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Abstract: To better understand the molecular mechanisms of paclitaxel resistance in 

ovarian carcinoma, we evaluated the expression of miRNAs using miRNA microarray 

between human ovarian carcinoma SKOV3 cells and paclitaxel resistant SKOV3-TR30 

cells. Results showed that 69 miRNAs were upregulated while 102 miRNAs were  

downregulated in SKOV3-TR30 cells. Using real-time PCR, we further clarified that  

miR-17~92 was overexpressed in SKOV3-TR30 cells compared with that in SKOV3 cells. 

We then established stable virally transduced SKOV3-TR30-m-PTIP-Sponge all  

SKOV3-TR30 cells and its vector-only control SKOV3-TR30-m-PTIP-GFP cells. Real 

time-PCR revealed that SKOV3-TR30-m-PTIP-Sponge all cells expressed approximately 

6.18-fold lower levels of miR-17~92 compared with the control group. Decreased 

expression of miR-17~92 resulted in cell cycle arrest in the G2/M phase and growth 

inhibition. After the transduction, the BIM protein level was increased in SKOV3-TR30 

cells and luciferase reporter assays revealed that miR-17~92 binds directly to the 3'-UTR 

of BIM. Results of luciferase reporter assays accompanied with Western Blot showed that 

although miR-17~92 binds directly to the 3'-UTR of PTEN, the PTEN protein expression 

level was upregulated slightly while the result is of no statistical significance. Our results 

OPEN ACCESS



Int. J. Mol. Sci. 2013, 14 3803 

 

 

showed that miR-17~92 could be a causal factor of the downregulation of BIM in  

SKOV3-TR30 cells and thus induce the paclitaxel resistance in SKOV3-TR30 cells.  

Keywords: miR-17~92 cluster; transduction; ovarian carcinoma; paclitaxel resistance; 

PTEN; BIM 

 

1. Introduction 

Ovarian carcinoma is one of the most common gynecological malignant tumors. Its incidence is 

ranked second in malignant tumors of the female reproductive system and is gradually increasing in 

recent years. The most recommended treatment worldwide is surgery, along with paclitaxel and 

platinum–based (first-line chemotherapy) adjuvant chemotherapy; however, its mortality rate is still 

about 70%, which is the highest in gynecological malignancies [1]. One of the most significant reasons 

for such high morality rate is that about 30%~40% of patients with ovarian carcinoma are resistant to 

chemotherapy and, moreover, 60% of first-line chemotherapy-sensitive patients are resistant to 

chemotherapy after six months. Therefore, clarification of the exact mechanism of resistance and 

resistance reversal of ovarian carcinoma has become extremely urgent and important research topic. 

MicroRNAs (miRNAs) contain 18–24 nucleotides and are small, non-coding RNAs that post 

transcriptionally regulate gene expression through translational repression and mRNA degradation [2]. 

Recent research has shown the tumor suppressant and oncogenic potential of a number of miRNAs, 

underscoring their importance in human cancer therapeutic and diagnostic applications [3–7].  

BIM is a member of the BH3-only family of pro-apoptotic proteins and is expressed in a wide 

variety of tissues. BIM can initiate apoptosis by directly activating Bax through interaction with the  

Bcl-2/Bax herterodimer complex, which can further induces mitochondrial cell death [8,9]. It plays a 

critical role in tumor cell biology, including the regulation of tumorigenesis through activities as a 

tumor suppressor, tumor metastasis, and tumor cell survival. Therefore, it has gradually become an 

interesting target for cancer chemotherapy. PTEN plays a well-established role in the negative 

regulation of the PI3K pathway, which is frequently activated in several cancer types, including 

ovarian cancer. PTEN loss of function occurs in a wide spectrum of human cancers through mutations, 

deletions and transcriptional silencing. The expression of BIM and PTEN is highly regulated by its 

transcriptional and post-translational levels. 

Overexpression of miR-17~92 has been observed in lymphomas and solid tumors [10] and is  

related to cell proliferation. The gene cluster of miR-17~92 resides with intron 3 of cl3orf25  

non-protein-coding gene at 13q31.3 gene [8,11]. Studies by Lewis, BP, and others [12] have shown 

that miR-17~92 may play a role in PTEN and BIM. In recent years, more and more studies have 

reported that abnormal expression of PTEN and BIM has participated in the formation of tumor  

drug-resistance [13–15]. 

