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Abstract: Metabolites reflect the integration of gene expression, protein interaction and 

other different regulatory processes and are therefore closer to the phenotype than mRNA 

transcripts or proteins alone. Amongst all –omics technologies, metabolomics is the most 

transversal and can be applied to different organisms with little or no modifications. It has 

been successfully applied to the study of molecular phenotypes of plants in response to 

abiotic stress in order to find particular patterns associated to stress tolerance. These studies 

have highlighted the essential involvement of primary metabolites: sugars, amino acids and 

Krebs cycle intermediates as direct markers of photosynthetic dysfunction as well as 

effectors of osmotic readjustment. On the contrary, secondary metabolites are more 

specific of genera and species and respond to particular stress conditions as antioxidants, 

Reactive Oxygen Species (ROS) scavengers, coenzymes, UV and excess radiation screen 

and also as regulatory molecules. In addition, the induction of secondary metabolites by 

several abiotic stress conditions could also be an effective mechanism of cross-protection 

against biotic threats, providing a link between abiotic and biotic stress responses. 

Moreover, the presence/absence and relative accumulation of certain metabolites along 

with gene expression data provides accurate markers (mQTL or MWAS) for tolerant crop 

selection in breeding programs.  

Keywords: cold; heat; metabolite profiling; mQTL; omics; osmoprotectants; oxidative 

stress; salt stress; soil flooding; water stress 
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1. Metabolomics within the Context of Systems Biology 

The phenotype of an organism is the result of the combination of multiple intertwined, dynamic and 

linear/non-linear interactions among different elements (DNA, RNA, proteins and metabolites) with 

the environment (developmental stages and/or adverse conditions such as salinity, temperature and 

water or nutrient availability). For this reason, most genome-scale studies require an accurate 

phenotype description besides the analysis of RNA transcripts, proteins and metabolites. Nevertheless, 

the sum of these three aspects does not provide a clear picture of the actual phenotype of a given 

organism but a sequential characterization of the elements one by one. This approach lacks the 

emerging properties that characterize biological organisms; therefore there is an increasing need for the 

integration of all these aspects [1–3]. This is of especial relevance when the objective is to understand 

how plants respond to environmental cues. In this sense, whereas gene and protein expression 

represent the potential of plants to respond to adverse conditions, metabolites constitute the true 

integration of these two aspects plus the influence of the environment and/or other organisms. 

However, we first need to understand what information can be extracted from the application of the 

different profiling (omics) methodologies and how can metabolomics help to better comprehend the 

nature of phenotypes. In addition, the physiological and biochemical effects of different abiotic stress 

conditions and how metabolite markers can be used for the selection of cultivars and/or rootstocks with 

improved yield/abiotic stress tolerance will be reviewed. 

1.1. Omics Technologies: Transcriptomics, Proteomics and Metabolomics 

In recent years, after the publication of Arabidopsis and Human genomes [4], a number of  

strategies have been developed to cover the entire three aspects or an organism’s biology, namely 

transcriptomics, proteomics and metabolomics. These technologies generate enormous amounts of 

information which has boosted up the field of bioinformatics, with thousands of new algorithms and 

software published every year. The development of these tools has allowed the inference of the causal 

correlation among the analyzed elements. Another important technological innovation has been the 

improvement in data storage as well as computational capacities involved in the acquisition and 

processing of large datasets. In addition, several web and software platforms aimed to share, integrate 

and visualize in a biological context the overwhelming amount of data have been developed. 

The analysis of gene transcripts is probably the most developed field. Indeed, there are several 

platforms available: the extremely accurate qRT-PCR that allows only a limited number of genes to be 

analyzed [5]; the gene microarray technology allowing the analysis of thousands of genes at a time [6] 

and RNA Seq oriented to the performance of unbiased analysis of RNA transcripts [7,8] which 

generates gigabyte size readouts with all the RNA transcripts of a given cell, organism or tissue. The 

increasing amount of data generated pushed researchers to create databases of experiments covering 

different organs [9], tissues and cell types [10], developmental events [11] and environmental  

cues [12], allowing to take a sneak peek into the expression of gene candidates in advance. For 

example, Genevestigator [13] database allows a preliminary survey of the gene candidates before 

programming any experiment and Arabidopsis eFP Browser [14] shows gene expression at the organ 
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level. Moreover, with RNA Seq is also possible to detect diverse variants of mRNA and other RNA 

molecules such as noncoding RNA or small RNAs in different organisms [15]. 

Following transcript analyses, proteins are the second most important aspect in defining an 

organism’s phenotype, as the product of gene expression. To cover up all the translational events from 

mRNA to functional proteins, analytical platforms necessarily need to be able to evaluate not only  

the presence/absence of a given protein but the potential post-translational modifications (e.g., 

phosphorilations, glycosilations or prenylations) and also the potential to assess protein-protein 

interactions. Available platforms include the traditional 2D gel electrophoresis (combined or not with 

fluorescent dyes, as in the DIGE technique, [16]) which is useful for protein fingerprinting when 

coupled to mass spectrometry (MS) for protein identification and, finally, the shotgun proteomics 

approach, based on nano-liquid chromatography (nanoLC) separation of matrices and MS detection, 

which offers a deeper and less biased coverage of the proteome including low abundant proteins [17]. 

The future challenges in proteomics are the development of new analytical techniques and workflows 

to overcome the lack of reproducibility and the implementation of new features for data exportation 

and comparison in databases [18].  

The term metabolomics has been defined as the identification and quantitation of all low molecular 

weight metabolites in a given organism, at a given developmental stage and in a given organ, tissue or 

cell type [19,20]. This is a challenging task due to the wide array of molecules with different structures 

and chemical properties. For instance, it is estimated that a single accession of Arabidopsis contains 

more than 5000 metabolites, most of them yet uncharacterized. Unlike transcriptomics, there is no 

single approach to detect all compounds and the adequate combination of extraction and detection 

techniques is key to increase the coverage of the technique [21]. The most popular metabolomics 

techniques focus on metabolites with similar and specific chemical properties and are globally known 

as metabolite profiling only covering up a fraction of the metabolome. To achieve a comprehensive 

coverage of the vast range of metabolites present in the plant kingdom several analytical techniques 

consisting of a separation technique coupled to a detection device (usually MS) are combined. 

However, there are alternatives that dismiss the use of a separation technique such is the case of flow 

injection analysis coupled to MS (FIA/MS) or use different analyzers such as nuclear magnetic 

resonance (NMR) or Fourier Transform Infrared spectroscopy (FTIR) that are used only for 

fingerprinting purposes. The separation part provides the selectivity needed for certain groups of 

metabolites. For instance, gas chromatography (GC) is mainly intended for volatiles and primary 

metabolites (e.g., sugars, aminoacids or tricarboxylic acid (TCA) cycle intermediates) after 

derivatization [22]. On the other hand, although LC is very flexible and can be adapted to a vast array 

of compounds, it has been mainly used for secondary metabolites without prior derivatization [19]. In 

this sense, capillary electrophoresis (CZE) provides similar characteristics as LC but with the 

advantage that ionic metabolites can also be properly separated [23]. Among all analyzers that can be 

used with the separation techniques mentioned, the most popular in metabolomics are MS analyzers 

and, particularly, those providing accurate mass measures such as hybrid quadrupole/time-of-flight or 

orbitraps [19,24–26]. However, more targeted techniques are still extensively used for the quantitation 

of several plant metabolites and hormones due to their enhanced sensitivity and specificity [27–29].  

As mentioned above, a serious drawback is the handling of the great amount of data generated. In 

addition, metabolites need to be properly annotated to obtain consistent and useful results. Whereas, 
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for primary metabolites, it is much facilitated due to the availability of several public libraries for 

GC/MS studies such as [30,31], it is still a challenging task in the case of secondary metabolites, since 

no comprehensive database exists up to date [32–34]. Therefore, a future objective to achieve in these 

techniques is the standardization and annotation of data from multiple metabolomics technologies in 

public databases [35]. The future challenge is the integration of all three aspects within a single 

framework that will allow a better understanding of how plants respond to a changing environment.  

1.2. Data Integration: Gene-Protein-Metabolite 

The data collected from transcriptomics, proteomics and metabolomics needs to be combined to 

achieve a better understanding of the plant as a system. Several research groups have provided 

workflows to integrate all this information into a single pipeline. 

1.2.1. Transcriptomic-Proteomic 

A recurrent topic in transcriptomics and proteomics is the correlation between the expression of 

protein-coding genes and the abundance of the corresponding proteins. There are studies that reported 

a moderate correlation (a Pearson’s correlation index of 0.4) between RNA and protein in unicellular 

organisms in steady-state conditions, increasing in stressed conditions (up to 0.7). However, this 

correlation has been shown to be lower in multicellular eukaryotes, indicating a major role of  

post-translational regulation in the activity of the cell [36]. Hence, the best functional insight can be 

obtained by combining measurements across technologies, and searching for broader groups of genes, 

proteins, and metabolites with regulatory relationships [37]. However, the extreme complexity of the 

underlying processes (such as the existence of yet unknown regulatory mechanisms) makes this a 

challenging task, in addition to several technical cross-platform issues [36].  

1.2.2. Transcriptomic-Metabolomic 

Another possibility is to integrate transcription with metabolites. This integration can also help to 

unveil genes and processes underlying complex traits [38]. In order to facilitate the integration, several 

software packages have been developed such as MapMan [39] or, more recently, MetGenMap [40]. 

These computer programs have been successfully applied to identification of genes and metabolic 

pathways involved in germination, diurnal cycles [41] and seed dormancy [42]. Indeed, they have 

proven to be useful tools to predict the function of co-regulated genes under given conditions and to 

identify genes involved in metabolite biosynthesis and transcriptional regulation [43,44]. 

1.2.3. Metabolomic-Proteomic 

In non-targeted metabolomics, principal components analysis (PCA) and independent components 

analysis (ICA) are methods commonly used to perform pattern recognition. In addition, it is possible to 

strengthen this technique by including additional parameters such as external perturbations (stress), 

protein concentration, and/or enzyme activities, thus generating metabolite correlation networks. In 

line with this, Weckwerth and collaborators [45] exploited the improvements of ICA respect to PCA 

using an integrated metabolite-protein data matrix to separate the principal components of genotype 
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(Arabidopsis WT vs. Arabidopsis phosphoglucomutase mutant) throughout a diurnal rhythm. Using a 

similar approach, the starch and raffinose metabolisms in response to low and high temperature have 

been recently dissected with an integrative approach in Arabidopsis thaliana [46]. 

Overall, transcript profiling is the most mature technique in the systems biology field, allowing 

acquisition of exhaustive and large-scale datasets. In addition, there are several public databases where 

annotation of candidates is performed automatically. In the case of proteomics and metabolomics, 

great technical challenges exist to overcome the same large-scale coverage of the different 

transcriptomics platforms due to the diverse chemical nature of both proteins and metabolites and the 

impossibility of pre-amplification as in the case of nucleic acids, making instrument sensitivity a 

serious challenge. Nevertheless, specific databases with well annotated data begin to spread and the 

common effort is beginning to give promising results: VirtualPlant [47] and GeneMANIA [48] allow 

the combination of different large-scale data to start modeling the complex behavior of organisms.  

