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Abstract: A number of 1,4-bis(phenylethynyl)benzene derivatives (BPEBs) and their 

analogues with different numbers of side-substitute fluorine atoms on benzene rings, and 

alkyl chains, ethoxyl groups, fluorine atoms and trifluoromethyl groups as the end groups 

have been synthesized. The effects of the different substituents on their properties such as 

thermal behavior of melting point and clearing point, the temperature of nematic phase, 

optical anisotropy and dielectric anisotropy have been well investigated, and it has been 

found that some BPEBs have a wide range of the nematic phase temperature with high 

optical anisotropy (Δn) and acceptable dielectric anisotropy (Δε), which have been applied 

as the crucial compositions to constitute a liquid crystal mixture having the properties of  

Δε = 29.0 and Δn = 0.283 at 25 °C. With the addition of the chiral dopant to the obtained 

liquid crystal mixture, blue phase liquid crystal with a blue phase temperature range of  

8 °C has been achieved. 
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1. Introduction 

Liquid crystals (LCs) have had a multitude of applications in the past few decades [1,2]. One of the 

important and unique applications is their use as the key fundamental materials to develop LC  

displays [3], which have actually changed people’s lifestyle due to the use of mobiles, notebook 

computers, flat panel desktop monitors, and LCD televisions, etc. The development of excellent  

LC displays, which have the advantages of fast response, high contrast ratio, and low driving voltage, 

depends greatly on the development of new types and properties of LCs. The demand for LCDs with a 

fast response is one of the crucial factors to improve the quality of the displays, and blue phase liquid 

crystal (BPLC) is commonly considered to be one of the strongest candidates [4–7]. 

On the other hand, the molecular and electronic structures of 1,4-bis(phenylethynyl)-benzene 

derivatives (BPEBs), as well as their applications have attracted much attention recently [8–12].  

In particular, BPEBs have been applied as the important components in LCs with the characters of 

high melting point (mp), clearing point (cp), and large optical anisotropy values (Δn) [13–22]. It is 

important and interesting to investigate the substituent effect on the properties of BPEBs. Therefore, in 

this paper, we describe the synthesis of a number of BPEBs with different alkyl chains, the numbers of 

fluorine atoms and other substituents in benzene rings as shown in Scheme 1, and the study on the 

substituent effects on their properties, as well as their application as blue phase liquid crystal composition. 

Scheme 1. The structures of 1,4-bis(phenylethynyl)benzene derivatives and analogues (1–25). 
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2. Results and Discussion 

2.1. Synthesis of BPEBs and Analogues (1–25) 

The synthetic routes of 1–25 are outlined in Scheme 2, including the key steps of the formation of 

terminal and internal alkynes via Sonogashira cross-coupling reactions of aryl iodides/bromides 

catalyzed by palladium(0) complexes in good to high yields, and a typical synthetic procedure for the 

formation of 12 is described in the Experimental Section (vide infra). 

Scheme 2. Synthesis of 1,4-bis(phenylethynyl)benzene derivatives and analogues. 
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2.2. Thermal Properties 

The thermal properties of the melting point (mp) and clearing point (cp) are critical in the practical 

utilization of the synthesized BPEBs as the composition of LCs, thus the mp and cp were determined 

by DSC (Differential Scanning Calorimetry), and their thermal data as well as enthalpic data (ΔH) are 

concluded in Table 1. It was found that mp and cp greatly depended upon the molecular and electronic 

structures of BPEBs. BPEBs 1–4 clearly show the effect of alkyl chain length on mp and cp, and when 

n-C3H7 and C2H5 groups are used as the end groups, BPEBs 1 and 2 give the similar mp and cp  

(1 vs. 2). However, when the longer alkyl chains of C4 and C5 were employed, BPEBs 3 and 4 showed 

similar thermal properties, but both mp and cp decreased greatly (1 & 2 vs. 3 & 4) [23]. It can be 

concluded that BPEBs 3 and 4 bearing the longer alkyl chains have a wider range of nematic phase 
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temperature than those of BPEBs 1 and 2, possibly due to the longer alkyl chains being more flexible 

than short alkyl chains. Both 3 and 4 show a nematic phase temperature range of about 140 °C, and the 

wide nematic phase temperature are very important to make a practical LC mixture. 

Table 1. Melting points and clearing points of 1,4-bis(phenylethynyl)benzene derivatives 

(BPEBs) and analogues by DSC. 

BPEB Structure Mp (°C) ΔH (J/g) Cp (°C) ΔH (J/g) 

1 OC2H5C2H5

F

F  

129.5 62.9 251.2 3.0 

2 OC2H5n-C3H7

F

F  

130.2 67.8 254.2 3.8 

3 OC2H5n-C4H9

F

F  

91.0 63.7 238.0 3.8 

4 OC2H5n-C5H11

F

F  

88.7 55.7 232.4 3.8 

5 
OC2H5n-C3H7

F

 

140.4 46.0 262.0 3.0 

6 
n-C3H7

F

OC2H5

 

213.2 41.2 – – 

7 n-C3H7

F

OC2H5

F  

190.4 57.3 – – 

8 n-C3H7 OCF3

F

F

F

F  

131.1 59.8 152.9 5.8 

9 n-C3H7 F

F

F

F

F  

141.4 88.5 a – 

10 n-C3H7 OCF3

F

F

F

F

F

 

150.7 68.7 – – 

11 n-C3H7 F

F

F

F

F

F

 

142.8 77.4 – – 

12 n-C3H7 OCF3

F

F

F

F

F

F  

178.2 54.0 – – 
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Table 1. Cont. 

BPEB Structure Mp (°C) ΔH (J/g) Cp (°C) ΔH (J/g) 

13 n-C3H7 F

F

F

F

F

F

F  

176.4 66.5 – – 

14 n-C4H9 OCF3

F

F

F

F  

142.6 69.3 b – 

15 n-C4H9 F

F

F

F

F  

125.2 73.6 c – 

16 n-C4H9 OCF3

F

F

F

F

F

 

147.8 45.7 – – 

17 n-C4H9 F

F

F

F

F

F

 

136.2 55.4 – – 

18 n-C4H9 OCF3

F

F

F

F

F

F  

178.3 64.6 – – 

19 n-C4H9 F

F

F

F

F

F

F  

170.8 55.3 – – 

20 n-C5H11

F

F

F

F

OCF3

 

131.3 59.7 144.3 0.81 

21 n-C5H11

F

F

F

F

F

 

107.7 62.5 122.3 0.29 

22 n-C5H11

F

F

F

F

OCF3

F

 

131.3 41.2 – – 

23 n-C5H11

F

F

F

F

F

F

 

126.0 51.7 – – 

24 n-C5H11

F

F

F

F

OCF3

F

F  

171.1 66.8 – – 

25 n-C5H11

F

F

F

F

F

F

F  

158.7 66.0 – – 

a The nematic phase was only observed during cooling in the temperature range 118.3 to 89.3 °C, and  

iso-N 118.3 °C (ΔH = 0.25 J/g), N-Cr 89.3 °C (ΔH = 60.4 J/g); b The nematic phase was only observed during 

cooling in the temperature range 139.6 to 121.4 °C, and iso-N 139.6 °C (ΔH = 0.71 J/g), N-Sm 121.4 °C  

(ΔH = 0.61 J/g), Sm-Cr 113.8 °C (ΔH = 60.27 J/g); c The nematic phase was only observed during cooling in 

the temperature range 107.0 to 71.4 °C, and iso-N 107.0 °C (ΔH = 0.16 J/g), N-Cr 71.4 °C (ΔH = 59.1 J/g). 
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By comparison of 2 and 5, it was found that decreasing the number of fluorine atoms in the end 

benzene ring leads to the increase of both mp and cp in a range of about 10 °C, and a similar trend of 

mp was also found between 4,4'-bis(phenylethynyl)biphenyls 6 and 7, which are the analogues of 

BPEBs 2 or 5. 

