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Abstract: Two artificial intelligence techniques, namely artificial neural network (ANN) 

and genetic algorithm (GA) were combined to be used as a tool for optimizing the covalent 

immobilization of cellulase on a smart polymer, Eudragit L-100. 1-Ethyl-3-(3-

dimethyllaminopropyl) carbodiimide (EDC) concentration, N-hydroxysuccinimide (NHS) 

concentration and coupling time were taken as independent variables, and immobilization 

efficiency was taken as the response. The data of the central composite design were used to 

train ANN by back-propagation algorithm, and the result showed that the trained ANN 

fitted the data accurately (correlation coefficient R2 = 0.99). Then a maximum 

immobilization efficiency of 88.76% was searched by genetic algorithm at a EDC 

concentration of 0.44%, NHS concentration of 0.37% and a coupling time of 2.22 h, where 

the experimental value was 87.97 ± 6.45%. The application of ANN based optimization by 

GA is quite successful. 

Keywords: immobilized enzyme; cellulase; artificial intelligence based optimization; 

smart biocatalyst; carbodiimide coupling 
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1. Introduction 

Cellulase plays an important role in the conversion of lignocellulosic biomass to biochemicals, 

biomaterials and bioenergy. In order to recover the enzyme after reaction for possible re-use, cellulase 

has always been immobilized on insoluble matrices as opposed to soluble matrices in the past. 

However, poor contact during reaction is a consequence of such an immobilization [1–4], especially 

when an insoluble cellulosic biomass was used as the enzymatic substrate [5]. Using S-IS  

(soluble-insoluble) matrices to immobilize cellulase could help in this respect by providing a smart 

biocatalyst [6,7]. The smart biocatalyst is not only a homogeneous catalyst for reducing mass transfer 

resistance during the reaction, but also a heterogeneous catalyst for easy recovery after the reaction. 

As a common smart polymer, Eudragit L-100 has been used to immobilize cellulase by 

carbodiimide coupling. Eudragit L-100 is a copolymer of methacrylic acid and methyl 

methacrylate,and contains many carboxyl groups (Figure 1). Carbodiimide was able to activate the 

carboxyl groups, and then cellulase was bonded to the activated Eudragit L-100. However, the 

immobilization is non-covalent due to the existence of acetate (acetate also contains many carboxyl 

groups), therefore, the activity yield was relatively low and the reusability was unsatisfactory [8]. To 

address this the problem, cellulase was immobilized on Eudragit L-100 in the absence of acetate, and 

N-hydroxysuccinimide (NHS) was added to enhance the carbodiimide coupling [9,10]. However, our 

preliminary experiments showed that immobilized cellulase with a high activity (for filter paper) did 

not show a correspondingly strong ability to hydrolyze lignocellulosic biomass such as straw, grass 

and wood. This may be attributed to the structure and composition difference of enzymatic substrates. 

Lignocellulosic biomass consists of lignin, cellulose and hemicellulose, while filter paper is just like 

pure cellulose. In a practical application, the enzymatic substrate is a lignocellulosic biomass and not 

pure cellulose. So in this study, glucose produced from the hydrolysis of a lignocellulosic biomass by 

immobilized cellulase was used as the response to optimize the immobilization conditions. The more 

glucose was produced, the larger the hydrolytic ability of immobilized cellulase and the higher the 

immobilization efficiency. 

Figure 1. The chemical structure and reversible soluble mechanism of Eudragit L-100. 
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Model based optimization techniques have been gaining much popularity because they cannot  

only examine the combined interaction of each factor, but also are labor-saving compared to  

one-factor-at-a-time approaches. Response surface methodology (RSM) is such a frequently used 

model and has achieved much progress in optimizing multi-factor process, especially for three-factor 

processes [11,12]. However, RSM has a limitation in simulating the data of an irregular experimental 

domain and can only exhibit a low-order non-linear behavior to a regular experimental region. In 

contrast, another model, namely artificial neural network (ANN), does not suffer from the limitation of 
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the experimental design, and the efficient simulation requires relatively fewer experiments [13]. 

Recently, ANN showed a significantly higher simulation and prediction accuracy than RSM in 

simulating and predicting many biochemical reactions [9,14–21]. Moreover, a higher and more 

accurate optimized value is always obtained from ANN (combined with genetic algorithm (GA)) than 

RSM [9,15,17–19,21,22]. GA is another artificial intelligence tool that uses evolutionary natural 

selection processes, where selection results in species that fit the best. 

Like our previous report [9], two artificial intelligence techniques (ANN and GA) were used to 

optimize cellulase immobilization. 