2. Abiotic Stress, Causes and Physiological Responses 

Physiological responses of plants to environmental cues involve changes not only at the 

transcriptional level but also in post-translational protein modifications and metabolite alteration 

and/or accumulation, leading to a particular physiological response or phenotype [49]. Plant 

physiological responses to stress are oriented towards tolerance, sensitivity or avoidance of the 

stressful conditions [50]. In the natural environment, adverse situations are always a combination of 

several stress factors (e.g., water limitation, high temperature or irradiation and high osmolality). This 

is the reason why it is always difficult to determine which stress factor (if not all) is behind the 

elicitation of a particular physiological response. 

To simplify the effect of environmental conditions on physiological responses, researchers have 

traditionally subjected plants to a specific stress factors under highly controlled conditions and keeping 

the rest of parameters at optimum values, thus neglecting their contribution to the physiological 

responses [51]. In this review we will follow primarily this approach although additional comments on 

combined-stress experiments will be also provided. 

2.1. Drought 

The most important stress factors limiting plant growth, reproductive development and, ultimately 

survival, is drought. This stress factor is related to water supply limitation, not only understood as the 

strict cease in water supply but also as continuous water deficit throughout growth, reproductive or 

developmental stages [52]. One of the most important physiological parameters being affected by 

drought or water shortage is photosynthesis; in this sense both water and salt stress are quite similar 

causing a progressive and severe reduction in the CO2 assimilation capacity. This decrease in net 

photosynthetic rate is first associated to a stomatal closure induced by a decline in leaf cell turgor that 

limits diffusion of CO2 into the substomatal chamber. Under these conditions that diminish CO2 

diffusion through the mesophyll, photoinhibition, a process that reduces quantum yield of PSII and 

induces photorespiration and H2O2 production [53] is likely to occur. Hence, the production of 

Reactive Oxygen Species (ROS) is one of the primary responses to stress following the decline in 

photosynthesis, causing cell damage but also a signal to be transmitted [54,55]. Massive ROS 
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production, if not controlled by antioxidant mechanism, can induce photosynthetic pigment bleaching, 

thylakoid membrane degradation and alteration of protein structure and function. Plants respond to the 

induced oxidative stress by overproducing antioxidant compounds such as ascorbic acid, glutathione 

and polyphenols [56,57]. Besides this, drought stress induces as a general response the accumulation of 

several aminoacids such as valine, leucine, isoleucine and agmatine (as a precursor of polyamines) 

along with carbohydrates and carbohydrate alcohols which, in combination with proline (Pro), could 

have an osmoprotective role. In addition, while increases in carbohydrates and their alcohols occurred 

as a short term response and likely not under abscisic acid (ABA)-dependent signaling, the 

accumulation of Pro and other aminoacids was observed after long term drought and seemed to be 

under ABA regulation [58]. 

2.2. Salinity 

Another major factor limiting plant growth and production is salinity. This stress factor is derived 

from the massive accumulation of salts near the root zone and causes an osmotic effect followed by a 

specific toxicity, derived from the accumulation of saline ions in plant tissues [59]. The most studied 

effect is the salinity associated to the accumulation of NaCl due to overexploitation of freshwater 

resources and the subsequent marine intrusion, known as primary salinization [60]. In natural 

environments, osmotic and ionic effects co-occur and usually the symptoms of ion toxicity precede 

leaf drop [59]. Under these conditions, non-tolerant plants exhibit succulence, arrest in growth and 

reproductive development, continuous organ abscission and, if the saline conditions persist, death [59]. 

However, under artificial stress conditions, plants are suddenly exposed to high saline concentrations 

(e.g., 100 or 200 mM NaCl) or in increasing steps (25, 50, 75, 100 mM NaCl). This triggers the 

massive accumulation of saline ions and compatible osmolyte biosynthesis to counterbalance the 

severe osmotic effect [59].  

2.3. Soil Flooding 

Water stress is either associated to a deficit in water availability or to an excess irrigation that 

impairs water uptake. In particular, soil waterlogging constitutes a seasonal stress factor whose 

incidence on crops is difficult to predict. When the soil water content rises above field capacity a fast 

depletion of O2 occurs due to the low diffusion rate of this gas in water together with the consumption 

made by plants roots. This O2 depletion can occur in less than 24 h, depending on the root/microbiota 

biomass present in soil [61–63]. In citrus, soil flooding causes a progressive reduction in gas exchange 

parameters that is proportional to the relative tolerance of the different genotypes. Indeed, tolerant 

genotypes maintain CO2 assimilation rate and carboxylative efficiency at control levels for longer time 

than sensitive genotypes under continuously flooded conditions [63]. Thus, tolerance is linked to the 

ability of maintaining gas exchange parameters which is, in turn, related to transpiration and, 

ultimately, to plant vigor.  
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2.4. Temperature Stress 

In a climate change context, the effect of high temperatures has been recently reviewed by Mittler 

and co-workers [64]. In general, heat stress affects the stability of proteins, nucleic acids, the 

cytoskeleton structure and the efficiency of enzymatic reactions, causing a severe metabolic 

imbalance. The sensing of heat stress takes place at the plasma membrane of cells which is physically 

altered, acting as a real thermometer [65]. Heat also causes several metabolic changes associated to 

impairment in electron transport chains and production of ROS such as the membrane bound NADPH 

oxidase [64]. In addition, another primary target of this stress is the photosynthetic system, especially 

the PSII and the oxygen-evolving complex, the ATP generating system and the carbon assimilation 

process [65].  

In the opposite, the effect of low temperatures above freezing (0–15 °C) is also an important stress 

factor limiting crop productivity. As in heat stress, photosynthesis is largely affected by cold stress. 

The cessation of growth resulting from cold stress reduces the capacity for energy utilization, causing a 

feedback inhibition of photosynthesis and production of ROS. Membrane composition and fluidity is 

the key change involved in low temperature perception. Indeed, at low temperatures cell plasma 

membranes undergo phase transition in which fluidity of membrane is reduced to form a solid gel [66], 

which is used by plant cells to sense cold stress. 

3. Effect of Abiotic Stress on Plant Biochemistry: Metabolites as Effectors of Tolerance/Damage 

and Genes Involved 

In recent years, metabolomics techniques have drawn attention of researchers in different areas of 

plant science such as phytopathology, botany and systematics, stress and environmental physiology 

and, of course, phytochemistry. In general terms, metabolomics is deeply related to phytochemistry or 

natural products chemistry in the same way as genomics is rooted in classical molecular biology  

(one-gene-at-a-time). As a step forward, the aim of modern metabolomics is the identification and 

quantitation of all metabolites in a given plant species at a given developmental stage under particular 

environmental conditions [63]. However, as indicated above, this is not possible up-to-date since the 

immense chemical diversity of plant metabolites cannot be unraveled with a single analytical  

technique [67,68]. Plant metabolomics have been used for several purposes: (1) evaluation of the 

impact of stress/treatment on plant metabolism, (2) tracking of a certain compound or compound 

category within a particular biosynthetic/degradation pathway and (3) classification of samples [1]. 

Depending on the pursued objective, a targeted or a non-targeted approach should be chosen. Since 

both the extraction and the analytical technique chosen might influence the array of compounds 

analyzed in a metabolomics platform, it can be accurately stated that almost every current 

metabolomics platform is indeed a targeted technique. 

As a whole, the actual metabolite composition of a given plant species is the result of a particular 

gene expression profile. When a certain metabolic pathway is activated, precursors and intermediates 

are channeled to produce a bioactive molecule: an antioxidant, a signaling compound, a cell structure 

biosynthesis intermediate or even a storage compound. The production of these compounds can be 

regulated in turn by other compounds (signaling molecules, such as plant hormones) not related to the 
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regulated pathway or intermediates that can feedback activate or inactivate different metabolic steps. 

In addition, in pathological conditions, metabolites can also constitute cell damage subproducts such as 

malondialdehyde (MDA), lipid peroxides and DNA fragments resulting from oxidative or enzymatic 

cleavage. Considering the metabolome, the balance between defense, signaling and damage 

metabolites can be used to assess plant tolerance to a certain stress situation [69,70]. 

The most sensitive mechanism to abiotic stress is photosynthesis and when plants are subjected to 

adverse environmental conditions such as drought, salinity, heat or cold, to name a few, carbon 

assimilation and the primary metabolism are largely affected. Among all primary metabolites: sugars, 

sugar alcohols and aminoacids are the most important metabolites which concentration in plant tissues 

is affected by stress, usually as a downstream result of an impairment in the CO2 assimilation process, 

but also as a result of a complex regulatory network [71,72]. Nevertheless, due to the great differences 

in concentration (usually several orders of magnitude) changes in secondary metabolites levels cannot 

be simply inferred from variations in their primary metabolite precursors and is usually a result of a 

complex regulatory process. For this reason, stress-associated changes in secondary metabolites will be 

considered and reviewed separately.  

3.1. Primary Metabolism and Osmoprotectants 

3.1.1. Carbohydrates 

Carbohydrate metabolism plays an important role in the stress tolerance conditions as it is directly 

linked to photosynthetic performance. During the stress period, plants use starch and fructans as a 

source of energy instead of glucose [73] as evidenced by the increase in β-amylase activity [74]. These 

simple sugars can act as osmolytes maintaining cell turgor, stabilizing cell membranes and preventing 

protein degradation [75]. Indeed, under water deficit the concentration of soluble carbohydrates such 

as glucose and fructose increases in roots of stressed plants [76] whereas sucrose is transported to the 

root tips promoting growth and contributing to the increase in root-to-shoot ratio [77]. Moreover, high 

amounts of non-reducing disaccharides such as trehalose can accumulate in tolerant plants subjected to 

desiccation. Nevertheless, although trehalose-overaccumulating transgenic plants displayed an 

enhanced stress tolerance; no increase in trehalose content was observed, excluding a direct role of this 

metabolite in stress protection [78]. Other sugars with no energetic role, such as the oligosaccharides 

raffinose and stachyose accumulate in different plant species in response to a broad range of abiotic 

stress conditions such as drought, salinity or extreme temperatures [73]. These compounds have been 

associated to a reduction in oxidative membrane damage and ROS scavenging [79]. Polyols are also 

implicated in stress tolerance due to its action as scavengers of hydroxyl radicals. In addition, 

accumulation of sugar alcohols like mannitol or sorbitol has been linked to stress tolerance [80].  

3.1.2. Aminoacids: Proline 

During abiotic stress conditions, plants induce the synthesis of osmolytes such as soluble sugars and 

amino acids which contribute to turgor maintainance by osmotic adjustment [81,82]. Among amino 

acids, Pro is the main effector in this response (in addition to hexoses), contributing to around 50% of 

the osmotic adjustment in maize root tips [77]. Indeed, increases in Pro content have been reported in 
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response to different abiotic stress conditions like salt stress [83,84], soil flooding [85], drought [81] or 

extreme temperatures [66,73]. However, whether Pro can counteract and protect against abiotic stress 

or not is still a question of debate. The biosynthesis of Pro is activated under dehydration whereas 

rehydration induces the opposite pathway (Figure 1); the target enzyme is a pyrroline-5-caboxylate 

synthetase (P5CS) located mainly in cytoplasm [82]. For many years, the ability to synthesize and 

accumulate Pro has been considered a tolerance trait as P5CS gene expression has been reported to be 

highly correlated with drought stress and the accumulation of Pro [86]; however, in response to 

different abiotic stress conditions, overaccumulation of Pro in leaves of several citrus genotypes and 

model plants was associated to sensitivity [85,87]. Nevertheless, transformation of citrus with a P5CS 

gene under the control of Cauliflower mosaic virus 35S rRNA promoter led to an increased tolerance 

to drought and an improved ability for osmotic adjustment [81,88].  