The thermal properties of other BPEBs are also compared to each other, as shown in Figure 1, and 

two notable features of the relationship between mps and their chemical structure could be concluded 

as follows: (1) The introduction of the fluorine atom on the middle benzene ring shows a great effect 

on the change of mp. In general, one or two fluorine atom-substituted benzene result in the increase of 

mp, and the introduction of the second fluorine atom leads to much more significant increase of mp 

relative to the first fluorine atom introduction (e.g., 8→10→12; 9→11→13). (2) When the end group 

of OCF3 is replaced by a fluorine atom, the mps decreased (e.g., 10 vs. 11; 12 vs. 13; 14 vs. 15), and 

only one exception (8 vs. 9) was observed. 

Figure 1. Effect of side-substituted fluorine atoms and end groups on melting points. 

 

2.3. Nematic Phase 

Among the synthesis of BPEBs and analogues, only BPEBs 1–5, 8, 20–21 (Figure 2, on heating run) 

and 9, 14–15 (on cooling run) show nematic phases under polarizing microscope with the structural 

character without side-substituted fluorine atoms bonded to the middle benzene ring, and the analogues 

of BPEBs 6 and 7 have no nematic phase either. It was found that the nematic phase temperature is 

quite different depending on the end groups and the numbers of fluorine atoms. As shown in  

Figure 3 and Table 1, BPEBs 1–5 with OC2H5 as the end group possess wide nematic phase 

temperatures from 121.6 to 147.0 °C, and have apparently disclosed that longer alkyl chains generally 

result in a wider temperature of nematic phase. BPEBs 3 and 4 bearing the longer alkyl chain of  

n-C4H9 or n-C5H11 give the maximum nematic phase temperatures, while BPEBs 8, 20 and 21 with 

OCF3 or F as the end groups show the relatively narrow nematic phase temperature range. 
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Figure 2. Polarizing optical micrographs photos of BPEBs 1–5, 8, 9, 14, 15, 20 and 21. 

 

Figure 3. Nematic phase temperature range. 

 

2.4. Optical Anisotropy (Δn) 

The optical anisotropy or birefringence (Δn) of the BPEBs showing nematic phase in host LC was 

determined, and the obtained results were concluded in Table 2. As expected, a large π-conjugated 

structure leads to relatively high Δn value, and therefore BPEBs 1–5 have higher Δn values than 8–9, 

14–15, and 20–21. It is reasonable to understand that much more side-substituted fluorine atoms in 

different benzene rings will decrease the integrity of π-conjugated structures to result in a decrease of 

optical anisotropy. 
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Table 2. Δn values of BPEBs. 

BPEB ne no Δn BPEB ne no Δn 

1 2.027 1.531 0.496 9 1.867 1.521 0.346 

2 1.987 1.511 0.476 14 1.797 1.468 0.329 

3 1.947 1.511 0.436 15 1.867 1.521 0.346 

4 2.007 1.511 0.496 20 1.807 1.491 0.316 

5 2.103 1.521 0.582 21 1.867 1.511 0.356 

8 1.837 1.491 0.346     

ne: Extraordinary refraction index; no: Ordinary refraction index. 

2.5. Dielectric Anisotropy (Δε) 

Table 3 shows the values of dielectric anisotropy (Δε) of the BPEBs having nematic phase in host 

LC. It was found that with the number increase of side-substituted fluorine atoms, BPEBs 8–9, 14–15, 

and 20–21 have higher dielectric anisotropy values than BPEBs 1–5. In addition, comparison of 

BPEBs with the end groups of OCF3 (8, 14, 20) and F (9, 15, 21), BPEBs 8, 14 and 20 have relatively 

higher dielectric anisotropy values, possibly due to the stronger electronegativity of the OCF3 group 

relative to the fluorine atom. 

Table 3. Δε values of BPEBs. 

BPEB ε// ε⊥ Δε BPEB ε// ε⊥ Δε 

1 8.9 3.4 5.5 9 26.1 5.3 20.8 

2 8.0 3.0 5.0 14 29.5 6.0 23.5 

3 7.2 3.0 4.2 15 26.4 5.4 21.0 

4 8.1 3.0 5.1 20 26.1 5.2 20.9 

5 7.3 3.2 4.1 21 25.0 5.0 20.0 

8 29.5 5.5 24.0     

ε//: Parallel dielectric constant; ε⊥: Vertical dielectric constant. 

2.6. Applications of BPEBs as Blue Phase Liquid Crystal Composition 

Because the synthesized some of BPEBs have high Δn and acceptable Δε as described above, we 

are interested in investigation of the application of them as the compositions in blue phase liquid 

crystals (BPLC) to possibly increase the Kerr constant, which is key parameter for practical BPLC. 

After detailed screening the composition and contents, we got a LC mixture containing BPEBs 1, 3–4, 

8–9, 14, 15, 21 (5 wt % each) and other liquid crystal mixture (cp: 83.0 °C; Δn = 0.230, and Δε = 29.6, 

at 25 °C), which shows the properties of Δn = 0.283, and Δε = 29.0 at 25 °C, which is expected to have 

high potential applications as BPLC [24]. After adding chiral dopants (R811: 10 wt % and BDH1281:  

7 wt %), we obtained a BPLC with a blue phase temperature range of 8 K (from 41 to 33 °C, on the 

second cooling run). Figure 4 shows a typical BP texture of the obtained BPLC at 36 °C.  
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Figure 4. The typical blue phase texture. 

 

3. Experimental Section  

3.1. General Method 

All organic starting materials and catalysts are analytically pure and used without further purification. 

Nuclear magnetic resonance (NMR) spectra were recorded on a JEOL ECA-300 spectrometer  

(Tokyo, Japan) using CDCl3 as solvent at 298 K. 
1
H-NMR (300 MHz) chemical shifts (δ) were 

referenced to internal standard TMS (for 1H, δ = 0.00 ppm). 
13

C-NMR (75 MHz) chemical shifts were 

referenced to internal solvent CDCl3 (for 
13

C, δ = 77.16 ppm). Mass spectra (MS) were obtained on a 

Shimadzu GCMS-QP2010S (Kyoto, Japan). Element analyses were obtained with a Flash EA 1112 

Element Analyzer (Thermo Fisher Scientific, Waltham, MA, USA). Polarizing microscope LWT300LPT 

(CEWEI photoelectric technology Co. Ltd., Shanghai, China) equipped with a Weitu WT-3000 hot 

stage and a TCA 5.0 MP camera was used to observe and record the optical textures of liquid crystal 

samples. The calorimetric studies were performed on a TA Instruments DSC 2010 (TA Instruments, 

New Castle, DE, USA) with a heating temperature rate of 10 °C/min. A NAR-4T Abbe refractometer 

(ATAGO Co. Ltd., Tokyo, Japan) was used to measure optical anisotropy (Δn), and a 3522-50 LCR 

Hitester (HIOKI E.E. Co., Ueda, Japan) for dielectric anisotropy (Δε). All the samples for measuring 

the Δn and Δε were composed of BPEB and nematic host LC at a ratio of 5–10/95–90 (wt %/wt %). 

