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Abstract: Monoclonal antibody G250 (mAbG250) recognizes a determinant on carbonic 

anhydrase IX (CAIX). CAIX is expressed by virtually all renal cell carcinomas of the clear 

cell type (ccRCC), but expression in normal tissues is restricted. The homogeneous CAIX 

expression in ccRCC and excellent targeting capability of mAbG250 in animal models led 

to the initiation of the clinical evaluation of mAbG250 in (metastatic) RCC (mRCC) 

patients. Clinical studies confirmed the outstanding targeting ability of mAbG250 and 

cG250 PET imaging, as diagnostic modality holds great promise for the future, both in 

detecting localized and advanced disease. Confirmation of the results obtained in the  

non-randomized clinical trials with unmodified cG250 is needed to substantiate the value 

of cG250 treatment in mRCC. cG250-Based radio immuno-therapy (RIT) holds promise 

for treatment of patients with small-volume disease, and adjuvant treatment with unmodified 

cG250 may be of value in selected cases. In the upcoming years, ongoing clinical trials 

should provide evidence for these assumptions. Lastly, whether cG250-based RIT can be 

combined with tyrosine kinase inhibitors, which constitutes the current standard treatment 

for mRCC, needs to be established. 
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1. Introduction 

Renal cell carcinoma (RCC) accounts for approximately 3% of all cancers and was estimated to be 

diagnosed in over 60,000 individuals in the United States in 2011 [1]. The most prominent subtype of 

RCC (~70%) is clear cell (ccRCC). In approximately 70% of patients, the tumor is confined to the 

kidney at presentation. In 30% of cases, patients present with or develop metastases at a later time 

point. Patients with advanced disease have a poor prognosis with an overall five-year survival of 

<10%. Based on the molecular insight that ccRCC is characterized by molecular aberrations that leads 

to high expression levels of amongst others VEGF, various anti-angiogenic therapies have been 

developed. For patients with metastatic RCC (mRCC), several anti-angiogenic therapies are  

available [2–7] Implementation of these new treatment modalities has led to a significant increase in 

progression-free survival [8]. However, complete responses (CR) are rare, and long-lasting stable 

disease (SD) is often seen, but eventually all patients progress. Moreover, frequently significant 

toxicity can occur, which may lead to drug cessation or dose reduction.  

Monoclonal antibody G250 (mAbG250) was isolated more than 25 years ago from a hybridoma 

produced from a splenocyte of a mouse immunized with a fresh human RCC [9]. Immunohistochemical 

analysis of renal tumors showed homogeneous expression in the vast majority (>80%) of primary RCC 

and about 70% of mRCC lesions. Analyses of non-RCC tumors revealed variable, non-homogeneous 

staining. Initial specificity analysis on normal human tissues revealed cross-reactivity with gastric 

mucosal cells and large bile ducts. Subsequent in-depth fine-specificity analysis revealed reactivity 

with epithelial cells of the upper gastrointestinal tract and pancreatic cells. Originally, no association 

with a particular histological RCC subtype was noted, but it is now clear that the antigen recognized by 

mAbG250 is almost ubiquitously expressed in ccRCC [10,11]. Based on this fine-specificity analysis, 

mAbG250 target antigen was readily suggested as a potential diagnostic and therapeutic target. 

2. Cloning of G250 Antigen and Relation to ccRCC 

The general occurrence of the antigen recognized by mAbG250 in RCC and absence from normal 

kidney suggested that the aberrant expression was inherently related to tumor development, possibly 

due to a common initiating event [9].  

Cloning of the antigen recognized by mAbG250 showed that mAbG250 recognized a 

conformational determinant of carbonic anhydrase IX (CAIX), a gene originally identified in HeLa 

cells [12,13]. CAIX is a member of the carbonic anhydrase group of enzymes, has a transmembrane, as 

well as a cytosolic domain, and catalyzes the reaction: CO2 + H2O↔HCO3
− + H+. Extensive molecular 

studies of the CAIX promoter region demonstrated that HIF-1α binding was an absolute requirement 

for CAIX expression in ccRCC [14]. This finding uncovered a direct molecular link between the 

observed ccRCC-specificity of mAbG250 and the molecular events leading to ccRCC. Elegant 

molecular studies in families suffering from Von Hippel-Lindau (VHL) syndrome, an autosomal 
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dominant disease, showed that defects in the VHL gene were responsible for tumor development. 