Besides the known activity of Pro as a compatible solute several researchers have also claimed its 

role in ROS scavenging [81] and DNA, membrane and protein stabilization [82]. However, greater 

increase in Pro levels does not always result in alleviation of oxidative damage [83,85]. Recently, it 

has been suggested that Pro overaccumulation could increase ROS and MDA production probably via 

pyrroline-5-carboxylate and by inhibition of ABA and ethylene biosynthesis resulting in a decrease in 

stress tolerance [89].  

Figure 1. Multifaceted role of Proline in the responses of plants to stress. Abbreviations in 

the figure, GST: glutathione S-transferase, CAT: catalase, APX: ascorbate peroxidase, 

PDH: proline deshydrogenase and P5CDH: pyrroline 5'-carboxylate deshydrogenase. 

Adapted from [82]. 
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3.1.3. Polyamines 

Polyamines (PA) are nitrogenous aliphatic molecules of low molecular weight and positively 

charged which are present in most living organisms. Several regulatory, protective and ROS 

scavenging roles have been assigned to these molecules related to the aminoacid metabolism [90]. 

Several abiotic stress conditions induce PA accumulation which has been positively correlated with 

stress tolerance [91,92]. The most common PAs found in higher plants are putrescine (Put), spermidine 

(Spd) and spermine (Spm) and can be present as free and conjugated forms. Indeed, PA conjugation as 

hydroxycinnamic acid amides such as coumaroylputrescine, feruloylputrescine, dicoumaroylspermidine, 

diferuloylspermidine or diferuloylspermine contributes to regulate free PAs levels in plants [93]. As a 

whole, concentration of free PAs are tightly controlled by balancing biosynthesis, catabolism and 

conjugation, which is especially relevant during adverse environmental conditions [94]. The specific 

way by which these compounds increase stress tolerance in plants still remains unknown. Indeed, their 

role as compatible solutes has been recently questioned based on its lower concentration in comparison 

to a classical osmolyte such as Pro [95]. Exogenous application of PA to plants subjected to drought 

alleviated stress pressure by reducing H2O2 and MDA levels through the increase in peroxidase and 

catalase enzyme activity and Pro levels [96,97]. Moreover, Put levels during stress conditions were 

positively correlated with reduced levels of H2O2 and lipid peroxidation and increased antioxidant 

enzyme activity and carotenoid concentration [98]. This improved stress tolerance in plants with high 

Put levels was correlated with a reduced stomatal aperture and lower transpiration rate [98]. To this 

respect, it has been suggested a positive feedback mechanism between Put and ABA, indicating an 

effect on stomatal opening through ABA signaling [99]. Other PAs such as Spm and Spd, have been 

associated to the induction of nitric oxide (NO) which is involved in signaling under abiotic stress 

conditions [100]. However, there is no clear agreement about the specific role and implication of each 

PAs in stress tolerance. This could be due to a different contribution of PAs in each specie and stress 

condition [95,101] or to the induction of a different set of genes involved in responses to abiotic stress 

by exogenous application of every PA.  

3.1.4. Integration of Metabolites as Physiological Effectors  

In general terms, it is difficult to assign a protective role to a certain metabolite since no direct 

relationship has been demonstrated for most of the primary metabolites described. To this regard, one 

approach to identify adaptive metabolic changes is the comparison between stress-adapted versus  

non-adapted species or cultivars [102]. When using this approach in crop plants, such as the forage 

legume Lotus corniculatus, a low degree of overlapping in drought-elicited metabolic responses was 

found among closely related species [103]. This could indicate a high degree of exchangeability 

between small molecular weight metabolites in terms of biological function. In response to salt stress, 

plants of the Lotus genus exhibited a similar metabolic response regardless their tolerance, showing a 

general increase in shoot aminoacid concentration (including Pro) and a downregulation of Krebs cycle 

intermediates [104]. However, although with similar tendency, the degree of alteration was different 

between glycophyte and halophyte species. These differences could be associated to different basal 

levels, which are in agreement with a pre-adaptation model [87,105]. In maize, a NMR-based 
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metabolite profiling study confirmed that early effects of salt stress are related to the osmotic 

component of salinity. In addition, results were consistent with an osmotic effect stronger in shoots 

than in roots [106]. However, these studies have the limitation of not proving the causal relationship 

between specific metabolic changes and stress tolerance and, moreover, do not allow the identification 

of the underlying molecular mechanisms [102].  

It has been recently reported that, in non-adapted Thellungiella accessions, sugars and polyamines 

could be involved in the mechanisms of cold adaptation [107]. Similar metabolite fingerprints were 

found in acclimation of Drosophila melanogaster individuals to cold conditions [108] indicating that 

the mechanisms to cold adaptation could be the same among kingdoms. In a recent review, Janská and 

co-workers summarized all the important metabolic changes occurring in cold acclimation, reinforcing 

the idea that the synthesis of cryoprotectant molecules is of vital importance [109]. Among these 

cryoprotectans, sugars, sugar alcohols and low molecular weight nitrogenous compounds such as Pro 

and glycine betaine were shown to be most important. Hence, the accumulation of these molecules in 

adapted individuals could contribute to a higher cold stress tolerance [110]. Similarly, acclimation of 

plants to heat stress involves the accumulation of sugars such as maltose, sucrose and trehalose, 

aminoacids such as α-alanine and sugar alcohols such as glycerol. Non-targeted metabolomic studies 

revealed an effect on pantothenate/CoA pathways that could not be otherwise found [111].  

It is important to note that there is a clear difference in phenotypic and metabolic responses between 

field and greenhouse grown plants. In a recent work, samples from maize hybrids differing in drought 

tolerance and subjected to dehydration under greenhouse conditions were analyzed by means of 

GC/MS. Phenotyping of the plants could not clearly differentiate between tolerant and susceptible 

genotypes. However, it was possible to confirm certain metabolite responses associated to tolerance 

already observed under field conditions [112], demonstrating the power of metabolite profiling 

techniques to show differences when phenotypes are masked by environmental factors. Nevertheless, it 

is important to highlight the importance of a proper phenotype evaluation in the assessment of stress 

tolerance and the development of selection markers (either genetic or metabolic) [52]. To this regard, 

the selection of markers for phenotype assessment is not trivial. For instance, when considering 

tolerance to salt stress, the ability to maintain growth under high salinity even with high Na+ leaf 

concentrations, was considered a tolerance trait in barley [113]. This is in contrast with salt stress 

mechanisms in other glycophytes, for instance, in citrus where the ability to reduce Cl− uptake to the 

aerial part is considered a tolerance trait [114]. Moreover, in other stress situations such as heavy metal 

contamination, the ability to reduce metal uptake to the photosynthetic organs is considered a tolerance 

trait. In these species, phytochelatin biosynthesis and glutathione metabolism exhibit a remarkable 

upregulation when grown under high metal concentrations [115]. However, there are certain species 

known as hyperaccumulators that are able to overaccumulate metals. A direct correlation was found 

between citrate and metal accumulation in all species analyzed and particularly hyperaccumulators 

showed high concentrations of malonate in leaves, probably acting as a metal storage mechanism [116]. 

To add more complexity, other quantitative trait such as Fe deficiency tolerance is, on the contrary, 

evidenced by the higher ability to assimilate Fe from the substrate even when present at very low 

concentrations. In fruit crops such as citrus, responses to iron deficiency in susceptible genotypes have 

been associated to a decrease in the ability for ROS scavenging and the induction of genes involved in 

the biosynthesis and modification of cell wall components [117]. In pea plants, however, Fe-deficiency 



Int. J. Mol. Sci. 2013, 14 4896 

 

 

in tolerant pea cultivars, induced a strong accumulation in nitrogenous, sulphurous and Krebs cycle 

metabolites associated to N-recycling, increased glutathione and the production of metabolites 

involved in Fe sequestration, mainly citric acid, suggesting a strategy oriented towards the improvement 

of Fe uptake and the defense against the associated oxidative stress [118]. All these results point out 

that more physiological information is needed to understand how plants respond to abiotic stress, not 

to use physiological responses as stress tolerance markers, yet these are highly influenced by 

environmental conditions, but to use them to evaluate stress responses.  

3.2. Secondary Metabolites: Antioxidants, Defense Compounds and Regulatory Metabolites 

Plants can synthesize a vast array of “special” metabolites that do not seem to have any essential 

role in plant physiology. However, the occurrence of these compounds provides particular ecological 

advantages of certain species to colonize specific habitats. Among many others, phenolics and 

carotenoids provide protection against excess light and UV irradiation, glucosinolates and alkaloid 

glycosides are important feeding deterrents against herbivory and certain terpenoids can act as semiotic 

or signaling compounds. The array of secondary metabolites is specific to a plant species and their 

biosynthesis is tightly regulated by the developmental stage, tissue or cell group, and of course, by 

several stress situations [19,57,119].  

3.2.1. Phenolic Compounds  

The compound class composed by phenolic metabolites constitutes the most diverse array of 

secondary metabolites found in plants and includes phenylpropanoids (cinnamic, coumaric, caffeic and 

ferulic acids) and its derivatives such as polyphenolics, namely flavonoids, anthocyanins and tannins. 

These compounds are synthesized through the shikimate pathway leading to phenylanaline which is 

the substrate of phenylalanine ammonia lyase (PAL) which is the key enzyme in the phenolic 

biosynthesis pathway. This enzyme catalyzes de deamination of phenylalanine rendering cinnamic 

acid, the first precursor of flavonoid and lignin biosynthesis. Under different adverse environmental 

conditions, the increase in PAL activity as well as other enzymes of the phenylpropanoid pathway has 

been reported [120]. These secondary metabolites are thought to play a role in the side effects derived 

from environmental changes, such as increase in insect predation. This is of especial relevance in a 

climate change context, in which it is expected that the ambient CO2 concentration rises considerably. 

In a recent publication, plants of Brassica rapa were subjected to increased CO2 (744 ppm, about  

2-fold the current ambient levels) concentrations for more than 40 days [121]. Under these conditions, 

plants increased trichome density as well as the amount of constitutive phenolics. However, the ability 

to induce new secondary metabolites was partially impaired suggesting a negative effect on the ability 

to respond to herbivory damage. Another expected effect associated to global climate change is 

warming. According to a report in the Intergovernmental Panel on Climate Change, global mean 

temperature will rise up to 1 °C in the following 12 years, and to 3 °C in 80 years from now [122]. It is 

known that heat induces PAL activity and the production of phenolics and, at the same time, reduces 

their oxidation contributing to heat stress acclimation. In Arabidopsis thaliana, UV-B treatment 

increased the concentration of flavonol (naringenin, kaempferol and quercetin hexosides) and 

derivatives (cinnamoyl and coumaroyl) that may act as UV-B radiation screen; however co-treatment 
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with the flagellin effector flg22 induced a partial shutdown of the pathway [123]. In another work, this 

treatment enhanced resistance to infection with Botrytis cinerea spores [124] indicating that the 

induced flavonols could have also a protective effect against biotic stressors. In response to soil 

flooding, more than 40 flavonoid in leaves of two citrus rootstock species differing in stress tolerance 

were identified [57]. After metabolite profiling analysis of samples from flooded and control plants, it 

was found that flavonoid levels were much decreased in the sensitive genotype, suggesting an efficient 

redox balance in the tolerant species. Phenylpropanoids are precursors of lignins, which constitute an 

important stress defense mechanism, especially at the root level where can modulate cell wall 

composition and stiffness [125,126].  

