ultimately seeking potential efflux 

inhibitors, because they lack precise information regarding key molecular targets, such as amino acids 

that bestow drug transport. Study of the molecular biology of multi-drug efflux pumps would identify 

important amino acids that confer their active efflux function. Knowing these amino acid targets that 

confer activity from a molecular standpoint would identify critical amino acids that would serve, 

therefore, as important targets for potential inhibition of multi-drug efflux [9,10]. Thus, inhibition of 

the multi-drug efflux pumps would aid in potentially restoring the effectiveness of antimicrobial 

chemotherapy of infectious disease caused by bacteria that have multi-drug efflux pumps. Therefore, 

morbidity and mortality frequencies may be diminished, because of multi-drug efflux inhibition [9,10]. 

Study of the structure-function relationships of multi-drug efflux pumps is therefore needed, in order 

to determine the functional roles of key amino acids that convey drug efflux from pathogenic bacteria 

and make translational medicine possible. 
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