These patients develop multiple tumors, including ccRCC. Studies in sporadic ccRCC demonstrated 

that also in these cases, VHL was mutated [15]. Subsequent studies showed that VHL is involved in 

the hypoxic response: under normoxic conditions, hypoxia-inducible factor-1α (HIF-1α) is 

hydroxylated by prolyl hydroxylase domain proteins and bound by pVHL, catalyzing the 

polyubiquitylation of prolyl hydroxylated HIF-1α for subsequent degradation via the 26S  

proteasome [16,17]. If pVHL is mutated, as in ccRCC, binding of HIF-1α by pVHL does not occur; 

the unbound HIF1α is not degraded, but associates with the constitutively stable partner HIF-1β to 

form an active heterodimeric HIF-1 transcription factor, which binds to hypoxia-responsive elements 

located in the promoter/enhancer regions of numerous hypoxia-inducible genes. In view of the HIF-1α 

dependency of CAIX expression, the ubiquitous expression of the G250/CAIX antigen could be 

explained straightforwardly by nonfunctional VHL gene product in ccRCC (Figure 1). 

Elucidation of the molecular pathway of CAIX gene expression also readily explained the 

heterogeneous staining pattern in non-RCC tumors: this is the consequence of local hypoxia, leading to 

HIF-1α stabilization and subsequent G250/CAIX expression. In fact, G250/CAIX is now regarded as 

an appropriate substitute hypoxia marker in various tumor types [18,19].  

Figure 1. Schematic representation of regulation of carbonic anhydrase IX expression 

(CAIX) in kidney. In normal kidney tissue, hypoxia inducible factor-1α (HIF-1α) is 

hydroxylated by prolyl hydroxylase domain proteins (PHD) and bound by Von  

Hippel-Lindau protein (pVHL). Subsequently, the complex is ubiquitinated, which causes 

degradation of HIF-1α. In clear cell renal cell carcinoma (ccRCC), pVHL is mutated and 

binding with HIF-1α is prohibited. Subsequently HIF-1α forms a heterodimeric complex 

with HIF-1β, translocates to the nucleus, where it activates hypoxia inducible genes, such 

as vascular endothelial growth factor and CAIX, which is expressed on the tumor cell 

membrane. Reproduced with permission from Stillebroer et al., European Urology, 

published by Elsevier, July, 2010; 58(1): 75–83 [20]. 
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3. Clinical Studies with mAbG250 

3.1. Imaging Studies 

The incidental detection of renal lesions has increased up to 50% by improved radiologic imaging, 

such as contrast enhanced CT and positron emission tomography (PET) with fluorine-18 

fluorodeoxyglucose (18F-FDG) [21,22]. With increased possibilities for nephron-sparing surgery and 

the realization that around 20% of these masses are benign tumors, 25% are indolent tumors with 

limited metastatic potential and 54% represent the more potentially malignant ccRCC, it has become 

important to differentiate between these entities. However, conventional techniques have difficulties in 

differentiating between benign and malignant renal lesions. Therefore, surgical interventions are 

performed that could have been prevented. Consequently, new imaging techniques are needed to 

improve the differentiation between benign and malignant renal lesions. In view of the ccRCC 

specificity of mAbG250, multiple studies have addressed its ccRCC targeting capabilities.  

Since its discovery, numerous preclinical targeting studies were performed in various mouse  

models [23–26] with various radionuclides, as well as in ex vivo perfusion experiments in tumor-bearing 

kidneys [27] with mAbG250. Selective and extraordinary high uptake of murine mAbG250 (mG250) 

in antigen-positive tumor xenografts was observed (e.g., up to more than 100% of the injected dose per 

gram tumor tissue at the lowest protein doses (up to 1 µg)). The combination of the restricted 

G250/CAIX expression in normal tissues, homogeneous G250/CAIX expression in RCC and excellent 

targeting capability in animal models provided a solid basis for the initiation of the clinical evaluation 

of mG250 in patients to investigate the possibility to use CAIX imaging as a new diagnostic tool. 

The first clinical study with mouse mAbG250 (mG250) concerned a phase I presurgical protein 

dose-escalating study of 131I-mG250 conducted to determine tumor uptake and mG250 distribution in 

patients suspect for RCC [28]. Apart from clear visualization of primary and metastatic (known and 

occult) RCC at protein doses >2 mg, occult metastases were imaged, immediately demonstrating the 

diagnostic potential. Levels of mG250 in tumor tissue samples reached levels of up to 0.1% of the 

injected dose per gram of tumor (%ID/g), these levels being among the highest reported in studies of 

solid tumors. Additionally, normal tissue uptake, actually limited to the liver, was saturable, 

encouraging future development of mG250 in RCC. Because histological confirmed CAIX-negative 

tumors did not image, it was concluded that mAbG250 accumulation was CAIX-specific. Since 

administration of murine G250 led to the formation of human-anti-mouse-antibodies (HAMA) in all 

patients, preventing multiple administrations [29], a chimeric variant of G250 (cG250) was constructed 

(see Table 1).  
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Table 1. Overview of Imaging studies with mAbG250 in RCC patients. 