The nematic host LC (SLC960524) was prepared by our laboratory, which has the values of  

Δn = 0.1202 (589 nm) and Δε = 3.121 (1000 Hz) at 25 °C. 

3.2. A Typical Experimental Procedure for Synthesis of BPEB 12 and the Characterization Data of All 

the BPEBs 

As shown in Scheme 2, BPEBs and analogues (1–25) were synthesized by the similar synthetic 

route, and their structures were characterized by 
1
H-NMR, 

13
C-NMR (for BPEBs 6 and 7, the  

13
C-NMR could not be obtained due to their very low solubility in CDCl3, DMSO-d6 or DMF-d7), and 

elemental analyses. In this section, the synthetic procedure of BPEB 12 was only described in details, 

and the characterization data of all the other BPEBs are given. 
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Preparation of 2,6-difluoro-4-n-propylphenyl acetylene (12c) (See Scheme S1). 

2-Methyl-3-butyn-2-ol (21.8 g, 0.3 mol) was added to a mixture of 2,6-difluoro-4-n-propyl-1-

iodobenzene (56.4 g, 0.2 mol), tetrakis(triphenylphosphine) palladium(0) (1.0 g, 0.87 mmol),  

CuBr (0.5 g) and LiBr (2.0 g) in triethylamine (50 mL) with stirring at room temperature. After the 

mixture was heated at 60 °C for 5 h, it was then cooled to room temperature and the saturated NH4Cl 

aqueous solution (100 mL) and ethyl acetate (200 mL) were added. After separation of the organic 

phase, the aqueous phase was extracted by ethyl acetate (3 × 150 mL), and the combined organic 

extracts are dried by K2CO3 and concentrated on a rotary evaporator, the intermediate 12b was 

obtained by column chromatographic separation (40.5 g, 0.17 mol, 85.0%) for the next reaction. 

Sodium hydroxide (20.0 g, 0.5 mol) was added to a solution of 12b (40.0 g) in toluene (150 mL), 

and then the obtained mixture was heated under reflux for 5 h. After removal of the insoluble excess of 

Sodium hydroxide by filtration and the solvent under reduced pressure, 12c was isolated by column 

chromatography as light yellow oil (17.2 g, 0.095 mol, 55.9%). Characterization data for 12c:  
1
H-NMR (300 MHz, CDCl3) δ 6.70 (d, 2H, 

3
JF–C–C–H = 8.4 Hz), 6.67 (s, 1H), 3.44 (s, 1H), 2.52 (t, 2H,  

J = 7.5 Hz), 1.61–1.54 (m, 2H), 0.89 (t, 3H, J = 7.5 Hz); 
13

C-NMR (75 MHz, CDCl3) δ 163.5  

(dd, 
1
JC–F = 253.6 Hz, 

5
JC–F = 6.0 Hz), 147.1 (t, 

3
JC–F = 9.0 Hz), 111.1 (dd, 

2
JC–F = 17.1 Hz,  

4
JC–F = 6.0 Hz), 98.2 (t, 

2
JC–F = 19.8 Hz), 86.5, 70.9, 37.8, 23.7, 13.4; MS m/z (% rel. intensity)  

180 (M
+
, 44), 151 (100); Anal. calcd for C11H10F2: C, 73.33; H, 5.56. Found: C, 73.62; H, 5.59. 

Preparation of [2,6-difluoro-4-(2',6'-difluoro-4'-n-propylphenyl)ethynyl]phenyl acetylene (12g)  

(See Scheme S2). 

A mixture of 2-bromo-1,3-difluoro-5-iodobenzene (11.16 g, 0.035 mol), ethynyl trimethylsilane 

(3.8 g, 0.039 mol), tetrakis(triphenylphosphine) palladium(0) (0.5 g, 0.44 mmol) and CuI (1.0 g) in 

triethylamine (40.0 mL) was stirred in under argon at room temperature for 16 h. After work-up as 

described for 12b, 12e was obtained in 85.7% (10.0 g, 0.03 mol). 

A mixture of 12e (5.6 g), 12c (3.0 g, 0.017 mol), tetrakis(triphenylphosphine)palladium(0)  

(0.2 g, 0.17 mmol) and CuI (0.4 g) in triethylamine (40.0 mL) was heated with strring at 60 °C for 5 h, 

After work-up as described for 12b, the intermediated 12f was obtained as colorless solid in 76.4% 

(4.8 g, 0.013 mol). And then stirring a mixture of 12f (4.8 g, 0.013 mol) and K2CO3 (0.1 g, 0.7 mmol) 

in methanol (150 mL) at room temperature for 5 h, after work up as described for the isolation of 12c, 

12g was isolated as colorless solid in 84.6% (3.47 g, 0.011 mol). Characterization data for 12g:  
1
H-NMR (300 MHz, CDCl3) δ 7.11 (d, 2H, 

3
JF–C–C–H = 7.5 Hz), 6.77 (d, 2H, 

3
JF–C–C–H = 8.1 Hz),  

3.59 (s, 1H), 2.59 (t, 2H, J = 7.5 Hz), 1.68–1.60 (m, 2H), 0.94 (t, 3H, J = 7.4 Hz); 
13

C-NMR  

(300 MHz, CDCl3) δ 163.3 (dd, 
1
JC–F = 255.0 Hz, 

5
JC–F = 6.6 Hz), 162.8 (dd, 

1
JC–F = 254.2 Hz,  

5
JC–F = 5.8 Hz), 147.6 (t, 

3
JC–F = 9.1 Hz), 125.1 (t, 

3
JC–F = 11.9 Hz), 114.5 (dd, 

2
JC–F = 18.2 Hz,  

4
JC–F = 6.8.Hz), 111.4 (dd, 

2
JC–F = 17.3 Hz, 

4
JC–F = 6.3.Hz), 102.1 (t, 

2
JC–F = 19.6 Hz), 98.4  

(t, 
2
JC–F = 19.6 Hz), 88.8, 88.9, 80.7, 70.5, 38.0, 23.8, 13.6; MS m/z (% rel. intensity) 316 (M

+
, 56);  

287 (100); Anal. calcd for C19H12F4: C, 72.15; H, 3.80. Found: C, 72.52; H, 3.98. 

Preparation of 1-[(2',6'-difluoro-4'-n-propylphenyl)ethynyl]-4-[(3'',5''-difluoro-4''-trifluoro-methoxy-

phenyl)ethynyl]-3,5-difluorobenzene (BPEB 12) (See Scheme S3). 