Yet it is not clear if miR-17~92 gene cluster has an impact on the paclitaxel resistance of ovarian 

carcinoma through affecting the expression of the BIM or PTEN protein. Furthermore, the effect of 

both BIM and PTEN on paclitaxel resistant in ovarian cancer cells has not been thoroughly researched; 
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particularly, the mechamism involved in their expression regulation has barely been studied in ovarian 

carcinoma chemoresistance. 

In this study, we investigated whether BIM or PTEN gene was post-transcriptionally regulated by 

miR-17~92 and the contribution of miR-17~92 to BIM or PTEN protein levels in SKOV3-TR30 cells. 

In addition, we also investigated the impact of miR-17~92 on SKOV3-TR30 cell proliferation and cell 

cycle. We aim to get a better understanding of the molecular mechanisms of paclitaxel resistance in 

SKOV3-TR30 cells, to provide a clue for further investigation of the function of miR-17~92 and its 

target genes, and their correlation in ovarian carcinoma paclitaxel resistance. 

2. Results 

2.1. MiRNA Expression Profiling 

A microarray platform was used to analyze and compare the pattern of miRNA expression between 

the parental SKOV3 cell line and its counterpart paclitaxel resistant SKOV3-TR30 cell line. The 

expression profiles of 171 miRNAs changed significantly: 69 upregulated miRNAs (miR-17, miR-19b, 

miR-92-1) and 102 downregulated miRNAs (miR-134, miR-34, miR-196b) in SKOV3-TR30 cells as 

compared with SKOV3 cells (Figure 1). 

Figure 1. Analysis of miRNAs Expression Profile of Sensitive and Drug-resistant Human 

Ovarian carcinoma Cells. Data were analyzed by the CLUSTER analysis software 

CLUSTER 3.0. Yellow means high expression, blue represents the low expression. 

 

2.2. miR-17~92 Was Overexpressed in SKOV3-TR30 Cells Compared with SKOV3 Cells 

We next studied the expression level of miR-17~92 in SKOV3 and SKOV3-TR30 cells using  

real-time PCR. Amplification Curve and Melting Curve of miR-17~92 and internal control β-actin see 

Figure 2. The expression level of miR-17~92 in the SKOV3-TR30 cells is indicated as “1” as control 

group. Compared to SKOV3-TR30 cells, the expression level of miRNA-17~92 in SKOV3 cells is 
0.557, and the difference is of statistically significant (t = 9.193，p < 0.05) (Table 1). 
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The result revealed that the expression level of miR-17~92 was markedly increased in paclitaxel 

resistant SKOV3-TR30 cells compared with paclitaxel sensitive SKOV3 cells.  

Figure 2. Amplification Curve and Melting Curve of miR-17~92 Expression in SKOV3, 

SKOV3-TR30, SKOV3-TR30-m-PTIP-Sponge all cells and the SKOV3-TR30-m-PTIP-GFP 

cells Detected by real-time PCR. (a) Amplification Curve of Expression of miR-17~92;  

(b) Melting Curve of Expression of miR-17~92.  

 

Table 1. Expression level of miR-17~92 in Different Groups.  

Cells line Δct ΔΔct 2-ΔΔct 

SKOV3 9.85 ± 0.198 0.845 ± 0.198 0.55 (0.483–0.642) * 
SKOV3-TR30 10.695 ± 0.488 0.0 ± 0.488 1.0 (0.711–1.412) 

SKOV3-TR30-m-PTIP-GFP 9.715 ± 0.007 0.98 ± 0.007 0.507 (0.642–0.801) * 
SKOV3-TR30-m-PTIP-Sponge all 7.085 ± 0.304 3.61 ± 0.304 0.082 (0.075–0.09) * 

* represents compared with the expression level of miRNA-17~92 in SKOV3, the different expression level 

of miRNA-17~92 in SKOV3-TR30, SKOV3-TR30-m-PTIP-GFP and SKOV3-TR30-m-PTIP-Sponge all is 

of great significance, p < 0.05. 

2.3. Comparison of miR-17~92 Expression Levels in SKOV3-TR30-m-PTIP-Sponge all and the 

SKOV3-TR30-m-PTIP-GFP  

In order to determine whether the resistance to paclitaxel could be caused by miR-17~92  

in SKOV3-TR30, we established stable virally transduced SKOV3-TR30 cell line  

SKOV3-TR30-m-PTIP-Sponge all cells and its vector-only control SKOV3-TR30-m-PTIP-GFP cells.  