Ref. Year Agent 
Number of 

patients 
Patients Outcome # Remarks 

Oosterwijk et al. [28] 1993 131I-mG250 15 Primary RCC 12/12 pts Phase I, dose escalation 

Steffens et al. [30] 1997 131I-cG250 16 Primary RCC 13/13 pts Phase I, dose escalation 

Steffens et al. [31] 1999 
131I-cG250 &  
111In-cG250 

10 Primary RCC 10/10 pts Dual label study 

Brouwers et al. [32] 2002 
131I-cG250 vs.  

18F-FDG 
20 M + RCC 

131I-cG250: 34/112 lesions 
18F-FDG: 77/112 lesions 

Comparative intrapatient study 

Brouwers et al. [33] 2003 
131I-cG250 &  
111In-cG250 

5 M + RCC 
111In-cG250: 47 lesions  
131I-cG250: 30 lesions 

Comparative intrapatient study 

Divgi et al. [34] 2007 124I-cG250 26 Primary RCC 15/16 ccRCC imaged Prospective cG250-immunoPET 

Divgi et al. [35] 2013 124I-cG250 226 Primary RCC 
124/143 ccRCC imaged  

(sens. & spec. 86%) 
Phase III, REDECT trial 

Muselaers et al. [36] 2013 111In-cG250 29 Primary RCC 15/16 ccRCC imaged 111In-cG250 immunoSPECT 
# outcome refers to diagnostic accuracy, i.e., number of positive images over total number of images mG250: mouse monoclonal antibody G250; cG250: chimeric 

monoclonal antibody G250; ccRCC: clear-cell renal cell carcinoma; 18F-FDG: fluorine-18 fluorodeoxyglucose; M + RCC: metastatic renal cell carcinoma; PET = positron 

emission tomography; SPECT: single-photon emission CT; sens.: sensitivity; spec.: specificity. 
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Because chimerization might lead to altered pharmacokinetic and pharmacodynamic behavior, a 

phase I protein dose-escalation trial of 131I-cG250 identical to the phase I mG250 protein dose-escalation 

trial was necessary [30]. All patients with an antigen-positive tumor (n = 13) showed excellent 

targeting of radioactivity to all known tumor sites. Similar to mG250, previously undetected metastatic 

lesions (brain, bone and soft tissue) were detected. An example of the excellent cG250 uptake is shown 

in Figure 2. The performance of the chimerized G250 mAb was almost identical to the mouse 

mAbG250, including the optimal protein dose (5–10 mg) and very high focal uptake (up to  

0.52% ID/g). The half-life (t½ β) of cG250 was comparable to mG250 (68.5 h vs. 47 h). 131I-cG250 

uptake in non-tumor tissues remained low. Most importantly, chimerization greatly diminished the 

immunogenicity of the antibody: in only two of 15 patients, low levels of human anti-chimeric 

antibody (HACA) were observed [30]. Thus, multiple administrations became feasible.  

Figure 2. Whole body scan of a patient with multiple RCC metastases two weeks after 

infusion of 4144 MBq 131I-cG250. Ant.: Anterior view; Post.: Posterior view. Note: 

thyroid uptake is due to non-specific accumulation, despite attempts to block thyroid 

uptake with intake of saturated potassium iodine. 

 

Although very high uptake levels were observed, locally, cG250 tumor uptake was heterogeneous; 

this heterogeneity could not be explained by antigen expression alone. No consistent association with 

necrosis or vasculature was noted [37]. Since highly dynamic vascularization and intratumoral blood 

flow may contribute to this heterogeneous tumor uptake, the impact of time on tumor uptake of cG250 

was studied in a clinical setting. In this dual-label study, ten patients with a clinical diagnosis of 

primary RCC received two independent consecutive administrations of cG250, separated by four days. 

Post-surgery, the distribution of both administrations was mapped and analyzed. The study 

demonstrated that cG250 distribution did not differ between different administrations, indicating that 

intrinsic tumor factors, such as internalization and local differences in interstitial fluid pressure, played 

a prominent role in intra-tumoral heterogeneity of antibody distribution [31]). Initially, this explanation 
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was felt to be improbable, because 131I-cG250 tumor retention in patients was in the order of weeks, 

suggesting very low internalization rates [29].  

To compare 131I-cG250 radioimmunoscintigraphy (RIS) with 18F-FDG PET, 20 mRCC patients 

were scanned using both techniques. Routine imaging modalities, performed before the experimental 

imaging techniques, revealed 79 metastases in these 20 patients. 18F-FDG PET and 131I-cG250 scintigraphy 

revealed 33 previously unknown lesions, of which 32 were PET positive and seven cG250-positive. 