A solution of 4-bromo-2,6-difluoro(trifluoromethoxy)benzene (2.2 g, 8.04 mmol) in toluene (10.0 mL) 

was added into a solution of 12g (1.69 g, 5.36 mmol), tetrakis(triphenylphosphine)palladium(0) (0.1 g, 

0.09 mmol), and CuI (0.2 g) in triethylamine (20.0 mL) under argon at 60 °C, and then the obtained 
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mixture was stirred at 60 °C for 5 h. After work-up as described for 12c, the desired BPEB 12 was 

isolated as colorless solid in 79.1% (2.17 g, 4.24 mmol). Characterization data for BPEB 12: 
1
H-NMR 

(300 MHz, CDCl3) δ 7.24 (d, 2H, 
3
JF–C–C–H = 7.5), 7.15 (d, 2H, 

3
JF–C–C–H = 7.5 Hz), 6.78 (d, 2H,  

3
JF–C–C–H = 8.4 Hz), 2.60 (t, 2H, J = 7.5 Hz), 1.69–1.61 (m, 2H), 0.95 (t, 3H, J = 7.4 Hz); 

13
C-NMR  

(75 MHz, CDCl3) δ 162.9 (dd, 
1
JC–F = 254.3 Hz, 

5
JC–F = 5.7 Hz), 162.6 (dd, 

1
JC–F = 254.8 Hz,  

5
JC–F = 6.0 Hz), 155.9 (dd, 

1
JC–F = 253.9 Hz, 

5
JC–F = 3.6 Hz ), 147.7 (t, 

3
JC–F = 9.0 Hz), 126.3  

(t, 
3
JC–F = 15.6 Hz), 125.6 (t, 

3
JC–F = 12.1 Hz), 123.0 (t, 

3
JC–F = 10.6 Hz), 120.5 (q, 

1
JC–F = 260.3 Hz), 

116.0 (dd, 
2
JC–F = 16.2 Hz, 

4
JC–F = 5.0 Hz), 114.6 (dd, 

2
JC–F = 18.2 Hz, 

4
JC–F = 7.0 Hz), 111.4  

(dd, 
2
JC–F = 17.2 Hz, 

4
JC–F = 5.7 Hz), 102.0 (t, 

2
JC–F = 18.7 Hz), 98.5 (t, 

2
JC–F = 19.7 Hz), 96.8, 95.5, 

81.1, 79.2, 38.0, 23.8, 13.6; Anal. calcd for C26H13F9O: C, 60.93; H, 2.54. Found: C, 61.33; H, 2.50. 

Characterization data for BPEB 1: 
1
H-NMR (300 MHz, CDCl3) δ 7.56–7.45 (m, 6H), 6.87 (d, 2H,  

J = 8.8 Hz), 6.78 (d, 2H, J = 8.2 Hz), 4.04 (q, 2H, J = 7.0 Hz), 2.65 (q, 2H, J = 7.6 Hz), 1.42 (t, 3H,  

J = 7.0 Hz), 1.24 (t, 3H, J = 7.6 Hz); 
13

C-NMR (75 MHz, CDCl3) δ 162.8 (dd, J = 253.1 Hz,  

J = 6.0 Hz), 159.3, 147.9 (t, J = 8.9 Hz), 133.2, 131.7, 131.4, 124.1, 122.2, 115.0, 114.7, 110.7  

(dd, J = 16.9 Hz, J = 6.3 Hz), 99.4 (t, J = 19.9 Hz), 98.1, 91.8, 87.9, 78.9, 63.6, 28.9, 14.9, 14.8;  

Anal. calcd for C26H20F2O: C, 80.83; H, 5.18. Found: C, 81.03; H, 4.90. 

Characterization data for BPEB 2: 
1
H-NMR (300 MHz, CDCl3) δ 7.56–7.45 (m, 6H), 6.87 (d, 2H,  

J = 8.7 Hz), 6.76 (d, 2H, J = 8.0 Hz), 4.04 (q, 2H, J = 7.0 Hz), 2.58 (t, 2H, J = 7.4 Hz), 1.70–1.58  

(m, 2H), 1.42 (t, 3H, J = 7.0 Hz), 0.95 (t, 3H, J = 7.3 Hz); 
13

C-NMR (75 MHz, CDCl3) δ 162.8  

(dd, J = 253.0 Hz, J = 6.0 Hz), 159.3, 146.4 (t, J = 9.0 Hz), 133.2, 131.7, 131.4, 124.1, 122.2, 115.0, 

114.7, 111.3 (dd, J = 16.6 Hz, J = 6.0 Hz), 99.4 (t, J = 20.1 Hz), 98.1, 91.8, 87.9, 78.3, 63.6, 38.0, 

23.9, 14.8, 13.7; Anal. calcd for C27H22F2O: C, 81.00; H, 5.50. Found: C, 81.43; H, 5.74. 

Characterization data for BPEB 3: 
1
H-NMR (300 MHz, CDCl3) δ 7.56–7.45 (m, 6H), 6.87 (d, 2H,  

J = 8.7 Hz), 6.76 (d, 2H, J = 8.1 Hz), 4.04 (q, 2H, J = 7.0 Hz), 2.60 (t, 2H, J = 7.5 Hz), 1.61–1.54  

(m, 2H), 1.45–1.30 (m, 5H), 0.94 (t, 3H, J = 7.3 Hz); 
13

C-NMR (75 MHz, CDCl3) δ 162.8  

(dd, J = 253.0 Hz, J = 6.1 Hz), 159.3, 146.7 (t, J = 9.0 Hz), 133.2, 131.7, 131.4, 124.1, 122.2, 115.0, 

114.7, 111.2 (dd, J = 16.8 Hz, J = 6.0 Hz), 99.4 (t, J = 20.0 Hz), 98.1, 91.8, 87.9, 78.3, 63.6, 35.7, 

32.8, 22.2, 14.8, 13.9; Anal. calcd for C28H24F2O: C, 81.16; H, 5.80. Found: C, 81.53; H, 5.84. 

Characterization data for BPEB 4: 
1
H-NMR (300 MHz, CDCl3) δ 7.55–7.45 (m, 6H), 6.87 (d, 2H,  

J = 8.7 Hz), 6.76 (d, 2H, J = 8.1 Hz), 4.04 (q, 2H, J = 7.0 Hz), 2.60 (t, 2H, J = 7.5 Hz), 1.66–1.57 (m, 2H), 

1.43 (t, 3H, J = 7.0 Hz), 1.36–1.25 (m, 4H), 0.91 (t, 3H, J = 6.9 Hz); 
13

C-NMR (75 MHz, CDCl3)  

δ 162.8 (dd, J = 253.2 Hz, J = 6.1 Hz), 159.3, 146.7 (t, J = 9.0 Hz), 133.2, 131.7, 131.4, 124.1, 122.2, 

115.0, 114.6, 111.2 (dd, J = 17.0 Hz, J = 6.1 Hz), 99.4 (t, J = 19.5 Hz), 98.1, 91.8, 87.9, 78.3, 63.6, 

35.9, 31.4, 30.4, 22.5, 14.8, 14.1; Anal. calcd for C29H26F2O: C, 81.31; H, 6.07. Found: C, 81.26; H, 6.34. 