2. Results and Discussion 

2.1. ANN based Simulation and Prediction 

After limited trials, the training goal was achieved, and the ANN was built successfully. The fitted 

immobilization efficiency by ANN is listed in Table 1. The table shows that the experimental values 

were almost identical to the fitted values. The mean absolute/relative error, root-mean-square error and 

variance that were used to evaluate the ANN based simulation performance were 0.74, 1.18%, 0.99 

and 0.98, respectively. The values are very smaller, which also shows that the fit accuracy is very high. 

Similar results were obtained for other bioprocesses when using ANN based fit [23–25]. The analysis 

of variance (ANOVA) is given in Table 2. According to the F-value and P-value, it is outlined that the 

ANN is a significant model. The correlation coefficient of the two sets of data (experimental and 

simulated values) is more than 0.99. The value is very close to 1, which further demonstrates that the 

fit is rather perfect. 

In order to validate the trained ANN, three more experiments were carried out (trial 21–23 in  

Table 1). The result shows that the experimental values are rather close to the ANN based prediction. 

All the relative errors between experimental and predicted values are within 3.0%. Both fit and 

prediction results show the training of the ANN is quite successful. So, the trained ANN could be 

considered as the desirability function between immobilization efficiency and the three factors. 

Table 1. Experimental design matrix of three factors and the experimental immobilization 

efficiency versus artificial neural network (ANN) simulated/predicted values. Data are 

means ± SD of triplicates. 

Trials X1 X2 X3 
Immobilization efficiency (%) 

Experimental ANN 

Data for ANN simulation (CCD) 

1 −1.00 −1.00 −1.00 76.29 ± 5.25 77.69 
2 +1.00 −1.00 −1.00 46.53 ± 3.14 46.85 
3 −1.00 +1.00 −1.00 45.64 ± 3.52 45.53 
4 +1.00 +1.00 −1.00 67.12 ± 4.94 68.28 
5 −1.00 −1.00 +1.00 59.45 ± 4.15 59.58 
6 +1.00 −1.00 +1.00 48.80 ± 3.88 49.40 
7 −1.00 +1.00 +1.00 61.89 ± 4.68 64.31 
8 +1.00 +1.00 +1.00 73.77 ± 5.01 74.10 
9 −1.68 0.00 0.00 54.74 ± 4.21 52.89 
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Table 1. Cont. 

Trials X1 X2 X3 
Immobilization efficiency (%) 

Experimental ANN 

10 +1.68 0.00 0.00 64.84 ± 4.52 63.87 
11 0.00 −1.68 0.00 45.73 ± 3.57 47.18 
12 0.00 +1.68 0.00 63.49 ± 4.36 62.75 
13 0.00 0.00 −1.68 55.12 ± 3.89 54.17 
14 0.00 0.00 +1.68 48.25 ± 3.31 48.00 
15 0.00 0.00 0.00 77.01 ± 5.15 76.86 
16 0.00 0.00 0.00 77.33 ± 5.07 76.86 
17 0.00 0.00 0.00 77.22 ± 5.20 76.86 

Data for ANN simulation (CCD) 

18 0.00 0.00 0.00 77.06 ± 5.19 76.86 
19 0.00 0.00 0.00 77.30 ± 5.09 76.86 
20 0.00 0.00 0.00 77.28 ± 5.08 76.86 

Data for ANN prediction (random) 

21 −1.68 0.00 +1.00 76.22 ± 4.77 78.17 
22 −1.00 +1.00 0.00 71.31 ± 3.98 69.38 
23 0.00 +1.68 +1.68 57.59 ± 2.56 56.87 

Table 2. Analysis of variance (ANOVA) for neural network model ANN. 

 DF SS MS F-value p-value R2 
Model 1 2909.454 2909.454 2865.166 2.68E−21 0.9938 
Residual 18 18.27823 1.015457    
Total 19 2927.732     

2.2. ANN based Optimization by GA 

Once the ANN was built successfully, GA was used to search the maximum output. Results of  

50 stochastic runs show that the range of maximum, minimum and average objective function is from 

84.23% to 89.76%, from 40.28% to 48.96% and from 78.23% to 80.99%, respectively. The average 

value of maximum objective function is calculated as 88.76%, and the value can be considered as the 

optimized value by artificial intelligence techniques (ANN-GA). Correspondingly, the optimized 

condition is a EDC concentration of 0.44%, a NHS concentration of 0.37% and a coupling time of 

2.22 h, where the experimentally determined immobilization efficiency was 87.97 ± 6.45%. This 

shows a perfect agreement with the ANN based optimization (less than 1% derivation). Similar results 

were obtained for other bioprocesses [24,26,27]. Figure 2 shows the evolution of the algorithm with 

successive generations. Starting from 61.36%, the average immobilization efficiency apparently 

increases until the 7th generation and is 86.33% at the end of 50 generations. The maximum 

immobilization efficiency also apparently increases for the first few generations and reached 88.76% at 

the 22th generation, then remains unchanged. 
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Figure 2. Evolution of the best and average fitness (immobilization efficiency) over the  

50 generations in the genetic algorithm. 
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Compared to frequently used RSM, artificial intelligence represents superior non-linearity, more 

accurate simulation and prediction, so a better optimization could always be obtained [28]. Besides, 

artificial intelligence does not suffer from the limitation of experimental design, and the efficient 

simulation requires relative fewer experiments. Of course, the accuracy would be higher when a large 

number of experiments are used to create the non-linear behavior [29]. Thus, in case of artificial 

intelligence, a more liberal search space can be chosen, although the correlation in that search space is 

more complex than the equation of higher degree [30]. 