Remarkably, 131I-cG250 RIS detected only 30% (34/112) of documented metastases, whereas with  
18F-FDG PET, 69% (77/112) were detected [32]. The low percentage of RCC metastases detected by 

cG250-RIS in this study contrasts with the results of many other studies, where excellent visualization 

of all known metastases occurred and often new lesions were visualized, which were not seen using 

conventional imaging techniques. The inferiority of 131I-cG250 RIS in detecting metastases might have 

been due to internalization of the radiolabeled mAb and subsequent excretion of 131I by the tumor 

cells. Internalization and translocation of mAbG250 to the endocytic recycling compartment in vitro 

has been described before [38]. Alternatively, it is possible that many lesions were CAIX-negative,  

albeit that, in general, approximately 75% of ccRCC metastases are high in CAIX expression [39]. 

Unfortunately, we were unable to determine the CAIX expression in this trial, since lesions  

were unavailable. 

The dual label clinical trial suggested that cG250 can be internalized by G250 antigen-expressing 

RCC cells. Indeed, follow-up animal experiments demonstrated that internalization can occur [40] and 

that accumulation in tumors of cG250 labeled with residualizing radionuclides, such as 111In, might be 

higher than that of non-residualizing 131I [25,41]. To investigate this phenomenon in detail in patients 

with RCC, a dual-label study was performed, with cG250 labeled with the residualizing radionuclide 
111In and non-residualizing radionuclide 131I [33]. Four days post injection, the 111In-cG250 images 

revealed more metastatic lesions (n = 47) than 131I-cG250 (n = 30). Moreover, quantitative analysis of 

25 metastases showed higher activities of 111In-cG250 than of 131I-cG250 in 20 of 25 lesions, thus 
111In-cG250 outperformed 131I-cG250 for visualization of metastatic RCC lesions. This was partly due 

to the superior gamma camera characteristics of 111In, but mainly because higher tumor:blood ratios 

were obtained.  

ImmunoPET—that is, PET scanning that combines the favorable characteristics of PET  

(higher spatial resolution, three-dimensional imaging and superior quantitative analysis of images) 

with cG250—seems ideal for RCC imaging. However, the most commonly used positron emitters  

(11C and 18F) cannot be combined with the relatively slow pharmacokinetics of intravenously injected 

radiolabeled mAb (optimal tumor uptake after several days), because of their too-short half-lives  

(2 min to 1.8 h). On the other hand, the positron emitters, 89Zr and 124I (half-lives 78 and 100 h, 

respectively), seem to be good candidates to match these slow kinetics. In the first cG250 immunoPET 

study, 124I-cG250 (185 MBq, 10 mg) was evaluated in 26 patients with suspect renal masses to study 

whether ccRCC could be recognized unequivocally. In 15/16 patients with histological confirmed 

ccRCC after surgery, positive images were obtained (one patient received nonreactive antibody, due to 

technical problems). In addition, all nine non-clear cell renal masses were negative; hence, the 

sensitivity and specificity of 124IG250 PET for ccRCC was 94% and 100%, respectively. The negative 

(NPV) and positive predictive value (PPV) were 90% and 100%, respectively [34].  
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This proof of principle study suggested that immunoPET might help in clinical decision-making 

and might aid in the surgical management of patients with small renal masses scheduled for  

partial nephrectomy. 

To substantiate whether cG250 immunoPET might be helpful in the clinical management of 

patients with suspect renal masses, a large multicenter phase III trial comparing 124I-cG250 immuno 

PET/computed tomography (CT) (124I-Girentuximab/REDECTANE®) scanning to contrast enhanced 

CT (CECT) for the detection of ccRCC was performed. In total, 226 patients scheduled for partial or 

complete nephrectomy were enrolled in this study [35]. 124I-girentuximab was well tolerated, and 195 

patients were evaluable. The results of this trial confirmed the high specificity and sensitivity of  
124I-cG250 for ccRCC. Notably, the average sensitivity and specificity were higher for G250 PET/CT 

than for CECT (86.2% vs. 75.5% and 85.9% vs. 46.8%, respectively). The authors concluded that  
124I-girentuximab PET/CT can accurately and noninvasively identify ccRCC, with potential utility for 

designing best management approaches for patients with renal masses. One limitation of 124I-based 

immunoPET is the limited availability of 124I worldwide, requiring centralized production. 

Because girentuximab labeled with the gamma-emitting radionuclide indium 111In is easier to 

produce as an off-the-shelf agent, not requiring centralized production nor specialized equipment, and 

because dual labeling studies showed superior imaging of 111In-cG250 in mRCC [33], we investigated 

this agent as a potential imaging modality. Similar to 124I-girentuximab immunoPET, single-photon 

emission CT (SPECT) with 111In-labeled girentuximab is non-invasive and does not require the use of 

intravenous contrast agents, which makes it suitable for patients with an impaired renal function. In 

this study, 29 patients with an incidentaloma of the kidney or having a history of ccRCC with lesions 

on follow-up imaging suspect for metastases were enrolled [36]. Distinct uptake of 111In-girentuximab 

was seen in 16 of 22 patients presenting with a renal mass (Figure 3). All renal masses proven to be 

ccRCC after resection (n = 15) were detected with 111In-girentuximab. In one of the 16 patients, a type 