Characterization data for BPEB 5: 
1
H-NMR (300 MHz, CDCl3) δ 7.54–7.39 (m, 7H), 6.94 (d, 2H,  

J = 8.4 Hz), 6.87 (d, 2H, J = 8.3 Hz), 4.04 (q, 2H, J = 6.7 Hz), 2.60 (t, 3H, J = 7.3 Hz), 1.72–1.59  

(m, 2H), 1.43 (t, 3H, J = 6.8 Hz), 0.96 (t, 3H, J = 7.2 Hz); 
13

C-NMR (75 MHz, CDCl3) δ 162.7  

(d, J = 251.6 Hz), 159.3, 146.1 (d, J = 7.2 Hz), 133.2, 133.1, 131.6, 131.4, 124.3, 123.8, 122.6, 115.5 
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(d, J = 20.3 Hz), 114.9 (d, J = 27.2 Hz), 114.7, 108.9 (d, J = 16.0 Hz), 93.6, 91.6, 88.0, 84.8, 63.6, 

37.9, 24.1, 14.9, 13.8; Anal. calcd for C27H23FO: C, 84.82; H, 6.02. Found: C, 84.88; H, 6.13. 

Characterization data for BPEB 6: 
1
H-NMR (300 MHz, CDCl3) δ 7.64–7.53 (m, 8H), 7.49–7.45  

(m, 2H), 7.41 (d, 1H, J = 7.5 Hz), 6.96–6.92 (m, 2H), 6.88 (d, 2H, J = 8.7 Hz), 4.06 (q, 2H, J = 7.0 Hz), 

2.61 (t, 2H, J = 7.3 Hz), 1.72–1.60 (m, 2H), 1.43 (t, 3H, J = 7.0 Hz), 0.95 (t, 3H, J = 7.3 Hz);  

Anal. calcd for C33H27FO: C, 86.46; H, 5.90. Found: C, 86.98; H, 5.93. 

Characterization data for BPEB 7: 
1
H-NMR (300 MHz, CDCl3) δ 7.66–7.55 (m, 8H), 7.48 (d, 2H,  

J = 8.8 Hz), 6.88 (d, 2H, J = 8.8 Hz), 6.77 (d, 2H, J = 8.1 Hz), 4.06 (q, 2H, J = 7.0 Hz), 2.59 (t, 2H,  

J = 7.4 Hz), 1.71–1.59 (m, 2H), 1.43 (t, 3H, J = 7.0 Hz), 0.95 (t, 3H, J = 7.4 Hz); Anal. calcd for 

C33H26F2O: C, 83.19; H, 5.46. Found: C, 83.26; H, 5.72. 

Characterization data for BPEB 8: 
1
H-NMR (300 MHz, CDCl3) δ 7.58–7.48 (m, 4H), 7.17 (d, 2H,  

J = 7.8 Hz), 6.77 (d, 2H, J = 8.1 Hz), 2.59 (t, 2H, J = 7.4 Hz),1.71–1.59 (m, 2H), 0.95 (t, 3H,  

J = 7.3 Hz); 
13

C-NMR (75 MHz, CDCl3) δ 162.8 (dd, J = 253.3 Hz, J = 5.8 Hz), 155.8 (dd, J = 255.8 Hz, 

J = 3.6 Hz), 146.8 (t, J =8.9 Hz), 131.8, 131.7, 125.6 (t, J = 17.2 Hz), 123.8 (t, J = 9.1 Hz), 122.1, 

120.6 (q, J = 259.6 Hz), 115.8 (d, J = 17.5 Hz, J = 6.2 Hz), 111.3 (dd, J = 16.9 Hz, J = 6.1 Hz), 99.2  

(t, J = 19.9 Hz), 97.6, 92.0, 87.9, 79.1, 38.0, 23.8, 13.6; Anal. calcd for C26H15F7O: C, 65.55; H, 3.15. 

Found: C, 64.98; H, 3.13. 

Characterization data for BPEB 9: 
1
H-NMR (300 MHz, CDCl3) δ 7.57–7.47 (m, 4H), 7.16–7.11  

(m, 2H), 6.76 (d, 2H, J = 8.1 Hz), 2.59 (t, 2H, J = 7.4 Hz), 1.71–1.58 (m, 2H), 0.95 (t, 3H, J = 7.3 Hz); 
13

C-NMR (75 MHz, CDCl3) δ 162.8 (dd, J = 253.1 Hz, J = 5.8 Hz), 151.1 (ddd, J = 251.1 Hz,  

J = 10.4 Hz, J = 4.9 Hz), 146.7 (t, J = 9.0 Hz), 140.5 (dt, J = 255.7 Hz, J = 15.3 Hz), 131.8, 131.7, 

123.5, 122.4, 119.0 9 (td), 116.0 (ddd, J = 15.2 Hz, J = 7.3 Hz), 111.3 (dd, J =17.0 Hz, J = 5.9 Hz), 

99.2 (t, J = 20.0 Hz), 97.7, 90.6, 88.2, 78.9, 38.0, 23.9, 13.6; Anal. calcd for C25H15F5: C, 73.17;  

H, 3.66. Found: C, 73.02; H, 3.51. 

Characterization data for BPEB 10: 
1
H-NMR (300 MHz, CDCl3) δ 7.47 (t, 1H, J = 7.6 Hz), 7.35–7.30 

(m, 2H), 7.20 (d, 2H, J = 7.8 Hz), 6.77 (d, 2H, J = 8.2 Hz), 2.59 (t, 2H, J = 7.4 Hz), 1.71–1.59 (m, 2H), 

0.95 (t, 3H, J = 7.3 Hz); 
13

C-NMR (75 MHz, CDCl3) δ 162.8 (dd, J = 253.9 Hz, J = 6.0 Hz), 162.3  

(d, J = 253.5 Hz), 155.8 (dd, J = 255.4 Hz, J = 3.8 Hz), 147.2 (t, J = 9.1 Hz), 133.3, 127.6 (d, J = 3.2 Hz), 

126.1 (t, J = 15.8 Hz), 125.6 (d, J = 9.3 Hz), 123.3 (t, J = 11.0 Hz), 120.5 (q, J = 261.0 Hz), 118.7  

(d, J = 22.7 Hz), 115.9 (dd, J = 15.5 Hz, J = 4.3 Hz), 111.4 (dd, J = 17.5 Hz, J = 5.6 Hz), 111.1, 98.8 

(t, J = 19.6 Hz), 96.4, 92.6, 85.5, 80.0, 40.0, 23.8, 13.6; Anal. calcd for C26H14F8O: C, 63.16; H, 2.83. 

Found: C, 63.03; H, 2.56. 