The m-PTIP-Sponge all inhibit plasmids were identified using restriction enzyme digestion shown in 

(Figure 3c). Using Flow Cytometry, the purity of stable transfectants identified by the expression of 

plasmid green fluorescent protein was greater than 95% (Figure 3a,b). We next studied the expression 

level of miR-17~92 in SKOV3-TR30 -m-PTIP-GFP cells and SKOV3-TR30-m-PTIP-Sponge all cells 

using real-time PCR. Real-time PCR results revealed that SKOV3-TR30-m-PTIP-Sponge all 

expressed approximately 6.18-fold lower levels of miR-17~92 (Table 1) compared with which in 

SKOV3-TR30-m-PTIP-GFP cells. 

Amplification Curve and Melting Curve of miR-17~92 and internal control β-actin see Figure 2. 

The expression level of miR-17~92 in the SKOV3-TR30 cells is indicated as “1” as control. Compared 
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with SKOV3-TR30 cells, the expression level of miRNA-17~92 in SKOV3-TR30-m-PTIP-GFP cells 

and SKOV3-TR30-m-PTIP-Sponge all cells is 0.507 (t = 9.417, p < 0.05) and 0.082 (t = 23.659,  

p < 0.05), respectively. Contrast the expression level of miR-17~92 in SKOV3-TR30-m-PTIP-GFP 

cells, which is 0.507 and in SKOV3-TR30-m-PTIP-Sponge all cells which 0.082, the difference is of 

statistical significance (t = 10.726, p < 0.05). 

Figure 3. (a) Determination of stable virally transduced SKOV3-TR30-m-PTIP-Sponge all 

cell line and its vector-only control SKOV3-TR30-m-PTIP-GFP by Fluorescence 

Microscope. (100×) 1, 2, 3: transduced by m-PTIP-GFP empty plasmid 1, white field, 2, 

with fluorescence, 3, the integration of 1 and 2. 4,5,6: transduced by m-PTIP-Sponge all 

inhibit plasmid, 4, white field, 5, with fluorescence, 6, the integration of 4 and 5;  

(b) Determination of stable virally transduced SKOV3-TR30-m-PTIP-Sponge all cell line 

and its vector-only control SKOV3-TR30-m-PTIP-GFP using Flow Cytometry. Ratio of 

cells expression green fluorescent protein for SKOV3-TR30, SKOV3-TR30-m-PTIP-GFP 

and SKOV3-TR30-m-PTIP-Sponge all were 0.00, 97.48% and 99.79%; (c) Plasmid 

Restriction Enzyme Digestion Results 1: m-PTIP-GFP empty plasmid, 2: m-PTIP-Sponge 

all inhibit plasmid, M: Marker.  

 

2.4. Inhibition of miR-17~92 could Inhibit the Proliferation of SKOV3-TR30 Cells 

We further study the effects of miR-17~92 expression on the proliferation of SKOV3-TR30 using 

MTT assay. Paclitaxel inhibited cell proliferation in both SKOV3-TR30-m-PTIP-Sponge all and 

SKOV3-TR30-m-PTIP-GFP, and with increased concentration of paclitaxel the inhibitory effects was 

more obvious. Further more, SKOV3-TR30-m-PTIP-Sponge all cells had significantly reduced cell 
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proliferation (p < 0.05) compared with SKOV3-TR30-m-PTIP-GFP (Figure 4) and when the 

concentration of paclitaxel was 100 nm, the inhibition rate difference was most obvious, which is 

40.407% of SKOV3-TR30-m-PTIP-Sponge all cells and 20.934% of SKOV3-TR30-m-PTIP-GFP. 

IC50 of paclitaxel of SKOV3-TR30-m-PTIP-Sponge all cells and SKOV3-TR30-m-PTIP-GFP cells is  

470.80 nM and 170.13 nM respectively.  

Figure 4. MTT assay was used to detect the effects of miR-17~92 on cell growth in 

SKOV3-TR30 cells after transduced with either m-PTIP-Sponge all inhibit plasmid or  

m-PTIP-GFP empty plasmid. Inhibition rate of stable virally transduced SKOV3-TR30-m-

PTIP-Sponge all cells and its vector-only control SKOV3-TR30-m-PTIP-GFP cells is of 

great difference, which has statistical significance (p < 0.05). The difference is most 

obvious when the concentration of paclitaxel is 100 nM (* represents that under the same 

concentration of paclitaxel, SKOV3-TR30 cells transduced by m-PTIP-Sponge all inhibit 

plasmid vs. SKOV3-TR30 cells transduced by m-PTIP-GFP empty plasmid, p < 0.05). 