2 papillary RCC with histological proven CAIX expression was targeted with 111In-girentuximab. In 

addition, no targeting was observed in six patients. Histopathological evaluation in 4/6 patients 

revealed two cases of benign oncocytoma, a chromophobe and a mucinous tubular spindle cell 

carcinoma subtype tumor. For the two remaining patients, biopsy material was unavailable, but close 

monitoring with repeated CT scans did not reveal growth of the suspected mass in the follow-up period 

(>24 months). In this limited group of patients, the PPV of 111In-girentuximab imaging for ccRCC was 

94%. In addition, seven patients with a history of ccRCC and possible metastatic lesions on follow-up 

computed tomography scans were imaged with 111In-girentuximab. In 4/7 patients, the lesions showed 

preferential uptake of 111In-girentuximab and local or systemic treatment was initiated. In three other 

cases, no targeting was seen. During follow-up of these three patients, 1/3 showed progression, for 

which systemic treatment was started. In conclusion, cG250 immunoSPECT either labeled with 124I or 

with 111In can be used to detect ccRCC lesions in patients with a primary renal mass and to clarify the 

nature of lesions suspect for metastases in patients with a history of ccRCC.  
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Figure 3. Images of a patient with metastatic RCC. Conventional CT (A) and  
111In-girentuximab immunoSPECT (B) images of a patient with metastatic ccRCC. Clear 

and preferential uptake of the radiolabeled antibody was observed in mediastinal and pleural 

lesions (arrows). The patient was enrolled in the phase II 177Lu-girentuximab RIT trial. 

3.2. Therapy Studies 

The therapeutic potential of CAIX targeting with mAbG250 has been studied in numerous clinical 

trials (see Table 2). Roughly, these can be divided into trials with “naked” antibody alone or in 

combination with cytokines and radioimmunotherapy trials. 

In the first dose escalating radioimmunotherapy (RIT) trial, 131I-mG250 was administered to 

progressive patients with measurable, histological proven ccRCC [29]. In this trial, hepatic toxicity 

was observed, most likely the result of specific mG250 accumulation in the liver. Indeed, with higher 

doses, the liver uptake was decreased, suggesting saturation of G250 sites by the antibody. The toxicity 

was transient and not dose-limiting. As in all RIT studies with radiolabeled antibodies, dose-limiting 

toxicity (DLT) was hematopoietic. After determining the maximum tolerated dose (MTD) of  
131I-activity (3330 MBq/m2), 15 patients were treated at the MTD level to determine efficacy, but no 

major responses were noted. However, overall survival of patients treated with 131I-mG250 seemed to 

be increased in comparison with that of historic control patients: 17/33 SD and two minor responses. 

As mentioned earlier, the development of high HAMA levels in all patients precluded retreatment, and 

all subsequent trials were carried out with cG250. 

Following the protein dose-escalation trial with 131I-cG250, which established the most favorable 

protein dose, a phase I 131I-cG250 activity dose escalation was performed to establish DLT similar to 

the mG250 trial [42]. One major adjustment was the inclusion of an imaging dose (222 MBq of 131I- 

labeled to 5 mg of cG250), before being allowed to advance to therapeutic dose (1665–2775 MBq of 
131I- labeled to 5 mg of cG250) to prevent infusion of high-dose 131I-cG250 in CAIX-negative patients. 
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Table 2. Overview of Therapy studies with mAbG250 in RCC patients. 

Ref. Year Agent 
Number of  

patients 
Patients Response 

Duration  
Response 

Remarks 

Divgi et al. [29] 1998 131I-mG250 33 M + RCC 17 SD; 16 PD 2–3 mo Phase I/II 

Steffens et al. [42] 1999 131I-cG250 12 M + RCC 1 PR; 1 SD; 10 PD 9+; 3–6 mo Phase I Activity dose 

Divgi et al. [43] 2004 131I-cG250 15 M + RCC 7 SD; 8 PD 2–11 mo Phase I fractionated dose 

Brouwers et al. [44] 2005 
131I-cG250 
Two doses 

27 M + RCC 5 SD; 22 PD 3–12 mo Phase I two high doses 

Stillebroer et al. [45] 2012 
177Lu-cG250 

Multiple doses 
23 M + RCC 1 PR; 17 SD 9+; 3+ mo Phase I dose escalation 

Davis et al. [46] 2007 cG250 12 M + RCC 1 CR; 8 SD; 3 PD 6–66 wk Phase I 

Bleumer et al. [47] 2004 cG250 36 M + RCC 
1 CR; 1 PR; 8 SD; 