Characterization data for BPEB 11: 
1
H-NMR (300 MHz, CDCl3) δ 7.45 (t, 1H, J = 7.4 Hz), 7.36–7.26 

(m, 2H), 7.21–7.14 (m, 2H), 6.77 (d, 2H, J = 8.2 Hz), 2.59 (t, 2H, J = 7.3 Hz), 1.71–1.58 (m, 2H),  

0.95 (t, 3H, J = 7.3 Hz); 
13

C-NMR (75 MHz, CDCl3) δ 162.8 (dd, J = 253.6 Hz, J = 5.6 Hz), 162.3  

(d, J = 253.2 Hz), 151.1 (ddd, J = 251.0 Hz, J = 10.5 Hz, J = 4.8 Hz), 147.2 (t, J = 8.9 Hz), 140.6  

(dt, J = 250.7 Hz, J = 10.9 Hz), 133.3, 127.6 (d, J = 3.3 Hz), 125.3 (d, J = 9.3 Hz), 118.6 (dd, J = 12.4 Hz, 
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J = 6.9 Hz), 116.1 (dd, J = 15.5 Hz, J = 7.4 Hz), 111.4, 111.4 (dd, J = 17.8 Hz, J = 6.3 Hz), 98.9  

(t, J = 19.4 Hz), 96.5 (d, J = 3.2 Hz), 92.9, 84.1, 79.9, 38.0, 23.8, 13.6; Anal. calcd for C25H14F6:  

C, 70.09; H, 3.27. Found: C, 70.33; H, 3.46. 

Characterization data for BPEB 13: 
1
H-NMR (300 MHz, CDCl3) δ 7.22–7.12 (m, 4H), 6.78 (d, 2H,  

J = 8.2 Hz), 2.60 (t, 2H, J = 7.4 Hz), 1.71–1.59 (m, 2H), 0.95 (t, 3H, J = 7.3 Hz); 
13

C-NMR (75 MHz, 

CDCl3) δ 162.8 (dd, J = 254.0 Hz, J = 5.4 Hz), 162.6 (dd, J = 255.1 Hz, J = 6.4 Hz), 151.2 (ddd,  

J = 252.3 Hz, J = 10.7 Hz, J = 4.4 Hz), 147.6 (t, J = 6.4 Hz), 140.9 (dt, J = 256.0 Hz, J = 15.4 Hz), 

125.3 (t, J = 12.2 Hz), 118.4, 116.2 (dd, J = 15.5 Hz, J = 7.6 Hz), 114.5 (dd, J =17.7 Hz, J = 7.1 Hz), 

111.4 (dd, J = 16.4 Hz, J = 5.1 Hz), 102.3 (t, J = 21.5 Hz), 98.6 (t, J = 20.2 Hz), 97.3, 95.6, 80.9, 77.8, 

38.0, 23.7, 13.5; Anal. calcd for C25H13F7: C, 67.26; H, 2.91. Found: C, 69.52; H, 2.66. 

Characterization data for BPEB 14: 
1
H-NMR (300 MHz, CDCl3) δ 7.57–7.48 (m, 4H), 7.17 (d, 2H,  

J = 7.9 Hz), 6.77 (d, 2H, J = 8.1 Hz), 2.61 (t, 2H, J = 7.5 Hz), 1.65–1.55 (m, 2H), 1.42–1.30 (m, 2H), 

0.94 (t, 3H, J = 7.3 Hz); 
13

C-NMR (75 MHz, CDCl3) δ 162.8 (dd, J = 253.4 Hz, J = 6.2 Hz), 155.8  

(dd, J = 255.3 Hz, J = 3.7 Hz), 147.0 (t, J = 9.1 Hz), 131.8, 131.7, 125.8 (t, J = 16.3 Hz), 123.8  

(t, J = 8.8 Hz), 122.1, 120.4 (q, J = 258.9 Hz), 115.8 (dd, J = 17.5 Hz, J = 6.2 Hz), 111.3 (dd, J = 16.7 

Hz, J = 5.7 Hz), 99.2 (t, J = 20.1 Hz), 97.6, 92.0, 87.9, 79.0, 35.7, 32.8, 22.3, 13.9; Anal. calcd for 

C27H17F7O: C, 66.12; H, 3.47. Found: C, 66.01; H, 3.36. 

Characterization data for BPEB 15: 
1
H-NMR (300 MHz, CDCl3) δ 7.56–7.46 (m, 4H), 7.13 (t, 2H,  

J = 6.9 Hz), 6.76 (d, 2H, J = 8.1 Hz), 2.60 (t, 2H, J = 7.4 Hz), 1.64–1.54 (m, 2H), 1.42–1.30 (m, 2H), 

0.94 (t, 3H, J = 7.3 Hz); 
13

C-NMR (75 MHz, CDCl3) δ 162.8 (dd, J = 253.4 Hz, J = 6.0 Hz),  

151.1 (ddd, J = 250.6 Hz, J = 10.1 Hz, J = 4.2 Hz), 146.9 (t, J = 9.0 Hz), 140.4 (dt, J = 254.7 Hz,  

J = 14.9 Hz), 131.8, 131.7, 123.5, 122.4, 119.1 (td), 116.0 (ddd, J = 15.4 Hz, J = 7.3 Hz, J = 4.8 Hz), 

111.2 (dd, J =17.1 Hz, J = 5.9 Hz), 99.2 (t, J = 19.8 Hz), 97.7, 90.6, 88.2, 78.9, 35.7, 32.8, 22.3, 13.9;  

Anal. calcd for C26H17F5: C, 73.58; H, 4.01. Found: C, 73.51; H, 3.96. 

Characterization data for BPEB 16: 
1
H-NMR (300 MHz, CDCl3) δ 7.47 (t, 1H, J = 7.5 Hz), 7.39–7.29 

(m, 2H), 7.20 (d, 2H, J = 7.7 Hz), 6.77 (d, 2H, J = 8.2 Hz), 2.61 (t, 2H, J = 7.6 Hz), 1.65–1.55 (m, 2H), 

1.42–1.30 (m, 2H), 0.94 (t, 3H, J = 7.3 Hz); 
13

C-NMR (75 MHz, CDCl3) δ 162.8 (dd, J = 253.8 Hz,  

J = 5.8 Hz), 162.3 (d, J = 253.7 Hz), 155.8 (dd, J = 255.5 Hz, J = 3.7 Hz), 147.5 (t, J = 8.9 Hz), 133.3, 

127.6 (d, J = 3.4 Hz), 126.1 (t, J = 15.8 Hz), 125.6 (d, J = 9.4 Hz), 123.3 (t, J = 11.2 Hz), 120.5  

(q, J = 261.0 Hz), 118.7 (d, J = 22.8 Hz), 115.9 (dd, J = 16.2 Hz, J = 6.4 Hz), 111.3 (dd, J = 16.1 Hz,  

J = 5.8 Hz), 111.1, 98.8 (t, J = 19.5 Hz), 96.4, 92.5, 85.5, 80.0, 35.7, 32.8, 22.3, 13.9; Anal. calcd for 

C27H16F8O: C, 63.78; H, 3.15. Found: C, 63.61; H, 3.26. 

