Supplementary Information

Table S1. Cumulative gas production from degradation of fast fraction (mL/g of DM) estimated by dual-pool model from samples containing increasing concentrations of BCE (mg/L) or monensin (Mon, 5 μ M) along 36 h of incubation.

Time (b)	Cumulative Gas Production from Degradation of Fast Fraction (mL/g of DM) *							
Time (h)	Mon	0	25	50	100	200		
2	0.001 ± 0.00^{a}	0.259 ± 0.08 b	$0.111 \pm 0.02^{b,c}$	$0.112 \pm 0.02^{b,c}$	0.109 ± 0.01 b,c	$0.085 \pm 0.09^{\ c}$		
4	$0.006\pm0.00~^a$	0.930 ± 0.21^{b}	$0.489 \pm 0.07^{\ b,c}$	0.525 ± 0.07 b,c	0.478 ± 0.04 b,c	$0.288 \pm 0.29^{\ c}$		
6	0.03 ± 0.01^{a}	3.23 ± 0.49 b	$2.11 \pm 0.17^{b,c}$	2.39 ± 0.14 b,c	$2.04 \pm 0.13^{b,c}$	0.97 ± 0.97 ^c		
8	0.14 ± 0.04 a	$9.99 \pm 0.75^{\ b}$	$8.03 \pm 0.15^{b,c}$	9.13 ± 0.05^{b}	7.58 ± 0.46 b,c	3.14 ± 0.28 °		
10	1.01 ± 0.16^{a}	21.14 ± 0.59 b	22.95 ± 1.38^{b}	21.66 ± 0.25 b	19.26 ± 0.95 b	$9.04 \pm 0.41^{\text{ c}}$		
12	6.48 ± 2.97^{a}	35.06 ± 0.61 b	$32.70 \pm 2.53^{\text{ b}}$	$30.18 \pm 0.73^{\ b}$	$29.37 \pm 0.92^{\ b}$	19.42 ± 0.57 °		
15	15.65 ± 1.58 a	41.94 ± 0.64 b	$37.83 \pm 2.66^{a,b}$	$33.36 \pm 1.32^{a,b}$	$34.07 \pm 1.13^{a,b}$	$32.11 \pm 2.22^{a,b}$		
18	19.51 ± 0.32^{a}	43.11 ± 0.68 a	38.45 ± 2.60^{a}	33.71 ± 1.42^{a}	34.68 ± 1.20^{a}	36.01 ± 3.44 a		
21	20.06 ± 0.59^{a}	43.28 ± 0.68 a	38.52 ± 2.58 a	33.75 ± 1.44 a	34.75 ± 1.21^{a}	$36.76 \pm 3.74^{\ a}$		
24	20.11 ± 0.62^{a}	43.31 ± 0.69^{a}	38.52 ± 2.58 a	33.75 ± 1.44 a	34.76 ± 1.21^{a}	$36.89 \pm 3.80^{\ a}$		
30	20.12 ± 0.62^{a}	43.31 ± 0.69^{a}	38.53 ± 2.58 a	33.75 ± 1.44 a	34.76 ± 1.21^{a}	36.92 ± 3.81^{a}		
36	20.12 ± 0.62^{a}	43.31 ± 0.69^{a}	38.53 ± 2.58^{a}	33.75 ± 1.44^{a}	34.76 ± 1.21^{a}	36.92 ± 3.81^{a}		

^{*} Means \pm Standard Deviation. Means followed by the same minuscule letter within each time period did not differ by contrasts (p > 0.05). Analysis of variance (Treatment: p < 0.0001, Time: p < 0.0001, Time × treatment: p < 0.0001).

Table S2. Cumulative gas production from degradation of slow fraction (mL/g of DM) estimated by dual-pool model from samples containing increasing concentrations of BCE (mg/L) or monensin (Mon, 5 μ M) along 36 h of incubation.

Time (h)	Cumulative Gas Production from Degradation of Slow Fraction (mL/g of DM) *							
	Mon	0	25	50	100	200		
2	1.85 ± 0.11^{a}	5.39 ± 0.36^{a}	4.30 ± 0.85 a	4.55 ± 0.14^{a}	4.27 ± 0.11^{a}	3.46 ± 0.26^{a}		
4	$2.88\pm0.18~^a$	$7.46 \pm 0.50^{\ b}$	$6.03 \pm 1.18^{b,c}$	$6.62 \pm 0.20^{\ b}$	$6.19 \pm 0.162^{b,c}$	$4.86 \pm 0.41^{\text{ c}}$		
6	4.44 ± 0.30^{a}	10.23 ± 0.68 b	$8.39 \pm 1.61^{b,c}$	$9.51 \pm 0.28^{\ b}$	$8.88 \pm 0.24^{b,c}$	6.79 ± 0.64 °		
8	6.79 ± 0.48^{a}	$13.88 \pm 0.91^{\text{ b}}$	$11.53 \pm 2.18^{b,c}$	13.47 ± 0.39 b	12.58 ± 0.35 b	9.40 ± 0.99 °		
10	$10.26\pm0.78~^a$	$18.54 \pm 1.20^{\ b}$	$15.61 \pm 2.92^{b,c}$	18.70 ± 0.55 b	17.48 ± 0.49 b	$12.86 \pm 1.49^{a,c}$		
12	15.23 ± 1.17^{a}	$24.30 \pm 1.53^{\ b}$	$20.71 \pm 3.81^{b,c}$	$25.29 \pm 0.75^{\ b}$	23.70 ± 0.68 b	17.31 ± 2.17 °		
15	26.21 ± 1.96^{a}	34.92 ± 2.10^{b}	30.20 ± 5.45 b,c	37.41 ± 1.11^{b}	35.30 ± 1.05 b	25.95 ± 3.53 ^c		
18	41.47 ± 2.75 a,b	$47.16 \pm 2.66^{a,b}$	$41.19 \pm 7.31^{a,b}$	50.84 ± 1.48^{a}	48.40 ± 1.49^{a}	36.58 ± 5.14^{b}		
21	$59.02 \pm 3.07^{a,b}$	$59.55 \pm 3.10^{a,b}$	$52.24 \pm 9.16^{a,b}$	63.35 ± 1.78^{a}	$60.90 \pm 1.93^{a,b}$	48.06 ± 6.65 b		
24	75.37 ± 2.73^{a}	70.55 ± 3.38^{a}	61.91 ± 10.77^{a}	73.28 ± 1.99^{a}	71.06 ± 2.29^{a}	58.81 ± 7.71^{a}		
30	96.05 ± 1.47^{a}	85.52 ± 3.54^{a}	74.61 ± 12.93^{a}	84.61 ± 2.23^{a}	82.95 ± 2.74^{a}	74.24 ± 8.37^{a}		
36	103.55 ± 1.16^{a}	92.45 ± 3.52^{a}	80.19 ± 13.91 a	88.77 ± 2.33^{a}	87.43 ± 2.91^{a}	81.66 ± 8.15^{a}		

^{*} Means \pm Standard Deviation. Means followed by the same minuscule letter within each time period did not differ by contrasts (p > 0.05). Analysis of variance (Treatment: p < 0.0001, Time: p < 0.0001, Time × treatment: p < 0.0001).

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).