26 PD 
1–20+ wk Phase II 

ARISER [48] 
 

cG250 864 
High risk, after 
nephrectomy 

No benefit * 
 

Phase III 

Davis et al. [49] 2007 cG250 + IL-2 9 M + RCC 2 SD; 7 PD 6, 12 wk Phase I 

Bleumer et al. [50] 2006 cG250 + IL-2 35 M + RCC 1 PR; 7 SD; 27 PD 95+; 24+ wk Phase II 

Siebels et al. [51] 2011 cG250 + IFN-2α 31 M + RCC 1 CR; 9 SD 17+; 24+ wk Phase II 

* No benefit for whole population, high CAIX expression correlated with risk of recurrence reduction; mG250: mouse monoclonal antibody G250; cG250: chimeric 

monoclonal antibody G250; ccRCC: clear-cell renal cell carcinoma; M + RCC: metastatic renal cell carcinoma; IL-2: interleukin-2; IFN: interferon; CR: complete response; 

PR: partial response; SD: stable disease; PD: progressive disease; mo: months; wk: weeks. 
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Only those patients showing targeting to tumor (n = 8) received the therapeutic infusion of  
131I-cG250 one week later. Unexpectedly, through the administration of the scout dose, liver toxicity 

was avoided, most likely because the liver compartment was saturated. Alternatively, hepatic uptake of 

chimeric mAbG250 is lower than murine mAbG250. At equal doses, liver uptake of mG250 [28] was 

2–3-times higher than the liver uptake of cG250 [30]. Dose-limiting toxicity of 131I-cG250 was at  

2775 MBq 131I-cG250/m2, significantly lower than DLT observed for the murine version. The MTD 

was therefore set at 2220 MBq/m2. Almost certainly, the extended serum half-life is responsible for the 

enhanced hematopoietic toxicity, since this leads to extended radiation of the bone marrow compartment.  

In one patient, HACA was observed in the serum sample obtained prior to the injection of the 

radiolabeled antibody, as well as in subsequent serum samples. cG250 was rapidly cleared. The 

observed HACA was probably due to previous injections with mAbG250. This particular patient had 

participated four months beforehand in another clinical study and had received two injections of 

mAbG250, four days apart. Targeting of mAbG250 was observed in his primary tumor at that time. No 

HACA responses were detected in all other patients.  

An antitumor response was observed in 2/8 patients; one SD for 3–6 months and one partial 

response (PR) >9 months. Both patients were treated at the 2220 MBq/m2 dose level. However, quite 

disappointingly, all other patients showed progression of disease. 

This first RIT trial with cG250 clearly showed that increased doses of radioactivity to the tumors 

were required to achieve more complete and lasting responses. In an effort to increase RIT efficacy, a 

fractionated dose RIT was performed, based on whole-body radiation absorbed dose [43]. 

Fractionated RIT is more effective than a single large amount and is associated with a lower 

toxicity profile in animal models. The primary objective of this trial was to determine the maximum 

tolerated whole-body radiation-absorbed dose of fractionated 131I-cG250, with dose escalation referred 

to here as the escalation of average whole-body absorbed dose. Fifteen patients with measurable 

metastatic renal cancer were included. The majority of patients tolerated repeated injections with no 

change in kinetics, confirming the lack of immunogenicity of the antibody construct. Whole-body and 

serum kinetics varied significantly between patients, with estimated biologic clearance half-times 

ranging from 3.2 to 7.5 days for the whole body and from 1.3 to >5 days for serum β–half-life (t½ β). 

In two of 15 patients, HACA was observed, which lead to a faster serum clearance. Similar to single dose, 

cG250 RIT, DLT was hematopoietic. In this logistically demanding fractionated administration 

regimen, sparing of the hematopoietic system was not observed. Moreover, the total dose that could be 

delivered was low, and efforts along these lines were abandoned.  

In view of the minimal clinical response in single doses cG250 RIT, a study was performed with 

two sequential high-dose (at MTD) 131I-cG250 treatments in patients with progressive mRCC [44]. 

After receiving a scout dose of 185 MBq/m2 of 131I-cG250 to demonstrate tumor targeting, 29 patients 

with adequate cG250 uptake received a therapeutic dose of 2220 MBq/m2 131I-cG250. In the absence 

of grade 4 hematological toxicity, patients received a second cycle after three months, consisting of a 

diagnostic infusion and a second high dose injection of 131I-cG250, escalated from 1110 MBq/m2 to 