Characterization data for BPEB 17: 
1
H-NMR (300 MHz, CDCl3) δ 7.44 (t, 1H, J = 7.4 Hz), 7.33–7.27 

(m, 2H), 7.16 (t, 2H, J = 6.6 Hz), 6.76 (d, 2H, J = 8.2 Hz), 2.60 (t, 2H, J = 7.5 Hz), 1.64–1.54 (m, 2H), 

1.42–1.29 (m, 2H), 0.94 (t, 3H, J = 7.3 Hz); 
13

C-NMR (75 MHz, CDCl3) δ 162.8 (dd, J = 253.7 Hz,  

J = 5.8 Hz), 162.3 (d, J = 253.4 Hz), 151.1 (ddd, J = 250.9 Hz, J = 10.4 Hz, J = 4.3 Hz), 147.4  

(t, J = 9.0 Hz), 140.7 (dt, J = 255.1 Hz, J = 14.7 Hz), 133.3, 127.6 (d, J = 3.3 Hz), 125.3 (d, J = 9.5 Hz), 

118.6 (dd, J = 14.2 Hz, J = 9.1 Hz), 116.1 (dd, J = 15.4 Hz, J = 7.3 Hz), 111.5, 111.3 (dd, J = 17.0 Hz, 
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J = 5.9 Hz), 98.8 (t, J = 19.6 Hz), 96.5 (d, J = 3.1 Hz), 92.9, 84.1, 79.9, 35.7, 32.8, 22.3, 13.9;  

Anal. calcd for C26H16F6: C, 70.59; H, 3.62. Found: C, 70.68; H, 3.36. 

Characterization data for BPEB 18: 
1
H-NMR (300 MHz, CDCl3) δ 7.23 (d, 2H, J = 7.7 Hz), 7.14  

(d, 2H, J = 7.3 Hz), 6.78 (d, 2H, J = 8.2 Hz), 2.62 (t, 2H, J = 7.6 Hz), 1.65–1.55 (m, 2H), 1.41–1.30 

(m, 2H), 0.94 (t, 3H, J = 7.3 Hz); 
13

C-NMR (75 MHz, CDCl3) δ 162.9 (dd, J = 254.1 Hz, J = 5.8 Hz), 

162.7 (dd, J = 255.4 Hz, J = 6.2 Hz), 155.9 (dd, J = 255.8 Hz, J = 3.6 Hz), 147.9 (t, J = 9.0 Hz), 126.3 

(t, J = 15.8 Hz), 125.6 (t, J = 12.0 Hz), 123.0 (t, J = 10.1 Hz), 120.5 (q, J = 260.8 Hz), 116.0 (dd,  

J = 17.0 Hz, J = 6.6 Hz), 114.6 (dd, J = 17.8 Hz, J = 7.9 Hz), 111.3 (dd, J = 17.0 Hz, J = 5.6 Hz), 

102.0 (t, J = 18.5 Hz), 98.2 (t, J = 19.9 Hz), 96.9, 95.5, 81.1, 79.2, 35.7, 32.7, 22.2, 13.8; Anal. calcd 

for C27H15F9O: C, 61.60; H, 2.85. Found: C, 60.99; H, 2.64. 

Characterization data for BPEB 19: 
1
H-NMR (300 MHz, CDCl3) δ 7.20 (t, 2H, J = 6.7 Hz), 7.12  

(d, 2H, J = 7.1 Hz), 6.77 (d, 2H, J = 8.2 Hz), 2.62 (t, 2H, J = 7.5 Hz), 1.65–1.55 (m, 2H), 1.42–1.30 

(m, 2H), 0.94 (t, 3H, J = 7.3 Hz); 
13

C-NMR (75 MHz, CDCl3) δ 162.8 (dd, J = 254.1 Hz, J = 5.7 Hz), 

162.6 (dd, J = 254.7 Hz, J = 6.2 Hz), 151.1 (ddd, J = 251.3 Hz, J = 10.4 Hz, J = 4.4 Hz), 147.9  

(t, J = 9.2 Hz), 140.9 (dt, J = 256.0 Hz, J = 15.6 Hz), 125.2 (t, J = 12.0 Hz), 118.4 (td), 116.3  

(ddd, J = 15.4 Hz, J = 7.3 Hz), 114.6 (dd, J =18.2 Hz, J = 7.6 Hz), 111.4 (dd, J = 17.2 Hz, J = 5.7 Hz), 

102.2 (t, J = 19.8 Hz), 98.4 (t, J = 20.1 Hz), 97.3, 95.6, 80.9, 77.8, 35.7, 32.8, 22.3, 13.9; Anal. calcd 

for C26H15F7: C, 67.83; H, 3.26. Found: C, 67.77; H, 3.44. 

Characterization data for BPEB 20: 
1
H-NMR (300 MHz, CDCl3) δ 7.57–7.48 (m, 4H), 7.16 (d, 2H,  

J = 7.7 Hz), 6.77 (d, 2H, J = 8.2 Hz), 2.60 (t, 2H, J = 7.5 Hz), 1.65–1.56 (m, 2H), 1.38–1.28 (m, 4H), 

0.91 (t, 3H, J = 6.7 Hz); 
13

C-NMR (75 MHz, CDCl3) δ 162.8 (dd, J = 253.4 Hz, J = 6.0 Hz), 155.8  

(dd, J = 255.4 Hz, J = 3.7 Hz), 147.0 (t, J = 9.1 Hz), 131.8, 131.7, 125.8 (t, J = 16.5 Hz), 123.8  

(t, J = 8.7 Hz), 122.2, 120.6 (q, J = 259.6 Hz), 115.8 (dd, J = 17.6 Hz, J = 6.4 Hz), 111.2 (dd, J = 17.1 Hz, 

J = 6.1 Hz), 99.1 (t, J = 19.9 Hz), 97.6, 92.0, 87.9, 79.1, 35.9, 31.3, 30.3, 22.5, 14.0; Anal. calcd for 

C28H19F7O: C, 66.67; H, 3.77. Found: C, 66.35; H, 3.46. 

Characterization data for BPEB 21: 
1
H-NMR (300 MHz, CDCl3) δ 7.56–7.46 (m, 4H), 7.16–7.11  

(m, 2H), 6.76 (d, 2H, J = 8.2 Hz), 2.60 (t, 2H, J = 7.6 Hz), 1.66–1.56 (m, 2H), 1.38–1.29 (m, 4H), 0.91 

(t, 3H, J = 6.6 Hz); 
13

C-NMR (75 MHz, CDCl3) δ 162.8 (dd, J = 253.2 Hz, J = 6.0 Hz), 151.1 (ddd,  

J = 250.7 Hz, J = 10.3 Hz, J = 4.5 Hz), 147.0 (t, J = 8.9 Hz), 140.5 (dt, J = 256.0 Hz, J = 15.6 Hz), 

131.8, 131.7, 123.5, 122.4, 119.1 (td), 116.0 (ddd, J = 15.2 Hz, J = 7.2 Hz, J = 4.3 Hz), 111.2 (dd,  

J = 16.6 Hz, J = 5.6 Hz), 99.2 (t, J = 19.7 Hz), 97.7, 90.6, 88.2, 78.9, 35.9, 31.3, 30.4, 22.5, 14.0;  

Anal. calcd for C27H19F5: C, 73.97; H, 4.34. Found: C, 73.49; H, 4.44. 