Other phenylpropanoids derived from the isochorismate pathway collectively known as benzenoids 

are found as volatile forms, esterified to other secondary metabolites or bound to cell walls [127]. 

Among the volatile forms methyl salicylate [128] and methyl benzoate have an important activity in 

plant defense from pathogens [129]. Another well-known benzenoid is salicylic acid (SA), a plant 

hormone that has been traditionally involved in pathogen defense [130] but has been proved effective 

in alleviating the damage induced by several abiotic stress conditions [131]. Mechanistically, SA may 

induce little bursts of H2O2 production resulting in mild oxidative stress which, in turn, could enhance 

the antioxidant activity, improving stress tolerance [132]. 

3.2.2. Glucosinolates 

Glucosinolates are nitrogen and sulphur-containing compounds derived from aminoacids such as 

methionine, alanine, valine or leucine (aliphatic); phenylalanine or tyrosine (aromatic) and tryptophan 

(indolic glucosinolates). This class of compounds has in common a hydroxyaminosulfate group and a 

β-thioglucosyl residue attached to variable side chain, which characteristics depend on the precursor 

aminoacid and the number of ciclyzations [26,133]. These compounds are known to respond to 

different biotic or abiotic stress conditions [26] under stress-specific basis. In Arabidopsis, drought 

induced aliphatic glucosinolates and flavonoids but repressed accumulation of the phytoalexin 

camalexin, whereas soil waterlogging induced all kinds of secondary metabolites [134]. The actual 

function of the accumulation of flavonoids and other phenolics and glucosinolates on abiotic stress 

tolerance is not known yet. 

3.2.3. Carotenoids and Other Terpenoid Derivatives 

Carotenoids and xanthophylls are lipophilic compounds synthesized in plants from isopentenyl 

pyrophosphate (IPP) via the plastidial methyl erythritol phosphate (MEP) pathway. The carotenoid 

pathway is very well established. After several rounds of addition in the MEP pathway, an 

intermediate named geranylgeranyl pyrophosphate (GGPP, C20) is generated from IPP. The first 

committed step of carotenoid biosynthesis is the condensation of two molecules of GGPP to form a 

colorless phytoene (C40). Then, the enzymes phytoene desaturase and carotene desaturase convert 

phytoene into lycopene via the intermediates phytofluene, carotene, and neurosporene. Then, lycopene 

is cyclized into γ-carotene, which is subsequently converted to β-carotene. In a two-step hydroxylation, 

β-carotene is converted zeaxanthin and sequentially to violaxanthin by epoxidation. Finally, an 

arrangement in one epoxy ring of violaxanthin to form an allenic bond forms neoxanthin [135], the 
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precursor of ABA in plants. These metabolites and others like α-tocopherol exert a positive effect 

against heat stress through the stabilization of the lipid phase of the thylakoid membranes [122]. In 

addition, high irradiation and especially UV radiation, has an impact on the composition of this kind of 

protective compounds. However, the role of carotenoids could not be restricted to UV radiation 

protection under stress conditions. For example, the overexpression of phytoene synthase gene in 

transgenic tobacco plants improved osmotic and salt stress tolerance, but by channeling carotenoid flux 

to ABA biosynthesis which led to increased levels of this phytohormone [136]. In citrus fruits, 

carotenoid is highly influenced by average temperature and rainfall, being higher in fruits developed 

under Mediterranean conditions than under tropical climate [137]. In particular, citrus limonoids and 

particularly the triterpenoid limonin, which is assumed to be responsible of the delayed bitterness 

phenomenon, occurs in juice sacs of citrus as a result of physical damage or field freeze. The tasteless 

precursor limonin A-ring lactone is catalyzed into bitter limonin by limonin D-ring lactone hydrolase at 

pH 6.5 or lower [138]. 

3.2.4. Secondary Metabolites, Stress Tolerance and Fruit Quality 

In crop plants, preadaptation is also an important mechanism in abiotic stress tolerance. There are 

important trade-offs between stress adaptation and yield in crops depending on how well cultivars cope 

with changing environment. In drought tolerance, the most typical traits are overaccumulation of 

carbohydrates and aminoacids but also changes in phenylpropanoids leading to differential  

flavonoid profiles [139]. This is agreement with previous findings where higher concentrations of 

phenylpropanoids such as caffeoylquinic acid and phenylalanine were found in tolerant model plant 

genotypes whereas sinapic acid and flavonoids such as quercetin were higher in sensitive  

species [140]. To this respect, concentration of bioactive secondary metabolites such as flavonoids in 

edible parts of plants is also severely affected by stress conditions, altering health and organoleptic 

properties as well. In tomatoes, water stress has an influence in the chemical composition of fruits 

depending on the relative sensitivity or tolerance of plants. Fruits of the drought-sensitive cultivar 

“Josefina” showed a significant decrease in hydroxycinnamic acids and flavonoid glycosides in 

response to water deficit whereas tolerant “Zarina” did not show such a response. However, grafting of 

the sensitive cultivar on the tolerant one had a positive effect on metabolite content of fruits after stress 

treatment, indicating that this could be an efficient tool to improve crop quality even under water 

deprivation [120]. 

4. Development of Metabolic QTL for Improving Stress Tolerance 

Gene expression is a complex process that is not only controlled by a specific promoter, there are 

many different trans factors and epigenetic mechanisms that influence final gene expression [20]. 

Therefore, the solely identification of genes (molecular markers) in a particular genetic background 

cannot ensure the performance of a given genotype or the occurrence of certain compounds. Almost 

every agronomical trait is controlled by an intricate network involving an unknown number of genes 

making phenotype variation in natural populations a quantitative trait. For this reason, in plant 

breeding programs oriented towards the improvement of stress tolerance it is necessary to implement 

quantitative trait mapping analysis strategies, this is the statistical association of genetic markers with 
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phenotypic variation, thus defining quantitative trait loci or QTLs [141]. Using these strategies, many 

QTLs associated to yield and stress tolerance in crops have been identified [141]. In maize and rice, 

one of the most important crops worldwide, many efforts have been oriented towards the identification 

of QTLs that may aid in marker-assisted breeding of cultivars with improved yield under stressful 

conditions [142–145]. As mentioned above, soil flooding is an important stress factor that causes a 

severe reduction in shoot and root growth in maize, thus reducing the tilling capacity [142].  

In a F2 population developed from a cross between two maize inbred lines (waterlogging  

tolerant × waterlogging sensitive) more than 25 QTLs with associated to the selected phenotype traits, 

showing the potential of this approach to select markers for future breeding strategies [142]. Another 

important stress factor involved in severe yield loss in maize is water limitation [143]. In a recent 

publication, QTLs associated to different phenotype traits were identified in a maize recombinant 

inbred line population. However, although QTL expression over the years within a given water regime 

was quite stable, when comparing different drought conditions this stability decreased drastically, 

suggesting a strong environmental pressure on the selected phenotype traits [143]. Other approaches, 

by combining previous knowledge, like in the sub1 locus associated to submergence tolerance in rice [144] 

or OzT3 and OzT9 associated to the apparition of leaf symptoms under ozone exposure [145], have 

been followed to identify QTL markers associated to stress tolerance. In this latter, a multiplexed 

approach was used by combination of gene expression, enzyme activity and metabolite analyses 

pointing to the ROS scavenging and antioxidant turnover metabolism as an important tolerance trait 

under high ozone [145]. However, although all the results are promising it seems clear that phenotype 

traits are subjected to a strong environmental control reinforcing the need of integrative parameters.  

The complex interaction between genotype and environment along with the fact that metabolites 

integrate these two components has favored an increasing tendency to use metabolites as selection 

markers in crop breeding programs [146]. Regarding this, most efforts have been oriented to cultivar 

selection, rootstocks and varieties with improved tolerance to yield- and quality-limiting stress factors. 

The development of biomarkers is oriented towards the prediction of phenotypical properties before 

these features become apparent. This has been made possible by the development of metabotypes or 

the genetic determinants of metabolic phenotypes through metabotype quantitative trait locus (mQTL) 

mapping and metabolomic genome-wide association studies (mGWAS) in a rigorous statistical 

genetics framework, deriving associations between metabolite concentrations and genetic 

polymorphisms [147]. This was initiated with mapping of QTL for gene expression profiles, proteins 

and metabolites (Figure 2). The most important aspect is that metabolite biomarkers do not depend on 

genomic sequence availability and, as mentioned above, overcome the problem of complex and 

strongly environmentally-controlled traits [148].  

A mQTL mapping consists in computing an association between genomic markers (SSR, SNPs or 

CNVs) and metabolic markers. However, mQTL mapping implies two problems: the identification of 

the candidate gene and the candidate metabolite. For these reasons, only quantitative metabotypes that 

are accurately defined are mapped allowing a more focused candidate gene search [147].  
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Figure 2. Genome mapping of molecular phenotypes. The levels of organization are 

depicted in the x-axis: from DNA to phenotype. Mapping of the molecular phenotypes onto 

the genome is achieved by quantitative trait loci (QTL) mapping and genome-wide 

association (GWAS) techniques. All profiling techniques but metabolome-wide association 

studies (MWAS) require genetic data. Adapted from [147]. 

 

Preliminary studies aimed to analyze metabolite profiles of tomato interspecific introgression lines 

between wild Solanum pennelli and Solanum lycopersicon cv M82 and to map specific fruit metabolite 

fingerprints to whole-plant phenotypes [149]. Since then, other studies have attempted to map specific 

metabolite fingerprints to quantitative phenotype traits. Meyer and co-workers, using a rear inbred line 

population obtained from outcrossing C24 and Col-0 Arabidopsis thaliana accessions, found a specific 

metabolite signature associated to high biomass using canonical correlations [150]. Metabolites with 

negative correlation were fructose 6-phosphate, glucose 6-phosphate and citrate, suggesting a 

relationship with the inhibition of energetic metabolism: glycolysis and citric acid cycle; others with a 

positive correlation were nitrogenous compounds such as ornithine and polyamines putrescine and 

spermidine, suggesting an upregulation of cell division and nitrogen assimilation as key traits behind 

increasing biomass. As a follow up, using a similar combined approach it was possible to investigate 

the phenomenon of heterosis or hybrid vigor [151]. In crop plants such as corn, biomass production is 

an important agronomical trait that integrates both biosynthetic and catabolic activity. In a recent 

publication, by using the metabolite profiles of selected parental and hybrid corn lines it was possible 

to identify metabolic traits showing different modes of inheritance. In addition, the metabolite profiles 

between hybrid lines were more homogeneous than between the parental lines [152]. Acclimation to 

low temperature stress has been also a topic deeply examined from the perspective of developing a 

particular metabolic signature that could be associated to gene expression. Following a similar 

approach as described before, a population of nine Arabidopsis accessions acclimated to different 

environmental temperatures (representing habitats from 16° to 66° northern latitude) and subjected to 

cold stress it was found that particular transcript and metabolite profiles correlated with the ability to 

cold acclimate [153]. In addition, results indicated an overreduction of photosynthesis and hormonal 
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regulation and an induction of photoprotective flavonoids. The stress tolerance phenotype, as well as 

other agronomical trait, is highly influenced by growing conditions that might mask to a great extent 

the desired phenotype. In addition, depending on the tissue monitored, these differences might be 

greater or just invalidate the biomarker chosen [112].  