 

2.5. Decreased Expression of miR-17~92 Resulted in Cell Cycle Arrest in the G2/M Phase 

We accessed cell cycle distribution profiles after the transduction of SKOV3-TR30 with either  

miR-17~92-PTIP-Sponge all plasmids or negative control miR-17~92-PTIP-GFP (m-PTIP-GFP) 

plasmids. Both SKOV3-TR30-m-PTIP-Sponge all and SKOV3-TR30-m-PTIP-GFP cells were treated 

with paclitaxel (the concentration was 0 nM, 20 nM, 100 nM, 200 nM). Decreased expression of  

miR-17~92 in SKOV3-TR30-m-PTIP-Sponge all cells resulted in a significant increase in the fraction 

of cells arrested at G2/M as well as a concomitant decrease in the fraction of cells arrested at S phase 

compared with SKOV3-TR30-m-PTIP-GFP. These effects were obvious when the concentration of 

paclitaxel was 100 nm (Figure 5). 
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Figure 5. Results of Cell Cycle of SKOV3-TR30 after transduction. (a) The Proportion of 

G0/G1 Phase; (b) The Proportion of S Phase; (c) The Proportion of G2/M Phase  

(* respects the group transduced by m-PTIP-Sponge all inhibit plasmid vs. the group 

transduced by m-PTIP-GFP empty plasmid in the same concentration of paclitaxel,  

p < 0.05; ** respects the group transduced by m-PTIP-Sponge all inhibit plasmid vs. the 

group transduced by m-PTIP-GFP empty plasmid in the same concentration of paclitaxel,  

p < 0.01). 

 

2.6. BIM, a BH3-only Propoapoptotic Protein, Is a Direct Target of the miR-17~92 

As result shows miR-17~92 expression is significantly higher in SKOV3-TR30 than in SKOV3.  

To demonstrate the BIM protein level was directly mediated by miR-17~92 through biding to 3'-UTR 

of BIM, we co-transfected the BIM 3'-UTR (B1,B2,B3) along with TMP2-miR-17~92 into HEK293 

cells and than performed luciferase reporter assays. The luciferase reporter plasmid contains a segment 

of the BIM 3'-UTR, among the three cloned fragments of the BIM 3'-UTR. B2 containing binding sites 

for miR-17-5p/-20a and miR-92, and B3 contains binding sites for miR-19 and miR-92 while there is 

not binding site of B1 with miR-17~92. The luciferase activity of the reporter plasmid containing the 

B1, B2 or B3 was decreased to 91.5%, 23.75% and 6.25% separately compared with the control 

construct (Figure 6b). We then used SKOV3 and SKOV3-TR30 cells to clarify if miR-17~92 has an 

effect on BIM protein expression which then trigger paclitaxel resistance in ovarian carcinoma cells. In 

contrast to SKOV3 cells, SKOV3-TR30 cells shows significantly decreased expression of BIM  

(Figure 7a, Table 2). We further applied SKOV3-TR30-m-PTIP-Sponge all cells and the control 

SKOV3-TR30-m-PTIP-GFP cells for a better understanding about the effect of miR-17~92 on BIM 

protein. Both of the cell lines were treated with paclitaxel (the concentration was 0 nM, 20 nM,  
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100 nM, 200 nM). In contrast to SKOV3-TR30-m-PTIP-GFP cells, SKOV3-TR30-m-PTIP-Sponge all 

cells with a significant lower expression of miR-17~92 showed a increase of the BIM protein level 

both at the steady-state condition without any paclitaxel (Figure 7b, Table 3) and after the treatment 

with paclitaxel in different concentrations (Figure 7c, Table 3). These findings suggest that miR-17~92 

plays an important role in BIM protein expression decrease through the post-transcriptional regulation. 

Figure 6. (a) Overexpression of miR-17~92 in HEK293 cells inhibited the luciferase 

activity of the PTEN 3'-UTR reporter plasmid. The 3'-UTR reporter plasmids PTEN or 

PTEN mut were co-transfected with TMP2-miR-17~92 into HEK293 cells. The activity of 

firefly luciferase was normalized to that of Renilla luciferase. (b) Overexpression of  

miR-17~92 in HEK293 cells inhibited the luciferase activity of the BIM 3'-UTR  

reporter plasmid. The 3'-UTR reporter plasmids B1, B2 orB3 were co-transfected with  

TMP2-miR-17~92 into the HEK293 cells. The activity of firefly luciferase was normalized 

to that of Renilla luciferase. * p < 0.05 compared with the control. 