Characterization data for BPEB 22: 
1
H-NMR (300 MHz, CDCl3) δ 7.46 (t, 1H, J = 7.5 Hz), 7.34–7.29 

(m, 2H), 7.19 (d, 2H, J = 7.1 Hz), 6.77 (d, 2H, J = 8.2 Hz), 2.60 (t, 2H, J = 7.5 Hz), 1.61 (m, 2H), 

1.36–1.30 (m, 4H), 0.91 (t, 3H, J = 6.6 Hz); 
13

C-NMR (75 MHz, CDCl3) δ 162.8 (dd, J = 253.9 Hz,  

J = 5.8 Hz), 162.3 (d, J = 253.6 Hz), 155.8 (dd, J = 255.5 Hz, J = 3.5 Hz), 147.5 (t, J = 9.0 Hz), 133.3, 

127.6 (d, J = 3.4 Hz), 126.1 (t, J = 15.8 Hz), 125.6 (d, J = 9.5 Hz), 123.3 (t, J = 10.9 Hz), 120.5  

(q, J = 261.0 Hz), 118.7 (d, J = 22.7 Hz), 115.9 (dd, J = 16.0 Hz, J = 6.5 Hz), 111.3 (dd, J = 14.6 Hz,  
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J = 6.1 Hz), 111.1, 98.8 (t, J = 19.9 Hz), 96.4, 92.6, 85.5, 80.0, 36.0, 31.3, 30.3, 22.5, 14.0; Anal. calcd 

for C28H18F8O: C, 64.37; H, 3.45. Found: C, 63.89; H, 3.26. 

Characterization data for BPEB 23: 
1
H-NMR (300 MHz, CDCl3) δ 7.44 (t, 1H, J = 7.6 Hz), 7.32–7.27 

(m, 2H), 7.16 (d, 2H, J = 6.8 Hz), 6.77 (d, 2H, J = 8.1 Hz), 2.60 (t, 2H, J = 7.9 Hz), 1.61 (m, 2H), 

1.36–1.29 (m, 4H), 0.91 (t, 3H, J = 6.6 Hz); 
13

C-NMR (75 MHz, CDCl3) δ 162.8 (dd, J = 253.8 Hz,  

J = 5.8 Hz), 162.3 (d, J = 253.4 Hz), 151.1 (ddd, J = 251.1 Hz, J = 10.4 Hz, J = 4.4 Hz), 147.4  

(t, J = 9.1 Hz), 140.7 (dt, J = 256.0Hz, J = 15.5 Hz), 133.2, 127.6 (d, J = 3.2 Hz), 125.3 (d, J = 9.5 Hz), 

118.6 (dd, J = 15.6 Hz, J = 6.9 Hz), 116.1 (dd, J = 15.3 Hz, J = 7.3 Hz), 111.5, 111.3 (dd, J = 17.1 Hz, 

J = 6.9 Hz), 98.9 (t, J = 19.9 Hz), 96.5, 92.9, 84.1, 79.9, 36.0, 31.4, 30.3, 22.5, 14.0; Anal. calcd for 

C27H18F6: C, 71.05; H, 3.95. Found: C, 71.17; H, 4.11. 

Characterization data for BPEB 24: 
1
H-NMR (300 MHz, CDCl3) δ 7.23 (d, 2H, J = 7.7 Hz), 7.14  

(d, 2H, J = 7.2 Hz), 6.78 (d, 2H, J = 8.2 Hz), 2.61 (t, 2H, J = 7.5 Hz), 1.61 (m, 2H), 1.38–1.27 (m, 4H), 

0.90 (t, 3H, J = 6.9 Hz); 
13

C-NMR (75 MHz, CDCl3) δ 162.9 (dd, J = 254.7 Hz, J = 6.4 Hz), 162.6  

(dd, J = 254.8 Hz, J = 6.1 Hz), 155.8 (dd, J = 255.7 Hz, J = 3.6 Hz), 148.0 (t, J = 9.4 Hz), 126.3  

(t, J = 15.8 Hz), 125.5 (t, J = 12.6 Hz), 123.0 (t, J = 10.6 Hz), 120.5 (q, J = 260.4 Hz), 116.0  

(dd, J = 17.5 Hz, J = 6.2 Hz), 114.6 (dd, J = 18.1 Hz, J = 7.3 Hz), 111.4 (dd, J = 17.2 Hz, J = 5.5 Hz), 

102.0 (t, J = 17.6 Hz), 98.4 (t, J = 19.9 Hz), 96.9, 95.5, 81.1, 79.2, 36.0, 31.3, 30.3, 22.5, 14.0;  

Anal. calcd for C28H17F9O: C, 62.22; H, 3.15. Found: C, 62.18; H, 3.12. 

Characterization data for BPEB 25: 
1
H-NMR (300 MHz, CDCl3) δ 7.19 (t, 2H, J = 6.8 Hz), 7.12  

(d, 2H, J = 7.2 Hz), 6.77 (d, 2H, J = 8.2 Hz), 2.61 (t, 2H, J = 7.5 Hz), 1.61 (m, 2H), 1.34–1.32 (m, 4H), 

0.90 (t, 3H, J = 6.6 Hz); 
13

C-NMR (75 MHz, CDCl3) δ 162.9 (dd, J = 254.1 Hz, J = 5.6 Hz), 162.6  

(dd, J = 255.0 Hz, J = 6.4 Hz), 151.2 (ddd, J = 251.5 Hz, J = 10.6 Hz, J = 4.9 Hz), 147.9  

(t, J = 9.6 Hz), 140.9 (dt, J = 256.8 Hz, J = 15.5 Hz), 125.2 (t, J = 11.6 Hz), 118.4 (td), 116.2  

(ddd, J = 15.4 Hz, J = 7.6 Hz), 114.5 (dd, J = 18.5 Hz, J = 7.6 Hz), 111.3 (dd, J = 17.9 Hz, J = 5.2 Hz), 

102.2 (t, J = 19.6 Hz), 98.5 (t, J = 20.1 Hz), 97.2, 95.6, 80.9, 77.8, 36.0, 31.3, 30.3, 22.5, 13.9;  

Anal. calcd for C27H17F7: C, 68.35; H, 3.59. Found: C, 68.38; H, 3.76. 

4. Conclusions 

In summary, we have designed and synthesized BPEBs by convenient Sonogashira cross-coupling 

reactions, which have different numbers of side-substitute fluorine atoms on benzene rings, and alkyl 

chains, ethoxyl groups, fluorine atoms and trifluoromethyl groups as the end groups. The detailed 

investigation of the synthesized BPEBs properties have disclosed that the melting points, clearing 

points, nematic phase, optical anisotropy (Δn) and dielectric anisotropy (Δε) greatly depend on both 

the numbers of side-substitute fluorine atoms and structures of the end groups. On the basis of the 

obtained properties of the synthesized BPEBs, some of them have been expected to have high potential 

application as the compositions in blue phase liquid crystals. Therefore, a mixture of blue phase liquid 

crystal has been prepared with a relative wide blue phase temperature range of 8 °C. The obtained 

results have implied that the synthesized BPEBs will certainly be important in the development of new 
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types and properties of LCs. Further study on the application of BPEBs in making other new types of 

LCs is underway in our laboratory. 
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