5. Conclusions and Future Prospects 

The study of the metabolome represents the integration of the genetic background and the influence 

of the environmental conditions, thus describing more accurately the phenotype of a given plant 

species. In response to adverse abiotic stimuli, plants orchestrate an array of responses oriented to 

stress avoidance, defense or resistance, depending on the particular stress tolerance. Whereas stress 

avoidance involves modifications in growth habits and seasonal quiescence, defense and resistance are 

necessarily associated to strong metabolic modifications. Among all metabolic responses, alterations in 

the primary metabolism are the most evident and involve changes in levels of sugars and sugar 

alcohols, aminoacids and TCA cycle intermediates, showing general trends in response to abiotic 

stress. However, changes in the secondary metabolism are more specific of a given species and are 

highly specific of the particular stress condition. The integration of genome and metabolome for 

phenotype prediction is particularly interesting in crop breeding, since the selection based solely on 

genetic markers is strongly biased by the influence of the environment. The development of mQTL 

and MWAS markers for crop selection and improvement of abiotic stress tolerance in crops will help 

to overcome the problems derived from differing environmental conditions. This field will take 

advantage of the new plant genomes recently issued [154,155] and the modern and more powerful 

metabolite profiling tools.  

Acknowledgments 

This work was supported by the Spanish Ministerio de Economía y Competitividad (MINECO) 

through grant No. AGL2010-22195-C03-01. to A.G-C. V.A. was the recipient of a “Ramón y Cajal” 

research contract from the MINECO.  

Conflict of Interest 

The authors declare no conflict of interest. 

References 

1. Saito, K.; Matsuda, F. Metabolomics for functional genomics, systems biology, and 

biotechnology. Ann. Rev. Plant Biol. 2010, 61, 463–489. 

2. Fukushima, A.; Kusano, M.; Redestig, H.; Arita, M.; Saito, K. Integrated omics approaches in 

plant systems biology. Curr. Opin. Chem. Biol. 2009, 13, 532–538. 

3. Urano, K.; Kurihara, Y.; Seki, M.; Shinozaki, K. “Omics” analyses of regulatory networks in 

plant abiotic stress responses. Curr. Opin. Plant Biol. 2010, 13, 132–138. 

4. Ma, Y.; Qin, F.; Tran, L.-S.P. Contribution of genomics to gene discovery in plant abiotic stress 

responses. Mol. Plant 2012, doi:10.1093/mp/sss085. 



Int. J. Mol. Sci. 2013, 14 4902 

 

 

5. Steibel, J.P.; Poletto, R.; Coussens, P.M.; Rosa, G.J.M. A powerful and flexible linear mixed 

model framework for the analysis of relative quantification RT-PCR data. Genomics 2009, 94, 

146–152. 

6. Brady, S.M.; Orlando, D.A.; Lee, J.-Y.; Wang, J.Y.; Koch, J.; Dinneny, J.R.; Mace, D.;  

Ohler, U.; Benfey, P.N. A high-resolution root spatiotemporal map reveals dominant expression 

patterns. Science 2007, 318, 801–806. 

7. Filichkin, S.A.; Priest, H.D.; Givan, S.A.; Shen, R.; Bryant, D.W.; Fox, S.E.; Wong, W.-K.; 

Mockler, T.C. Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome 

Res. 2010, 20, 45–58. 

8. Yendrek, C.R.; Ainsworth, E.A.; Thimmapuram, J. The bench scientist’s guide to statistical 

analysis of RNA-Seq data. BMC Res. Not. 2012, doi:10.1186/1756-0500-5-506. 

9. Birnbaum, K.; Shasha, D.E.; Wang, J.Y.; Jung, J.W.; Lambert, G.M.; Galbraith, D.W.;  

Benfey, P.N. A gene expression map of the Arabidopsis root. Science 2003, 302, 1956–1960. 

10. Iyer-Pascuzzi, A.S.; Jackson, T.; Cui, H.; Petricka, J.J.; Busch, W.; Tsukagoshi, H.; Benfey, P.N. 

Cell identity regulators link development and stress responses in the Arabidopsis root. Dev. Cell 

2011, 21, 770–782. 

11. Schmid, M.; Davison, T.S.; Henz, S.R.; Pape, U.J.; Demar, M.; Vingron, M.; Schölkopf, B.; 

Weigel, D.; Lohmann, J.U. A gene expression map of Arabidopsis thaliana development. Nat. 

Genet. 2005, 37, 501–506. 

12. Dinneny, J.R.; Long, T.A.; Wang, J.Y.; Jung, J.W.; Mace, D.; Pointer, S.; Barron, C.;  

Brady, S.M.; Schiefelbein, J.; Benfey, P.N. Cell identity mediates the response of Arabidopsis 

roots to abiotic stress. Science 2008, 320, 942–945. 

13. Genevestigator database. Available online: https://www.genevestigator.com/gv/index.jsp 

(accessed on 22 Februrary 2013). 

14. Arabidopsis eFP browser. Available online: http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi 

(accessed on 22 February 2013). 

15. Breakfield, N.W.; Corcoran, D.L.; Petricka, J.J.; Shen, J.; Sae-Seaw, J.; Rubio-Somoza, I.; 

Weigel, D.; Ohler, U.; Benfey, P.N. High-resolution experimental and computational profiling of 

tissue-specific known and novel miRNAs in Arabidopsis. Genome Res. 2012, 22, 163–176. 

16. Gao, L.; Yan, X.; Li, X.; Guo, G.; Hu, Y.; Ma, W.; Yan, Y. Proteome analysis of wheat leaf 

under salt stress by two-dimensional difference gel electrophoresis (2D-DIGE). Phytochemistry 

2011, 72, 1180–1191. 

17. Baginsky, S.; Kleffmann, T.; von Zychlinski, A.; Gruissem, W. Analysis of shotgun proteomics 

and RNA profiling data from Arabidopsis thaliana chloroplasts. J. Proteome Res. 2005, 4,  

637–640. 

18. Beck, M.; Claassen, M.; Aebersold, R. Comprehensive proteomics. Curr. Opin. Biotechnol. 

2011, 22, 3–8. 

19. Arbona, V.; Iglesias, D.J.; Talón, M.; Gómez-Cadenas, A. Plant phenotype demarcation  

using nontargeted LC-MS and GC-MS metabolite profiling. J. Agric. Food Chem. 2009, 57,  

7338–7347. 

20. Fiehn, O. Combining genomics, metabolome analysis, and biochemical modelling to understand 

metabolic networks. Comp. Funct. Genomics 2001, 2, 155–168. 



Int. J. Mol. Sci. 2013, 14 4903 

 

 

21. Kim, H.K.; Verpoorte, R. Sample preparation for plant metabolomics. Phytochem. Anal. 2010, 

21, 4–13. 

22. Desbrosses, G.; Steinhauser, D.; Kopka, J. Metabolome analysis using GC-MS. 2005, 165–174. 

23. Cevallos-Cevallos, J.M.; Rouseff, R.; Reyes-De-Corcuera, J.I. Untargeted metabolite analysis of 

healthy and Huanglongbing-infected orange leaves by CE-DAD. Electrophoresis 2009, 30, 

1240–1247. 

24. Grata, E.; Boccard, J.; Guillarme, D.; Glauser, G.; Carrupt, P.-A.; Farmer, E.E.; Wolfender, J.-L.; 

Rudaz, S. UPLC-TOF-MS for plant metabolomics: A sequential approach for wound marker 

analysis in Arabidopsis thaliana. J. Chromatogr. B 2008, 871, 261–270. 

25. Wiklund, S.; Johansson, E.; Sjöström, L.; Mellerowicz, E.J.; Edlund, U.; Shockcor, J.P.; 

Gottfries, J.; Moritz, T.; Trygg, J. Visualization of GC/TOF-MS-based metabolomics data for 

identification of biochemically interesting compounds using OPLS class models. Anal. Chem. 

2008, 80, 115–122. 

26. Zandalinas, S.I.; Vives-Peris, V.; Gómez-Cadenas, A.; Arbona, V. A fast and precise method to 

identify indolic glucosinolates and camalexin in plants by combining mass spectrometric and 

biological information. J. Agric. Food Chem. 2012, 60, 8648–8658. 

27. Durgbanshi, A.; Arbona, V.; Pozo, O.; Miersch, O.; Sancho, J.V; Gómez-Cadenas, A. 

Simultaneous determination of multiple phytohormones in plant extracts by liquid 

chromatography-electrospray tandem mass spectrometry. J. Agric. Food Chem. 2005, 53,  

8437–8442. 

28. Chiwocha, S.D.S.; Cutler, A.J.; Abrams, S.R.; Ambrose, S.J.; Yang, J.; Ross, A.R.S.;  

Kermode, A.R. The etr1-2 mutation in Arabidopsis thaliana affects the abscisic acid, auxin, 

cytokinin and gibberellin metabolic pathways during maintenance of seed dormancy,  

moist-chilling and germination. Plant J.2005, 42, 35–48. 

29. Segarra, G.; Jáuregui, O.; Casanova, E.; Trillas, I. Simultaneous quantitative LC-ESI-MS/MS 

analyses of salicylic acid and jasmonic acid in crude extracts of Cucumis sativus under biotic 

stress. Phytochemistry 2006, 67, 395–401. 

30. Luedemann, A.; Strassburg, K.; Erban, A.; Kopka, J. TagFinder for the quantitative analysis of 

gas chromatography-mass spectrometry (GC-MS) based metabolite profiling experiments. 

Bioinformatics 2008, 24, 1–7. 

31. Matsuda, F.; Yonekura-Sakakibara, K.; Niida, R.; Kuromori, T.; Shinozaki, K.; Saito, K. MS/MS 

spectral tag-based annotation of non-targeted profile of plant secondary metabolites. Plant J. 

2009, 57, 555–577. 

32. Burton, L.; Ivosev, G.; Tate, S.; Impey, G.; Wingate, J.; Bonner, R. Instrumental and 

experimental effects in LC-MS-based metabolomics. J. Chromatogr. B 2008, 871, 227–35. 

33. Fiehn, O.; Wohlgemuth, G.; Scholz, M.; Kind, T.; Lee, D.Y.; Lu, Y.; Moon, S.; Nikolau, B. 

Quality control for plant metabolomics: Reporting MSI-compliant studies. Plant J. 2008, 53, 

691–704. 

34. Käll, L.; Vitek, O. Computational mass spectrometry-based proteomics. PLoS Comp. Biol. 2011, 

7, e1002277. 