1665 MBq/m2. The MTD of the second RIT was 1665 MBq/m2, with myelotoxicity as DLT. Four 

patients were excluded from the study, because they developed HACA after the first RIT dose (n = 2), 

after the second scout dose (n = 1) or after the second RIT dose. Those patients developed high HACA 

titers with enhanced clearance of injected mAbG250 (t½ β: 20–27 h). In an additional four patients, 
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detectable HACA titers at low levels developed in the course of the study. In these patients, no 

enhanced clearance was observed (t½ β: 52–74 h). Of the 16 patients who completed the protocol at 

both MTDs, none demonstrated an objective response, but five previously progressive patients had 

stabilization of their disease lasting 3–12 months. The low efficacy was partly attributed to the bulky 

disease in these end-stage patients, as sufficiently high radiation doses of 131I could not be delivered to 

these large tumor masses. An inverse correlation between the size of metastases and radiation-absorbed 

dose was observed, and dosimetric analyses showed that therapeutic radiation doses (>50 Gy) were 

only guided to lesions smaller than 5 g. Therefore, it was suggested that future RIT with cG250 should 

aim at treatment of small-volume disease or should be used in an adjuvant setting, or other more potent 

radionuclides should be used [52]. 

Preclinical animal studies performed with cG250 labeled with more potent radionuclides (177Lu, 90Y 

or 186Re) for RIT showed that tumor growth was most effectively inhibited by 177Lu-cG250, followed 

by 90Y-, 186Re- and 131I-cG250 [41]. Metabolites labeled with metallic radionuclides, such as  
111In, 90Y and 177Lu, are trapped in the lysosomes and residualize after internalization of the  

mAb–antigen complex by the target cells. Intracellular 131I-cG250 is metabolized, and tyrosine-131I is 

rapidly excreted by the tumor cell upon internalization. These RIT studies clearly showed the 

superiority of 177Lu- and 90Y-based RIT, in line with other studies. The dual-label study discussed 

before [33] also supported that trapped radionuclides are superior to the non-trapped iodine. In view of 

this evidence, subsequent clinical studies have focused on the possibility to use 90Y or 177Lu in RIT [53].  

Recently, the results of a phase I/II trial with 177Lu-cG250 were published [45]. This trial was 

paralleled by a trial with 90Y-cG250 at Memorial Sloan Kettering Cancer Centre, New York 

(clinicaltrials.gov/NCT00199875). In the 177Lu-cG250 trial, 23 patients with progressive mRCC with 

proven ccRCC received a diagnostic dose of 111In-cG250 (185 MBq), to establish adequate tumor 

accumulation followed by a dose of 177Lu-cG250 one week post 111In-cG250 injection (start dose  

1110 MBq/m2 177Lu, increments of 370 MBq/m2; three patients/dose level). In four patients, elevated 

HACA levels during treatment were observed. In two patients, these HACA levels precluded 

administration of a subsequent treatment cycle. In the absence of grade 4 toxicity, patients were 

eligible to receive a second (13/23) and a third cycle (4/23), at 75% of the dose level of the previous 

injection. Hematopoietic toxicity was dose-limiting, and MTD was set at 2405 MBq/m2, 111In-cG250 

images were superimposable on the 177Lu-cG250 images, illuminating the predictive value of  
111In-cG250 for 177Lu-cG250 accumulation [45]. In one patient, grade IV toxicity was observed at the 

1850 MBq/m2 dose level. No significant toxicity was observed in the other patients treated at MTD, 

also not after the second or third treatment cycle. The majority of patients responded by stabilization of 

disease. In one patient (1850 MBq/m2 dose level), a PR was documented that lasted for nine months. 

Dosimetric analyses indicated effective uptake after consecutive treatments. Observed hematologic 

toxicity, especially platelet toxicity, correlated significantly with the administered activity, whole-body 

absorbed dose and red marrow dose. The tumor-to-red marrow dose ratio was higher for RIT with 
177Lu-cG250 than for RIT with 90Y-cG250, indicating that 177Lu has a wider therapeutic window for 

RIT with cG250 than 90Y. The authors concluded that in patients with metastasized renal cell 

carcinoma, higher radiation doses can be guided to the tumors with 177Lu-cG250 than with  
90Y-cG250 [54]. The authors concluded that RIT with 177Lu-cG250, targeting CAIX, may stabilize 

previously progressive metastatic ccRCC. 
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3.3. Therapeutic Studies with Unmodified cG250  

Antibodies have the capacity to lyse cells by complement activation or by antibody-dependent 

cellular cytotoxicity (ADCC). In vitro studies established that cG250 could initiate cell lysis through 

ADCC of CAIX-positive cells [55,56]. Also, significant tumor growth reduction was noted when mice 

bearing human RCC xenografts were treated with naked mAbG250 [49]. Based on these results, a phase 1 

study with escalating doses of 5–50 mg/m2 of cG250 (Girentuximab/RENCAREX®), with weekly infusions 

for six6 weeks, was initiated. Treatment up to the highest dose was safe and well tolerated. Of the 11 

mRCC patients treated, one patient showed a CR and nine patients had SD after one treatment cycle [46]. 