2.3. Reusability 

Immobilized cellulase was mixed with insoluble substrate at stirring. After the reaction, the 

undegraded substrate was filtered or precipitated by centrifugation. Then, the pH of the obtained 

supernatant was lowered and centrifuged. The obtained precipitation was the recycled immobilized 

cellulase, which could be used for the next hydrolysis. As our previous reports [9,10] state, there is 

more than 50% productivity after five re-uses. 

3. Experimental Section  

3.1. Materials 

Eudragit L-100 was obtained from Degussa Ltd. (Shenzhen, China). The polymer is completely 

soluble at pH > 4.3 in aqueous solution, and the critical soluble pH changes to 5.0 via coupling with 

cellulase (Figure 1) [8]. EDC and NHS were purchased from Sigma-Aldrich Co., Ltd. (Shanghai, 

China). Crude cellulase powder from Trichoderma viride was provided by Shanghai Bio Life Science 

& Technology Co., Ltd. (Shanghai, China). The activity is 74.07 FPU/g (FPU is the activity unit of 

cellulase when filter paper is used as the enzymatic substrate), assayed by the description of  

IUPAC [31]. Wheat straw was obtained from a local farm and pretreated by alkali as Carrillo et al. 

described [32]. 



Int. J. Mol. Sci. 2012, 13 7957 

 

 

3.2. Immobilization of Cellulase on Eudragit L-100 

Cellulase was covalently immobilized on Eudragit L-100 by carbodiimide coupling in the presence 

of NHS following protocol. Fifty milliliters of solution of Eudragit L-100 (2%, w/v) was prepared as 

Sardar et al. described [33]. To activate the polymer, NHS (0.08%–0.48%, w/v) and EDC  

(0.06%–0.74%, w/v) were added in turn. After mixing for 15 min, some crude cellulase containing 100 

mg protein was added and stirred for 0.48 to 5.52 h. The choice of time range was based on our 

previous study, where the optimum coupling time in the absence of NHS was about 3 h. The pH of the 

mixture was reduced to 3.6 with glacial acetic acid. Precipitates were separated by centrifugation 

(6800 × g, 10 min) at 4.0 °C and washed three times with 0.02 mol/L acetic acid. At last, the 

precipitations were re-dissolved in 50 mL acetate buffers (0.2 mol/L, pH 5.0) and used as immobilized 

cellulase for further hydrolytic experiments. 

3.3. Central Composite Design 

Eudragit L-100 is a copolymer of methacrylic acid and methyl methacrylate, which contains many 

carboxyl groups. These carboxyl groups are inevitably used as preferred functional groups to couple 

cellulase. EDC could help with this. EDC is generally utilized as a carboxyl-activating agent for amide 

bonding with primary amines and NHS could enhance the coupling. Besides EDC (coupling agent) and 

NHS (enhancer), the coupling time is also an important factor that can affect the coupling between 

Eudragit L-100 and cellulase. Less time can result in the cellulase not being coupled to Eudragit L-100 

in time; more time might bring an excess coupling that negatively affects the active site of cellulase. 

So in this study, EDC concentration X1, NHS concentration X2 and coupling time X3 were applied as 

independent variables (inputs of ANN). A central composite design (CCD) for the three factors was 

applied to train ANN. The range and levels of each factor is shown in Table 3. The CCD with 20 trials 

(six central points) was a 23 full factorial design at a distance 1.68 from the origin (Trials 1–20 in 

Table 1). 

Table 3. Experimental levels and range of each factor. 

Factors Symbols 
Ranges and levels 

−1.68 −1.00 0 1.00 1.68 

EDC concentration X1 0.06 0.20 0.40 0.60 0.74 
NHS concentration X2 0.08 0.16 0.28 0.40 0.48 
Coupling time X3 0.48 1.50 3.00 4.50 5.52 

3.4. Artificial Neural Network 

ANN is a computer program architecture capable of non-linear computations in certain 

configurations, such as the multi-layer perceptron (MLP). It can identify arbitrary discriminant 

functions directly from experimental data [28,34]. In our experiment, the ANN architecture consists of 

three neurons (EDC concentration X1, NHS concentration X2 and coupling time X3) in the input layer, 

four neurons in the hidden layer, and one neuron (immobilization efficiency) in the output layer 

(Figure 3). This is a typical neural network architecture [34]. In order to receive equal attention during 



Int. J. Mol. Sci. 2012, 13 7958 

 

 

the training process [26], all the data (input and output ones) of the CCD (trial 1–20 in Table 2) were 

scaled as follows (Equation (1)): 

i i,min*
i

i,max i,min

*

Input layer: 2 1

0
Output layer :

100 0

X X
X

X X

Y
Y

−
= −

−
−=
−

 (1)

where, Xi* and Y* are the new scaled data of input and output layers. 