 

Table 2. Relative Content of BIM Protein in SKOV3-TR30 and SKOV3 cells ( x  ± s). 

Cell group BIM/actin  

SKOV3-TR30 0.2118 ± 0.0923  
SKOV3 0.2735 ± 0.1233  

(t = 3.983, p = 0.028). 
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Table 3. Relative Content of BIM and PTEN Protein in Each Cell Group (Relative Gray 

Rate, x  ± s). 

Concentrations of 
Paclitaxel (nM) 

BIM/GAPDH PTEN/GAPDH 

 m-PTIP-GFP  m-PTIP-Sponge all m-PTIP-GFP m-PTIP-Sponge all 
0 70.59 ± 3.4215 107.70 ± 2.3265 * 122.77 ± 2.3265 137.67 ± 1.2452 

20 94.13 ± 5.3265 154.08 ± 2.2641 * 98.15 ± 5.8736 121.96 ± 1.4737 
100 123.72 ± 3.1749 136.83 ± 1.5821 * 122.59 ± 3.5521 130.93 ± 1.2481 
200 109.54 ± 1.1399 164.46 ± 3.7326 * 116.54 ± 1.3357 125.28 ± 3.2158 

* represents under the same concentration of paclitaxel, the group infected by m-PTIP-Sponge all inhibit 

plasmid vs. the group infected by m-PTIP-GFP empty plasmid, p < 0.05. 

Figure 7. (a) The samples from SKOV3 cells and SKOV3-TR30 cells were subjected to 

Western Blot analysis with a BIM and PTEN antibody while β-actin levels were used as 

loading control; (b, c) The samples from SKOV3-TR30-m-PTIP-Sponge all cells and its  

vector-only control SKOV3-TR30-m-PTIP-GFP cells were subjected to Western Blot with 

BIM and PTEN antibody while GAPDH levels were used as loading control;  

(b) Decreased expression of miR-17~92 upregulates the expression of BIM instead of 

PTEN in SKOV3-TR30 cells without treatment of paclitaxel. 1,3 Protein samples from  

SKOV3-TR30 cells transduced by m-PTIP-GFP empty plasmid. 2,4 Protein samples from 

SKOV3-TR30 cells transduced by m-PTIP-Sponge all inhibit plasmid; (c) Decreased 

expression of miR-17~92 upregulates the expression of BIM instead of PTEN in  

SKOV3-TR30 cells after the treatment of paclitaxel with different concentration.1, 3, 5, 

Protein samples from SKOV3-TR30 cells transduced by m-PTIP-Sponge all inhibit 

plasmid 2,4,6: Protein samples from SKOV3-TR30 cells transduced by m-PTIP-GFP 

empty plasmid. The concentration of paclitaxel: 1,2: 20 nM, 3,4: 100 nM, 5,6: 200 nM. 
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2.7. Effect of miR-17~92 on PTEN Expression  

In order to clarify whether miR-17~92 has effect on PTEN expression, we constructed a luciferase 

reporter plasmid containing point mutations in the predicted miRNA binding sites within the PTEN  

3'-UTR (PTEN mut). We then performed luciferase reporter assays in HEK293 cells. The luciferase 

activity of the luciferase reporter gene containing the wild-type PTEN 3'-UTR decreased 42.6% 

compared with the control construct pGL-3-P, but the decrease was not seen with the luciferase 

reporter gene PTEN mut (Figure 6a). That means miR-17~92 binds directly to 3'-UTR of PTEN. We 

then used SKOV3 and SKOV3-TR30 cells to see if there is a different expression of PTEN. In contrast 

to SKOV3 cells, expression of PTEN protein is decreased in SKOV3-TR30 cells but the result is of no 

statistical significance (Figure 7a, Table 4). We then use SKOV3-TR30 to make further clarifications. 

Results showed PTEN protein level is slightly upregulated in SKOV3-TR30-m-PTIP-Sponge all cells 

compared with SKOV3-TR30-m-PTIP-GFP cells while the difference is of no statistical significance.  

To sum up, expression level of PTEN was not effected; even miR-17~92 binds directly to the 3'-UTR 

of PTEN. In addition, although miR-17~92 expression level was much lower in SKOV3-TR30-m-

PTIP-Sponge all cells, there shows no significant increased expression of PTEN protein. These 

observations suggested that not only miR-17~92 but also other mechanisms may be responsible for the 

regulation of PTEN expression, including other miRNAs involved in the post-transcription of PTEN.  