35. Castellana, N.; Bafna, V. Proteogenomics to discover the full coding content of genomes: A 

computational perspective. J. Proteomics 2010, 73, 2124–2135. 



Int. J. Mol. Sci. 2013, 14 4904 

 

 

36. Hirai, M.Y.; Klein, M.; Fujikawa, Y.; Yano, M.; Goodenowe, D.B.; Yamazaki, Y.; Kanaya, S.; 

Nakamura, Y.; Kitayama, M.; Suzuki, H.; et al. Elucidation of gene-to-gene and  

metabolite-to-gene networks in arabidopsis by integration of metabolomics and transcriptomics. 

J. Biol. Chem. 2005, 280, 25590–25595. 

37. Thimm, O.; Bläsing, O.; Gibon, Y.; Nagel, A.; Meyer, S.; Krüger, P.; Selbig, J.; Müller, L.A.; 

Rhee, S.Y.; Stitt, M. Mapman: A user-driven tool to display genomics data sets onto diagrams of 

metabolic pathways and other biological processes. Plant J.2004, 37, 914–939. 

38. Joung, J.-G.; Corbett, A.M.; Fellman, S.M.; Tieman, D.M.; Klee, H.J.; Giovannoni, J.J.; Fei, Z. 

Plant MetGenMAP: An integrative analysis system for plant systems biology. Plant Physiol. 

2009, 151, 1758–1768. 

39. Urbanczyk-Wochniak, E.; Usadel, B.; Thimm, O.; Nunes-Nesi, A.; Carrari, F., Davy, M.; 

Bläsing, O.; Kowalczyk, M.; Weicht, D.; Polinceusz, A.; et al. Conversion of MapMan to allow 

the analysis of transcript data from Solanaceous species: Effects of genetic and environmental 

alterations in energy metabolism in the leaf. Plant Mol. Biol. 2006, 60, 773–792. 

40. Joosen, R.V.L.; Ligterink, W.; Dekkers, B.J.W.; Hilhorst, H.W.M. Visualization of molecular 

processes associated with seed dormancy and germination using MapMan. Seed Sci. Res. 2011, 

21, 143–152. 

41. Kempa, S.; Krasensky, J.; dal Santo, S.; Kopka, J.; Jonak, C. A central role of abscisic acid in 

stress-regulated carbohydrate metabolism. PLoS One 2008, 3, e3935. 

42. Luo, Z.-B.; Janz, D.; Jiang, X.; Göbel, C.; Wildhagen, H.; Tan, Y.; Rennenberg, H.; Feussner, I.; 

Polle, A. Upgrading root physiology for stress tolerance by ectomycorrhizas: Insights from 

metabolite and transcriptional profiling into reprogramming for stress anticipation. Plant Physiol. 

2009, 151, 1902–1917. 

43. Weckwerth, W.; Loureiro, M.E.; Wenzel, K.; Fiehn, O. Differential metabolic networks unravel 

the effects of silent plant phenotypes. Proc. Natl. Acad. Sci. USA 2004, 101, 7809–7814. 

44. Wienkoop, S.; Morgenthal, K.; Wolschin, F.; Scholz, M.; Selbig, J.; Weckwerth, W. Integration 

of metabolomic and proteomic phenotypes: Analysis of data covariance dissects starch and RFO 

metabolism from low and high temperature compensation response in Arabidopsis thaliana.  

Mol. Cell. Proteomics 2008, 1725–1736. 

45. Katari, M.S.; Nowicki, S.D.; Aceituno, F.F.; Nero, D.; Kelfer, J.; Thompson, L.P.; Cabello, J.M.; 

Davidson, R.S.; Goldberg, A.P.; Shasha, D.E.; et al. A VirtualPlant: A software platform to 

support systems biology research. Plant Physiol. 2010, 152, 500–515. 

46. Mostafavi, S.; Ray, D.; Warde-Farley, D.; Grouios, C.; Morris, Q. GeneMANIA: A real-time 

multiple association network integration algorithm for predicting gene function. Genome Biol. 

2008, 9, S4. 

47. Ahuja, I.; de Vos, R.C.H.; Bones, A.M.; Hall, R.D. Plant molecular stress responses face climate 

change. Trends Plant Sci. 2010, 15, 664–674. 

48. Des Marais, D.L.; Juenger, T.E. Pleiotropy, plasticity, and the evolution of plant abiotic stress 

tolerance. Ann. N.Y. Acad. Sci. 2010, 1206, 56–79. 

49. Verslues, P.E.; Agarwal, M.; Katiyar-Agarwal, S.; Zhu, J.; Zhu, J.-K. Methods and concepts in 

quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. 

Plant J. 2006, 45, 523–539. 



Int. J. Mol. Sci. 2013, 14 4905 

 

 

50. Cattivelli, L.; Rizza, F.; Badeck, F.-W.; Mazzucotelli, E.; Mastrangelo, A.M.; Francia, E.;  

Marè, C.; Tondelli, A.; Stanca, A.M. Drought tolerance improvement in crop plants: An 

integrated view from breeding to genomics. Field Crops Res. 2008, 105, 1–14. 

51. Chaves, M.M.; Flexas, J.; Pinheiro, C. Photosynthesis under drought and salt stress: Regulation 

mechanisms from whole plant to cell. Ann. Bot. 2009, 103, 551–560. 

52. Flexas, J. Drought-inhibition of photosynthesis in C3 plants: Stomatal and non-stomatal 

limitations revisited. Ann. Bot. 2002, 89, 183–189. 

53. Hossain, Z.; López-Climent, M.F.; Arbona, V.; Pérez-Clemente, R.M.; Gómez-Cadenas, A. 

Modulation of the antioxidant system in Citrus under waterlogging and subsequent drainage.  

J. Plant Physiol. 2009, 166, 1391–1404. 

54. Kirakosyan, A.; Kaufman, P.; Warber, S.; Zick, S.; Aaronson, K.; Bolling, S.; Chul Chang, S. 

Applied environmental stresses to enhance the levels of polyphenolics in leaves of hawthorn 

plants. Physiol. Plant. 2004, 121, 182–186. 

55. Djoukeng, J.D.; Arbona, V.; Argamasilla, R.; Gomez-cadenas, A. Flavonoid profiling in leaves 

of citrus genotypes under different environmental situations flavonoid profiling in leaves of 

Citrus genotypes. J. Agric. Food Chem. 2008, 56, 11087–11097. 

56. Urano, K.; Maruyama, K.; Ogata, Y.; Morishita, Y.; Takeda, M.; Sakurai, N.; Suzuki, H.;  

Saito, K.; Shibata, D.; Kobayashi, M.; et al. Characterization of the ABA-regulated global 

responses to dehydration in Arabidopsis by metabolomics. Plant J. 2009, 57, 1065–1078. 

57. Munns, R.; Tester, M. Mechanisms of salinity tolerance. Ann. Rev. Plant Biol. 2008, 59, 651–81. 

58. Breckle, S.W. Salinity, Halophytes and Salt-Affected Natural Ecosystems. In Salinity: 

Environment-Plant-Molecules; Läuchli, A., Lüttge, U., Eds.; Kluwer Academic Publishers: 

Dordrecht, NL, USA, 2002; pp. 53–77. 

59. Visser, E.J.W.; Voesenek, L.A.C.J. Acclimation to soil flooding-sensing and signal-transduction. 

Plant Soil 2005, 274, 197–214. 

60. Bailey-Serres, J.; Voesenek, L.A.C.J. Flooding stress: Acclimations and genetic diversity.  

Ann. Rev. Plant Biol. 2008, 59, 313–339. 

61. Arbona, V.; López-Climent, M.F.; Pérez-Clemente, R.M.; Gómez-Cadenas, A. Maintenance of a 

high photosynthetic performance is linked to flooding tolerance in citrus. Environ. Exp. Bot. 

2009, 66, 135–142. 

62. Mittler, R.; Finka, A.; Goloubinoff, P. How do plants feel the heat? Trends Biochem. Sci. 2012, 

37, 118–125. 

63. Allakhverdiev, S.I.; Kreslavski, V.D.; Klimov, V.V; Los, D.A.; Carpentier, R.; Mohanty, P. Heat 

stress: An overview of molecular responses in photosynthesis. Photosynth. Res. 2008, 98,  

541–550. 

64. Theocharis, A.; Clément, C.; Barka, E.A. Physiological and molecular changes in plants grown at 

low temperatures. Planta 2012, 235, 1091–1105. 

65. Scholz, M.; Gatzek, S.; Sterling, A.; Fiehn, O.; Selbig, J. Metabolite fingerprinting: Detecting 

biological features by independent component analysis. Bioinformatics 2004, 20, 2447–2454. 

66. Johnson, H.E.; Broadhurst, D.; Goodacre, R.; Smith, A.R. Metabolic fingerprinting of  

salt-stressed tomatoes. Phytochemistry 2003, 62, 919–928. 



Int. J. Mol. Sci. 2013, 14 4906 

 

 

67. Hall, R.D. Plant metabolomics: From holistic hope, to hype, to hot topic. New Phytol. 2006, 169, 

453–468. 

68. Hall, R.; Beale, M.; Fiehn, O.; Hardy, N.; Sumner, L.; Bino, R. Plant metabolomics: The missing 

link in functional genomics strategies. Plant Cell 2002, 14, 1437–1440. 

69. Kim, J.K.; Bamba, T.; Harada, K.; Fukusaki, E.; Kobayashi, A. Time-course metabolic profiling 

in Arabidopsis thaliana cell cultures after salt stress treatment. J. Exp. Bot. 2007, 58, 415–424. 

70. Kerchev, P.I.; Fenton, B.; Foyer, C.H.; Hancock, R.D. Plant responses to insect herbivory: 

Interactions between photosynthesis, reactive oxygen species and hormonal signalling pathways. 

Plant Cell Environ. 2012, 35, 441–453. 

71. Krasensky, J.; Jonak, C. Drought, salt, and temperature stress-induced metabolic rearrangements 

and regulatory networks. J. Exp. Bot. 2012, 63, 1593–1608. 

72. Valerio, C.; Costa, A.; Marri, L.; Issakidis-Bourguet, E.; Pupillo, P.; Trost, P.; Sparla, F. 

Thioredoxin-regulated beta-amylase (BAM1) triggers diurnal starch degradation in guard cells, 

and in mesophyll cells under osmotic stress. J. Exp. Bot. 2011, 62, 545–555. 

73. Kaplan, F.; Guy, C.L. β-Amylase induction and the protective role of maltose during temperature 

shock. Plant Physiol. 2004, 135, 1674–1684. 

74. Sicher, R.C.; Timlin, D.; Bailey, B. Responses of growth and primary metabolism of  

water-stressed barley roots to rehydration. J. Plant Physiol. 2012, 169, 686–695. 

75. Sharp, R.E.; Poroyko, V.; Hejlek, L.G.; Spollen, W.G.; Springer, G.K.; Bohnert, H.J.;  

Nguyen, H.T. Root growth maintenance during water deficits: Physiology to functional 

genomics. J. Exp. Bot. 2004, 55, 2343–2351. 

76. Iordachescu, M.; Imai, R. Trehalose biosynthesis in response to abiotic stresses. J. Integr.  

Plant Biol. 2008, 50, 1223–1229. 