Figure 3. Schematic representation of ANN modeling the relationship between 

immobilization efficiency and three factors (EDC concentration, NHS concentration and 

coupling time). The factors wij and wj1 are the connecting weights from Xi* to Zj and Zj to 

Y*, respectively. 

 

As the most frequent algorithm, the back-propagation algorithm was used to train a random ANN 

model by feeding the newly scaled data. The algorithm includes forward propagation of signal and 

back propagation of error. Forward propagation of signal was carried out as follows: 
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(2)

where, Zk are the data of hidden layer, respectively; wij and wj are connecting weights from Xi* to Zj 

and Zj to Y*, respectively, and f() is the transfer function. 

The transfer functions in the hidden and output layers of the ANN were tangent sigmoid and pure 

linear functions, respectively. The mean squared error between the results of the output neurons and 

the actual outputs is calculated and propagated backward through the network. Then the algorithm 

adjusts the weight of each. Once the mean square error reached 1e−4, the training was over and the 

corresponding ANN was built. All the procedures were carried out by Matlab 7.1. 
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3.5. Genetic Algorithm 

Using the trained ANN as the fitness function, a genetic algorithm (GA) was coupled to search the 

maximum immobilization efficiency. The objective function is to find a decision variable, i.e., ANN 

input neurons (Xi), so that it maximizes the objective function, i.e., ANN output. Working parameters 

namely the total number of generations, population size, number of binary coded variables, cross over 

probability and mutation probability are 50, 20, 3, 0.4 and 0.005, respectively. 

Genetic algorithm uses evolutionary natural selection processes, where selection results in species 

that fit the best. A population of individuals is maintained at each generation, and each individual in 

the population represents a possible solution to the problem [27]. The individual chosen in this study 

was a set of EDC concentration X1, NHS concentration X2 and coupling time X3. The GA-based search 

for an optimal solution vector, Xi, begins with a randomly initialized population of probable 

(candidate) solutions. The candidates are referred to as strings or chromosomes. Each chromosome is 

evaluated to measure its fitness using the ANN-based model. The steps involved in GA-based 

optimization algorithm are as follows: 

Randomly generate a population of individuals and assign a fitness value to each individual to guide 

the search by specific fitness function. Select individuals with higher fitness values and let them 

undergo genetic operation, including crossover and mutation. Use the newly generated child 

population as the parent population for the next generation and treat them with the same evolutional 

process continuously until a stop criterion has been satisfied [20,27]. The algorithm was run 50 times 

in this study. All the procedures were carried out by Matlab 7.1. 

3.6. Determination of Immobilization Efficiency 

Before and after immobilization, 100 mg cellulase protein was incubated with 2.5 g pretreated 

wheat straw at pH 5.0, 50 °C and 120 rpm. The solid loading was 5% (v/w). After 12 h, a sample 

solution was taken out, and centrifuged at 4000 rpm and 4 °C for 5 min. The obtained supernatant was 

kept at 80 °C for 10 min and then used for glucose assay. Immobilization efficiency was calculated  

as follows: 

Glucose produced by immobilized cellulase
Immobilization efficiency (%)= 100

Glucose produced by free cellulase
×  (3)

3.7. HPLC Method 

Glucose was determined by the HPLC Waters 2695 system consisting of Waters 600E system 

controller, Waters 717 automatic sampler, Waters 2414 differential refractometer, Shodex sugar  

SP-0810 column. The mobile phase was distilled water at a flow rate of 0.6 mL/min. The column 

temperature was 80 °C. The injected sample volume was 10 μL. Standard samples and hydrolyzed 

samples were filtrated by a 0.45 μm filter before analysis. 

4. Conclusions  

Cellulase, via immobilization, was converted to a smart biocatalyst that could be used as a 

homogeneous catalyst during the reaction and recovered easily after the reaction for possible re-use.  
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It is self-evident that the immobilization could improve the economy of cellulase utilization in its 

related industries. In this study, the artificial intelligence based optimization is quite successful, and 

87.97% of immobilization efficiency is obtained. It is believed that artificial intelligence based 

optimization technique could be applied in more and more complicated biochemical systems due to its 

advanced non-linear analysis and mechanistic independence shown in modeling and predicting 

these systems. 
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