Table 4. Relative Content of PTEN Protein in SKOV3-TR30 and SKOV3 cells ( x  ± s). 

Cell group PTEN/actin 

SKOV3-TR30 0.4043 ± 0.1266 
SKOV3 0.4262 ± 0.1422 

(t = 2.81, p = 0.067). 

3. Discussion  

The current work shows that miR-17~92 cluster expression correlates with paclitaxel resistance of 

SKOV3-TR30 cells. It’s also shown that BIM instead of PTEN is suppressed by miR-17~92 cluster via 

direct binding to the BIM 3'-UTR. 

In this study, we established a stable virally transduced SKOV3-TR30 cell line SKOV3-TR30-m-

PTIP-Sponge all, which expressed approximately 6.18-fold lower levels of miR-17~92 compared with 

its vector-only control SKOV3-TR30-m-PTIP-GFP, in order to seek an understanding of the molecular 

mechanisms of paclitaxel resistance with respect to miR-17~92. At first, we approached this issue by 

obtaining the miRNA differential expression profile between the parental SKOV3 cells and its 

paclitaxel resistance SKOV3-TR30 cells by using the array-based miRNA assay. Our results showed 

that 69 miRNAs are upregulated while 102 miRNAs were downregulated in SKOV3-TR30 cells. 

Among them miR-17~92 expression was significantly upregulated in paclitaxel resistance  

SKOV3-TR30 cells compared with that in the parental SKOV3 cells. Using real-time PCR we further 

clarified that miR-17~92 was overexpressed in SKOV3-TR30 cells compared with SKOV3 cells.  

A miR-17~92 cluster comprising miR-17, miR-18a, miR-20a, miR-19a, miR-19b, and miR-92-1 is 

overexpressed in a large fraction of lymphomas [11]. Besides, miR-17~92 was detected as overexpressed 

also in multiple myeloma [16], breast cancer [17] and osteosarcoma [18]. Ohyashiki [19] states that 
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miR-92a is not only used for the diagnosis of non-Hodgkin’s lymphoma, but also used as an indicator 

for monitoring the recurrence of non-Hodgkin’s lymphoma after chemotherapy. Other studies show 

that the tumorigenic effect of miR-17~92 may be due to synergism between its family members [20].  

Significant decreased expression of miR-17~92 in SKOV3-TR30 cells by transduction with  

miR-17~92 inhibitory plasmids (miR-17-92-PTIP-Sponge all) markedly inhibited cell growth and the 

inhibition rate is most obvious (40.4%, p < 0.05) when the concentration of paclitaxel was 100 nm. 

Decreased expression of miR-17~92 also resulted in cell cycle arrest in the G2/M phase and is most 

obvious when the concentration of paclitaxel was 100 nm (p < 0.05). At that time, the expression of 

BIM protein was significantly increased. Thus, it is likely that the downregulation of miR-17~92 is 

closely associated with the sensitivity to paclitaxel through the upregulation BIM. To further clarify 

whether the BIM protein level was mediated through miR-17~92, we co-transfected the BIM 3'-UTR 

along with TMP2-miR-17~92 plasmid into HEK293 cells, than performed luciferase reporter assays. 

The reporter assays revealed that the firefly luciferase activity from HEK293 cells transfected with the 

reporter gene containing the wild-type B1, B2 or B3 was decreased to 91.5%, 23.75% and 6.25% 

separately compared with the control construct (Figure 6b).These findings suggest that BIM is likely to 

be direct target of miR-17~92 and that BIM protein was regulated at the post-transcriptional level in 

SKOV-TR30 cells. 

So far, the research of the influence of miRNA-17~92 on ovarian carcinoma drug-resistance is 

rarely reported. Using bioinformatics analysis software, we predict that PTEN and BIM are most likely 

potential target genes of miR17~92. The newest transgenic animal experiments in 2008 shows that 

miR-17~92 gene clusters down regulate the expression of PTEN and BIM, which are tumor suppressor 

factors [21]. In recent years, more and more studies have shown that abnormal expression of PTEN 

and BIM is mostly related to the formation of tumor’s drug resistance [13–15]. There are also studies 

show down regulation of PTEN and BIM in certain ovarian carcinoma cells with feature of 

chemoresistance [15,22], besides studies of Lewis and BP [10] show that miR-17~92 takes effect 

through PTEN and BIM. So in order to further prove whether miR-17~92 cause paclitaxel resistance 

through PTEN in SKOV3-TR30,we tested the expression of PTEN protein in paclitaxel resistant 

ovarian carcinoma SKOV3-TR30 cells after transduced with miR-17~92-PTIP-Sponge all. Different 

from the significant upregulation of BIM protein, PTEN was upregulated slightly while the result is of 

no statistical significance. The luciferase activity of the reporter gene containing the wild-type PTEN 