77. Nishizawa, A.; Yabuta, Y.; Shigeoka, S. Galactinol and raffinose constitute a novel function to 

protect plants from oxidative damage. Plant Physiol. 2008, 147, 1251–1263. 

78. Xu, G.; Liu, D.; Chen, J.; Ye, X.; Shi, J. Composition of major flavanone glycosides and 

antioxidant capacity of three citrus varieties. J. Food Biochem. 2009, 33, 453–469. 

79. Molinari, H.B.C.; Marur, C.J.; Filho, J.C.B.; Kobayashi, A.K.; Pileggi, M.; Júnior, R.P.L.; 

Pereira, L.F.P.; Vieira, L.G.E. Osmotic adjustment in transgenic citrus rootstock Carrizo citrange 

(Citrus sinensis Osb. × Poncirus trifoliata L. Raf.) overproducing proline. Plant Sci. 2004, 167, 

1375–1381. 

80. Szabados, L.; Savouré, A. Proline: A multifunctional amino acid. Trends Plant Sci. 2010, 15,  

89–97. 

81. Arbona, V.; Flors, V.; Jacas, J.; García-Agustín, P.; Gómez-Cadenas, A. Enzymatic and  

non-enzymatic antioxidant responses of Carrizo citrange, a salt-sensitive citrus rootstock, to 

different levels of salinity. Plant Cell Physiol. 2003, 44, 388–394. 

82. Arbona, V.; Hossain, Z.; López-Climent, M.F.; Pérez-Clemente, R.M.; Gómez-Cadenas, A. 

Antioxidant enzymatic activity is linked to waterlogging stress tolerance in citrus. Physiol. Plant. 

2008, 132, 452–466. 
  



Int. J. Mol. Sci. 2013, 14 4907 

 

 

83. Yoshiba, Y.; Kiyosue, T.; Katagiri, T.; Ueda, H.; Mizoguchi, T.; Yamaguchi-Shinozaki, K.; 

Wada, K.; Harada, Y.; Shinozaki, K. Correlation between the induction of a gene for  

delta-pyrroline-5-carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana 

under osmotic stress. Plant J. 1995, 7, 751–760. 

84. Arbona, V.; Gómez-Cadenas, A. Hormonal modulation of citrus responses to flooding. J. Plant 

Growth Regul. 2008, 27, 241–250. 

85. De Campos, M.K.F.; de Carvalho, K.; de Souza, F.S.; Marur, C.J.; Pereira, L.F.P.; Filho, J.C.B.; 

Vieira, L.G.E. Drought tolerance and antioxidant enzymatic activity in transgenic “Swingle” 

citrumelo plants over-accumulating proline. Environ. Exp. Bot. 2011, 72, 242–250. 

86. Janská, A.; Marsík, P.; Zelenková, S.; Ovesná, J. Cold stress and acclimation—What is important 

for metabolic adjustment? Plant Biol. 2010, 12, 395–405. 

87. Ghars, M.A.; Parre, E.; Debez, A.; Bordenave, M.; Richard, L.; Leport, L.; Bouchereau, A.; 

Savouré, A.; Abdelly, C. Comparative salt tolerance analysis between Arabidopsis thaliana and 

Thellungiella halophila, with special emphasis on K+/Na+ selectivity and proline accumulation. 

J. Plant Physiol. 2008, 165, 588–599. 

88. Lv, W.-T.; Lin, B.; Zhang, M.; Hua, X.-J. Proline accumulation is inhibitory to Arabidopsis 

seedlings during heat stress. Plant Physiol. 2011, 156, 1921–1933. 

89. Groppa, M.D.; Benavides, M.P. Polyamines and abiotic stress: Recent advances. Aminoacids 

2008, 34, 35–45. 

90. Alet, A.I.; Sánchez, D.H.; Cuevas, J.C.; Marina, M.; Carrasco, P.; Altabella, T.; Tiburcio, A.F.; 

Ruiz, O.A. New insights into the role of spermine in Arabidopsis thaliana under long-term salt 

stress. Plant Sci. 2012, 182, 94–100. 

91. Martin-Tanguy, J. Conjugated polyamines and reproductive development: Biochemical, 

molecular and physiological approaches. Physiol. Plant. 1997, 100, 675–688. 

92. Bitrián, M.; Zarza, X.; Altabella, T.; Tiburcio, A.F.; Alcázar, R. Polyamines under abiotic stress: 

Metabolic crossroads and hormonal crosstalks in plants. Metabolites 2012, 2, 516–528. 

93. Hussain, S.S.; Ali, M.; Ahmad, M.; Siddique, K.H.M. Polyamines: Natural and engineered 

abiotic and biotic stress tolerance in plants. Biotechnol. Adv. 2011, 29, 300–311. 

94. Nayyar, H.; Chander, S. Protective effects of polyamines against oxidative stress induced by 

water and cold stress in chickpea. J. Agron. Crop Sci. 2004, 190, 355–365. 

95. Verma, S.; Mishra, S.N. Putrescine alleviation of growth in salt stressed Brassica juncea by 

inducing antioxidative defense system. J. Plant Physiol. 2005, 162, 669–677. 

96. Alcázar, R.; Planas, J.; Saxena, T.; Zarza, X.; Bortolotti, C.; Cuevas, J.; Bitrián, M.;  

Tiburcio, A.F.; Altabella, T. Putrescine accumulation confers drought tolerance in transgenic 

Arabidopsis plants over-expressing the homologous Arginine decarboxylase 2 gene.  

Plant Physiol. Biochem. 2010, 48, 547–552. 

97. Cuevas, J.C.; López-Cobollo, R.; Alcázar, R.; Zarza, X.; Koncz, C.; Altabella, T.; Salinas, J.; 

Tiburcio, A.F.; Ferrando, A. Putrescine as a signal to modulate the indispensable ABA increase 

under cold stress. Plant Signal. Behav. 2009, 4, 219–220. 

98. Tun, N.N.; Santa-Catarina, C.; Begum, T.; Silveira, V.; Handro, W.; Segal Floh, E.I.;  

Scherer, G.F.E. Polyamines induce rapid biosynthesis of nitric oxide (NO) in  

Arabidopsis thaliana seedlings. Plant Cell Physiol. 2006, 47, 346–354. 



Int. J. Mol. Sci. 2013, 14 4908 

 

 

99. Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress 

tolerance in crop plants. Plant Physiol. Biochem. 2010, 48, 909–930. 

100. Verslues, P.E.; Juenger, T.E. Drought, metabolites, and Arabidopsis natural variation: A 

promising combination for understanding adaptation to water-limited environments. Curr. Opin. 

Plant Biol. 2011, 14, 240–245. 

101. Sanchez, D.H.; Schwabe, F.; Erban, A.; Udvardi, M.K.; Kopka, J. Comparative metabolomics of 

drought acclimation in model and forage legumes. Plant Cell Environ. 2012, 35, 136–149. 

102. Sanchez, D.H.; Pieckenstain, F.L.; Escaray, F.; Erban, A.; Kraemer, U.; Udvardi, M.K.;  

Kopka, J. Comparative ionomics and metabolomics in extremophile and glycophytic Lotus 

species under salt stress challenge the metabolic pre-adaptation hypothesis. Plant Cell Environ. 

2011, 34, 605–617. 

103. Arbona, V.; Argamasilla, R.; Gómez-Cadenas, A. Common and divergent physiological, 

hormonal and metabolic responses of Arabidopsis thaliana and Thellungiella halophila to water 

and salt stress. J. Plant Physiol. 2010, 167, 1342–1350. 

104. Wong, C.E.; Li, Y.; Whitty, B.R.; Díaz-Camino, C.; Akhter, S.R.; Brandle, J.E.; Golding, G.B.; 

Weretilnyk, E.A.; Moffatt, B.A.; Griffith, M. Expressed sequence tags from the Yukon ecotype 

of Thellungiella reveal that gene expression in response to cold, drought and salinity shows little 

overlap. Plant Mol. Biol. 2005, 58, 561–574. 

105. Gavaghan, C.L.; Li, J.V.; Hadfield, S.T.; Hole, S.; Nicholson, J.K.; Wilson, I.D.; Howe, P.W.A.; 

Stanley, P.D.; Holmes, E. Application of NMR-based metabolomics to the investigation of salt 

stress in maize (Zea mays). Phytochem. Anal. 2011, 22, 214–224. 

106. Lee, Y.P.; Babakov, A.; de Boer, B.; Zuther, E.; Hincha, D.K. Comparison of freezing tolerance, 

compatible solutes and polyamines in geographically diverse collections of Thellungiella sp. and 

Arabidopsis thaliana accessions. BMC Plant Biol. 2012, 12, 131. 

107. Colinet, H.; Larvor, V.; Laparie, M.; Renault, D. Exploring the plastic response to cold 

acclimation through metabolomics. Funct. Ecol. 2012, 26, 711–722. 

108. Korn, M.; Gärtner, T.; Erban, A.; Kopka, J.; Selbig, J.; Hincha, D.K. Predicting Arabidopsis 

freezing tolerance and heterosis in freezing tolerance from metabolite composition. Mol. Plant 

2010, 3, 224–235. 

109. Guy, C.; Kaplan, F.; Kopka, J.; Selbig, J.; Hincha, D.K. Metabolomics of temperature stress. 

Physiol. Plant. 2008, 132, 220–235. 

110. Witt, S.; Galicia, L.; Lisec, J.; Cairns, J.; Tiessen, A.; Araus, J.L.; Palacios-Rojas, N.;  

Fernie, A.R. Metabolic and phenotypic responses of greenhouse-grown maize hybrids to 

experimentally controlled drought stress. Mol. Plant 2012, 5, 401–417. 

111. Widodo; Patterson, J.H.; Newbigin, E.; Tester, M.; Bacic, A.; Roessner, U. Metabolic responses 

to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in 

salinity tolerance. J. Exp. Bot. 2009, 60, 4089–4103. 

112. Moya, J.L.; Gómez-Cadenas, A.; Primo-Millo, E.; Talón, M. Chloride absorption in salt-sensitive 

Carrizo citrange and salt-tolerant Cleopatra mandarin citrus rootstocks is linked to water use.  

J. Exp. Bot. 2003, 54, 825–833. 

113. López-Climent, M.F.; Arbona, V.; Pérez-Clemente, R.M.; Gómez-Cadenas, A. Effects of 

cadmium on gas exchange and phytohormone contents in citrus. Biol. Plant. 2011, 55, 187–190. 



Int. J. Mol. Sci. 2013, 14 4909 

 

 

114. Callahan, D.L.; Roessner, U.; Dumontet, V.; de Livera, A.M.; Doronila, A.; Baker, A.J.M.; 

Kolev, S.D. Elemental and metabolite profiling of nickel hyperaccumulators from New 

Caledonia. Phytochemistry 2012, 81, 80–89. 

115. Forner-Giner, M.A.; Llosá, M.J.; Carrasco, J.L.; Perez-Amador, M.A.; Navarro, L.; Ancillo, G. 

Differential gene expression analysis provides new insights into the molecular basis of iron 

deficiency stress response in the citrus rootstock Poncirus trifoliata (L.) Raf. J. Exp. Bot. 2010, 

61, 483–490. 