3'-UTR was decreased 42.6% compared with the control construct pGL-3-P, but the decrease was not 

seen with the reporter gene PTEN mut (Figure 6a). These observations altogether suggested that PTEN 

expression is responsible for not only miR-17~92 but also other mechanisms regulating PTEN 

expression including other miRNAs or other mechanism involved in post-transcription.  

4. Experimental Section  

4.1. Cell Culture and Plasmids 

The ovarian carcinoma cell line SKOV3 was provided by Tumor Cell Bank Research Institute of 

the Chinese Academy of Medical Sciences. The paclitaxel-resistant ovarian carcinoma cell line, 

SKOV3-TR30 with the resistant ability of 27-fold greater than its parental cell line, was derived from 
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SKOV3 cell line and provided by Zhejiang University affiliated Obstetrics and Gynecology Hospital. 

SKOV3 cells were maintained in McCoy’s 5a medium containing fetal bovine serum with 10%, 

penicillin with 100 μg/mL and streptomycin with 100 μg/mL. SKOV3-TR30 cells were maintained in 

McCoy’s 5a medium supplemented with 10% fetal bovine serum, penicillin with 100 μg/mL and 

streptomycin with 100 μg/mL and paclitaxel with 30 nmol/L, paclitaxel was withdrawn a week before 

the experiment. All cells were maintained in a humidified atmosphere containing 5% CO2 at 37 °C. 

Cells in the logarithmic phase of growth were used for all studies described. HEK293 cells were 

maintained in a DMEM medium containing fetal bovine serum with 10% in a humidified atmosphere 

containing 5% CO2 at 37 °C. 

MiR-17~92 inhibitory plasmids miR-17~92-PTIP-Sponge all (m-PTIP-Sponge all), empty plasmids 

miR-17~92-PTIP-GFP (m-PTIP-GFP) and TMP2-miR-17~92 were provided by the Zoology Institute 

of Chinese Academy of Sciences.  

Three plasmids named as B1, B2, B3 are cloned from the 3'-UTR of BIM. These vectors based on 

the pGL3-P vector were kind gifts from Professor Fu kai. B2 fragment contains miR-17-5p/-20a and 

miR-92 binding site and B3 fragment contains miR-19 and miR-92 binding site. There is not binding 

site of B1 with miR-17~92. 

PTEN 3'-UTR and PTEN mut 3'-UTR were also gifts from Professor Fu kai. PTEN 3'-UTR 

contains putative binding sites for both miR20a/17-5p and miR-19. 

4.2. MicroRNA Gene Chip 

We analyze the expression profiles of miRNA on the sensitive and resistant ovarian carcinoma cell 

lines with using Affymetrix, the Gene Chip® analysis of miRNA chip. 

4.3. Quantitative Real-Time PCR of miR-17~92 within SKOV3 and SKOV3-TR30 Cells 

The expression level of mature miRNAs was determined using the TaqMan real-time quantitative 

PCR. Briefly, single-stranded cDNA was synthesized from 10ng of total RNA using the TaqMan 

MicroRNA Reverse Transcription Kit. Each cDNA generated was amplified by quantitative PCR using 

sequence-specific primers from the TaqMan MicroRNA Assays. PCR primers are as follows:  

(1) miR-17~92 gene: upstream: 5'-CAGTAAAGGTAAGGAGAGCTCAATCTG-3', downstream:  

5'-CATACAACCACTAAGCTAAAGAATAATCTGA-3'; (2) internal control β-actin gene: upstream: 

5'-GCAAAGACCTGTACGCCAACA-3', downstream: 5'-TGCATCCTGTCGGCAATG-3'. The relative 

quantity of the target miRNAs was estimated by the 2−ΔΔCT after normalizing to the expression level of 

β-actin, which was detected by a TaqMan gene expression Assay. 