116. Kabir, A.H.; Paltridge, N.G.; Roessner, U.; Stangoulis, J.C.R. Mechanisms associated with  

Fe-deficiency tolerance and signaling in shoots of Pisum sativum. Physiol. Plant. 2012, 147, 

381–395. 

117. Kliebenstein, D.J. Secondary metabolites and plant/environment interactions: A view through 

Arabidopsis thaliana tinged glasses. Plant Cell Environ. 2004, 27, 675–684. 

118. Sánchez-Rodríguez, E.; Ruiz, J.M.; Ferreres, F.; Moreno, D.A. Phenolic profiles of cherry 

tomatoes as influenced by hydric stress and rootstock technique. Food Chem. 2012, 134,  

775–782. 

119. Karowe, D.N.; Grubb, C. Elevated CO2 increases constitutive phenolics and trichomes, but 

decreases inducibility of phenolics in Brassica rapa (Brassicaceae). J. Chem. Ecol. 2011, 37, 

1332–1340. 

120. Wahid, A.; Gelani, S.; Ashraf, M.; Foolad, M. Heat tolerance in plants: An overview. Environ. 

Exp. Bot. 2007, 61, 199–223. 

121. Schenke, D.; Böttcher, C.; Scheel, D. Crosstalk between abiotic ultraviolet-B stress and biotic 

(flg22) stress signalling in Arabidopsis prevents flavonol accumulation in favor of pathogen 

defence compound production. Plant Cell Environ. 2011, 34, 1849–1864. 

122. Demkura, P.V.; Ballaré, C.L. UVR8 mediates UV-B-induced Arabidopsis defense responses 

against Botrytis cinerea by controlling sinapate accumulation. Mol. Plant 2012, 5, 116–126.. 

123. Gallego-Giraldo, L.; Jikumaru, Y.; Kamiya, Y.; Tang, Y.; Dixon, R.A. Selective lignin 

downregulation leads to constitutive defense response expression in alfalfa (Medicago sativa L.). 

New Phytol. 2011, 190, 627–639. 

124. Moura, J.C.M.S.; Bonine, C.A.V.; de Oliveira Fernandes Viana, J.; Dornelas, M.C.;  

Mazzafera, P. Abiotic and biotic stresses and changes in the lignin content and composition in 

plants. J. Integr. Plant Biol. 2010, 52, 360–376. 

125. D’Auria, J.C.; Gershenzon, J. The secondary metabolism of Arabidopsis thaliana: Growing like 

a weed. Curr. Opin. Plant Biol. 2005, 8, 308–316. 

126. Van Poecke, R.M.P.; Posthumus, M.A.; Dicke, M. Herbivore-induced volatile production by 

Arabidopsis thaliana leads to attraction of the parasitoid Cotesia rubecula: Chemical, behavioral, 

and gene-expression analysis. J. Chem. Ecol. 2001, 27, 1911–1928. 

127. Zhao, N.; Guan, J.; Ferrer, J.-L.; Engle, N.; Chern, M.; Ronald, P.; Tschaplinski, T.J.; Chen, F. 

Biosynthesis and emission of insect-induced methyl salicylate and methyl benzoate from rice. 

Plant Physiol. Biochem. 2010, 48, 279–287. 

128. Roetschi, A.; Si-Ammour, A.; Belbahri, L.; Mauch, F.; Mauch-Mani, B. Characterization of an 

Arabidopsis-Phytophthora pathosystem: Resistance requires a functional PAD2 gene and is 

independent of salicylic acid, ethylene and jasmonic acid signalling. Plant J. 2001, 28, 293–305. 



Int. J. Mol. Sci. 2013, 14 4910 

 

 

129. Kang, Y.; Udvardi, M. Global regulation of reactive oxygen species scavenging genes in alfalfa 

root and shoot under gradual drought stress and recovery. Plant Signal. Behav. 2012, 7, 539–543. 

130. Hara, M.; Harazaki, A.; Tabata, K. Administration of isothiocyanates enhances heat tolerance in 

Arabidopsis thaliana. Plant Growth Regul. 2012, 69, 71–77. 

131. Noriega, G.; Cruz, D.S.; Batlle, A.; Tomaro, M.; Balestrasse, K. Heme oxygenase is involved  

in the protection exerted by jasmonic acid against cadmium stress in soybean roots. J. Plant 

Growth Regul. 2012, 31, 79–89. 

132. Shi, Q.; Bao, Z.; Zhu, Z.; Ying, Q.; Qian, Q. Effects of different treatments of salicylic acid on 

heat tolerance, chlorophyll fluorescence, and antioxidant enzyme activity in seedlings of 

Cucumis sativa L. Plant Growth Regul. 2006, 48, 127–135. 

133. Grubb, C.D.; Abel, S. Glucosinolate metabolism and its control. Trends Plant Sci. 2006, 11,  

89–100. 

134. Mewis, I.; Khan, M.A.M.; Glawischnig, E.; Schreiner, M.; Ulrichs, C. Water stress and aphid 

feeding differentially influence metabolite composition in Arabidopsis thaliana (L.). PLoS One 

2012, 7, e48661. 

135. Matsumoto, H.; Ikoma, Y.; Kato, M.; Kuniga, T.; Nakajima, N.; Yoshida, T. Quantification of 

carotenoids in citrus fruit by LC-MS and comparison of patterns of seasonal changes for 

carotenoids among citrus varieties. J. Agric. Food Chem. 2007, 55, 2356–2368. 

136. Cidade, L.C.; de Oliveira, T.M.; Mendes, A.F.S.; Macedo, A.F.; Floh, E.I.S.; Gesteira, A.S.; 

Soares-Filho, W.S.; Costa, M.G.C. Ectopic expression of a fruit phytoene synthase from  

Citrus paradisi Macf. promotes abiotic stress tolerance in transgenic tobacco. Mol. Biol. Rep. 

2012, 39, 10201–10209. 

137. Dhuique-Mayer, C.; Fanciullino, A.-L.; Dubois, C.; Ollitrault, P. Effect of genotype and 

environment on citrus juice carotenoid content. J. Agric. Food Chem. 2009, 57, 9160–9168. 

138. Manners, G.D. Citrus limonoids: Analysis, bioactivity, and biomedical prospects. J. Agric. Food 

Chem. 2007, 55, 8285–8294. 

139. Rasmussen, S.; Parsons, A.J.; Jones, C.S. Metabolomics of forage plants: A review. Ann. Bot. 

2012, 110, 1281–1290. 

140. Lugan, R.; Niogret, M.-F.; Kervazo, L.; Larher, F.R.; Kopka, J.; Bouchereau, A. Metabolome 

and water status phenotyping of Arabidopsis under abiotic stress cues reveals new insight into 

ESK1 function. Plant Cell Environ. 2009, 32, 95–108. 

141. Wentzell, A.M.; Rowe, H.C.; Hansen, B.G.; Ticconi, C.; Halkier, B.A.; Kliebenstein, D.J. 

Linking metabolic QTLs with network and cis-eQTLs controlling biosynthetic pathways.  

PLoS Genet. 2007, 3, 1687–1701. 

142. Qiu, F.; Zheng, Y.; Zhang, Z.; Xu, S. Mapping of QTL associated with waterlogging tolerance 

during the seedling stage in maize. Ann. Bot. 2007, 99, 1067–1081. 

143. Messmer, R.; Fracheboud, Y.; Bänziger, M.; Vargas, M.; Stamp, P.; Ribaut, J.-M. Drought stress 

and tropical maize: QTL-by-environment interactions and stability of QTLs across environments 

for yield components and secondary traits. Theor. Appl. Genet. 2009, 119, 913–930. 
  



Int. J. Mol. Sci. 2013, 14 4911 

 

 

144. Neeraja, C.N.; Maghirang-Rodriguez, R.; Pamplona, A.; Heuer, S.; Collard, B.C.Y.; 

Septiningsih, E.M.; Vergara, G.; Sanchez, D.; Xu, K.; Ismail, A.M.; et al. A marker-assisted 

backcross approach for developing submergence-tolerant rice cultivars. Theor. Appl. Genet. 

2007, 115, 767–776. 

145. Frei, M.; Tanaka, J.P.; Chen, C.P.; Wissuwa, M. Mechanisms of ozone tolerance in rice: 

Characterization of two QTLs affecting leaf bronzing by gene expression profiling and 

biochemical analyses. J. Exp. Bot. 2010, 61, 1405–1417. 

146. Fernie, A.R.; Schauer, N. Metabolomics-assisted breeding: A viable option for crop 

improvement? Trends Genet. 2009, 25, 39–48. 

147. Dumas, M.-E. Metabolome 2.0: Quantitative genetics and network biology of metabolic 

phenotypes. Mol. Biosyst. 2012, 8, 2494–2502. 

148. Steinfath, M.; Strehmel, N.; Peters, R.; Schauer, N.; Groth, D.; Hummel, J.; Steup, M.; Selbig, J.; 

Kopka, J.; Geigenberger, P.; et al. Discovering plant metabolic biomarkers for phenotype 

prediction using an untargeted approach. Plant Biotechnol. J. 2010, 8, 900–911. 

149. Schauer, N.; Semel, Y.; Roessner, U.; Gur, A.; Balbo, I.; Carrari, F.; Pleban, T.; Perez-Melis, A.; 

Bruedigam, C.; Kopka, J.; et al. Comprehensive metabolic profiling and phenotyping of 

interspecific introgression lines for tomato improvement. Nat. Biotechnol. 2006, 24, 447–454. 

150. Meyer, R.C.; Steinfath, M.; Lisec, J.; Becher, M.; Witucka-Wall, H.; Törjék, O.; Fiehn, O.; 

Eckardt, A.; Willmitzer, L.; Selbig, J.; et al. The metabolic signature related to high plant growth 

rate in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 2007, 104, 4759–4764. 

151. Lisec, J.; Steinfath, M.; Meyer, R.C.; Selbig, J.; Melchinger, A.E.; Willmitzer, L.; Altmann, T. 

Identification of heterotic metabolite QTL in Arabidopsis thaliana RIL and IL populations. Plant 

J. 2009, 59, 777–788. 

152. Lisec, J.; Römisch-Margl, L.; Nikoloski, Z.; Piepho, H.-P.; Giavalisco, P.; Selbig, J.; Gierl, A.; 

Willmitzer, L. Corn hybrids display lower metabolite variability and complex metabolite 

inheritance patterns. Plant J. 2011, 68, 326–336. 

153. Hannah, M.A.; Wiese, D.; Freund, S.; Fiehn, O.; Heyer, A.G.; Hincha, D.K. Natural genetic 

variation of freezing tolerance in Arabidopsis. Plant Physiol. 2006, 142, 98–112. 

154. The Tomato Genomic Consortium. The tomato genome sequence provides insights into fleshy 

fruit evolution. Nature 2012, 485, 635–641. 

155. Xu, Q.; Chen, L.-L.; Ruan, X.; Chen, D.; Zhu, A.; Chen, C.; Bertrand, D.; Jiao, W.-B.;  

Hao, B.-H.; Lyon, M.P.; et al. The draft genome of sweet orange (Citrus sinensis). Nat. Genet. 

2013, 45, 59–66.  

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