4.4. Establishment of Stable SKOV3-TR30 Cell Lines with Induced Expression of miR-17~92 Cluster 

To establish miR-17~92-PTIP-Sponge all cell line, the HEK293T cell line was co-transfected  

with the miR-17~92-PTIP-Sponge all plasmids and pCL packaging plasmid or empty plasmids  

miR-17~92-PTIP-GFP (m-PTIP-GFP) and pCL packaging plasmid by the calcium phosphate method. 

The virus supernatant was collected and used to infect the SKOV3-TR30 cells. The stable cell lines 

which have decreased expression of miR-17~92 and cell lines transduced by empty plasmids  
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miR-17~92-PTIP-GFP (m-PTIP-GFP) were maintained in the presence of 1 μg/mL doxycycline. 

Stable transfectants expressing green fluorescent protein were identified by Flow Cytometry and 

fluorescence microscopy. 

4.5. Cell Proliferation Assays  

Cells were plated at a density of 5 × 103 cells/well in a 96-well plate and incubated with indicated 

concentrations of paclitaxel (0 nM, 20 nM, 100 nM, 200 nM, quadrupled transfected wells were 

analyzed for each concentration) for 48 h. The cells were then incubated with MTT reagent and the 

absorbance at 490 nm was determined. 

4.6. Cell Cycle Analysis 

Cells in the logarithmic phase of growth were selected and paclitaxel were added to the cells with 

concentration of 0 nM, 20 nM, 100 nM, 200 nM separately. After 48 h, cells were collected and 

washed in cold phosphate-buffered saline (PBS). After centrifugation at 1000g for 5 min, cells were 

fixed in cold ethanol (70%) over night, washed with cold PBS and stained with 15 μL propidium 

iodide (50 μg/mL) in the presence of 15 μL of RNase A (10 mg/mL) .The cells were incubated for  

30 min in the dark and analyzed using Flow Cytometery. 

4.7. Western Bloting 

Cells were collected and washed twice in cold phosphate-buffered saline (PBS). Then cells were 

solubilized with lysis buffer, on ice for 30 min, and then centrifuged at 12,000 rpm for 15 min at 4 °C. 

The supernatants were collected, and the protein concentrations were determined using a protein assay 

CBB kit with a BSA standard. 

Samples were loaded for gel electrophoresis at 20 μg/sample, and after electrophoresis, they were 

blotted onto PVDF membranes. Membranes were blocked for 2 h with blocking buffer at room 

temperature and then were incubated overnight at 4 °C with rabbit primary antibodies to PTEN and 

BIM (both from Cell Signaling 1:1000), GAPDH (from Abcam) and then for 1 h at room temperature 

with HRP-conjugated anti-rabbit (1:2000) or antimouse IgG (1:2000) (both from Abcam). Membranes 

were then washed three times in TBS-Tween, and specific bands were visualized using the ECL system. 

4.8. Luciferase Reporter Assays 

HEK 293 cells were plated at 2 × 105 cells per well in a 24-well plate 24 h before transfection. The 

pGL-3-P promoter plasmids containing the wild type or mutated 3'-UTRs of PTEN and 3'-UTRBIM 

(B1,B2,B3)were co-transfected into HEK 293 cells with TMP-miR-17~92 according to the 

manufacturer’s instructions using LIPOFECTAMINE 2000, pRL-SV40 (Promega, Madison, WI, 

USA) was also transfected as a normalization control. Luciferase Assays were performed 24 h after 

transfection using the Dual Luciferase Assay System. Firefly Luciferase activity was normalized to 

renilla luciferase activity for each reaction. Quintupled transfected wells were analyzed for each group. 
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4.9. Statistical Analysis 

All values are in the expression of mean ± SD; Analysis was done using variance analysis, and 

comparisons among different groups were made using the Least Significant Difference (LSD) test. It is 

considered statistically significant when p value is less than 0.05. 

5. Conclusions  

In this study, we have demonstrated the significant contribution of miR-17~92/BIM to paclitaxel 

resistance in human ovarian carcinoma SKOV3-TR30 cells. However, we could not clearly clarify if 

there is a link from miR-17~92 and PTEN to paclitaxel resistance mechanisms. There are studies to 

show that decreased PTEN expression is partly responsible for ovarian carcinoma drug resistance [13]. 

In this present study, however, PTEN was not over-expressed in the resistant SKOV3-TR30 cells after 

transduced with miR-17~92-PTIP-Sponge all plasmid. Further studies to clarify the possible 

involvement of other miRNAs that might regulate the expression of PTEN in SKOV3-TR30 cells and 

the detailed molecular mechanism are needed in our future research. 
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