In the subsequent phase 2 study, 36 patients with advanced RCC were included, all received 50 mg 

of cG250 weekly for 12 weeks. Before treatment, 80% of patients were progressive. After one 

treatment cycle, 28% of previously progressive patients had SD for at least six months, suggesting a 

clinical benefit [47]. During follow-up, one CR and one PR were noted, which lasted >1 year. The 

median survival of 15 months with 41% of the 32 evaluable patients still alive after two years 

suggested that cG250 might be able to modulate the natural course of mRCC. One group of patients 

received extended treatment (an additional eight weeks of treatment). These patients showed a median 

survival of 39 months, compared to 10 months in the discontinued group. Patients receiving extended 

treatment with cG250 showed a significantly longer survival rate than the nonresponsive patients (70% 

vs. 26%). The levels of mAbG250-mediated ADCC differed between the patients: 42% of the patients 

showed moderate ADCC (5%–25%), whereas in 33% of patients, no ADCC was demonstrated. There 

was no clear correlation between the in vitro levels of cytotoxicity and the clinical responses. In 

addition, no correlation between the proportion of NK cells and the level of mAbG250-mediated 

ADCC was observed. In this non-randomized setting, it has been difficult to evaluate the true effect of 

cG250 treatment on the disease course of patients, as the natural disease course of mRCC is highly 

variable and periods with SD and/or PR can occur, even in the absence of treatment.  

Based on these results, an adjuvant double-blind, placebo controlled phase 3 trial was started 

(ARISER, Adjuvant RENCAREX® Immunotherapy Phase III trial to study efficacy in non-metastatic 

RCC), aiming at reducing the recurrence of disease in nephrectomized RCC patients who have a  

high risk of relapse (http://www.wilex.de/portfolio-english/rencarex/phase-III-ariser/) [48]. The trial 

recruited 864 patients with prior nephrectomy of primary ccRCC; patients received a once-weekly 

infusion of RENCAREX® or placebo for 24 weeks. Those patients receiving the active drug received a 

loading dose of 50 mg in week 1 and weekly doses of 20 mg during weeks 2–24.  

Unfortunately, the trial did not meet its primary endpoint. The analysis showed no improvement in 

median DFS (approximately 72 months) following RENCAREX® treatment compared with placebo. 

However, preliminary results of a retrospective subanalysis appear to indicate that with increasing 

CAIX expression in tumor tissue, as quantified by a CAIX score, the treatment was more effective; 

DFS showed a clinically and statistically significant improvement in the patient population with a high 

CAIX level treated with cG250 compared to both placebo and patients with a low CAIX score (press 

release Wilex, 26 February, 2013). No other data are available at present. Therefore, an immunotherapy 

for ccRCC in the adjuvant setting might still be an option in a highly defined subpopulation. 

Since interleukin-2 (IL-2) has been known to enhance ADCC of mAbs, the combination of this 

cytokine with cG250 was evaluated. In vitro studies had demonstrated that cG250 ADCC was 
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increased when cells from IL-2-treated patients were used, suggesting that the combination of cG250 

with IL-2 might be superior to cG250 alone [55]. In a phase 2 trial, 35 patients with progressive mRCC 

received weekly intravenous infusions of 50 mg of cG250 and daily subcutaneous low-dose IL-2 for 

11 weeks. Treatment was well tolerated with little toxicity, attributable to IL-2. Clinical benefit was 

noted in eight of 35 patients (23%), with one long-lasting PR (>95 weeks), six long-lasting SD  

(>24 weeks) and a mean survival of 24 months, with 45% of the 30 evaluable patients still alive after 

two years. The extended treatment group (an additional six weeks of treatment) showed a median 

survival of 41 months, compared with 13 months in the non-response group. Patients receiving extended 

treatment showed a significantly longer survival rate than the non-response patients (55% vs. 25%). 

The increased survival (as compared to historic controls) was deemed to be cG250-related and not 

related to the IL-2, as a six-fold decrease of the normal IL-2 dose was used [50]. The favorable outcome 

might have been due to a synergistic effect of cG250 and IL-2, as was observed in the in vitro studies.  

The number of effector cells (CD3−/CD16+/CD56+) increased during treatment, but lytic capacity 

per cell did not increase and ADCC and clinical outcome did not correlate. Similar results were 

observed in the study performed by Davis et al. [49]. Yet again, because patients were not randomized, 

it is difficult to judge the value of this observation. A randomized trial is needed to determine the true 

effect of the IL-2/cG250 treatment. 

Based on in vitro observations that with the addition of Interferons (IFNs), G250/CAIX expression 

was upregulated and that with Interferon gamma (IFN-γ), ADCC of cG250 was enhanced, the effect of 

cG250 combined with IFN-α was studied [56,57].  

In a multicenter, open-label, prospective, single-arm phase I/II trial study, cG250 in combination 

with IFN-α 2a was studied in a total of 32 patients with stage IV progressive RCC [51]. Patients 

received 20 mg cG250 weekly for three months, combined with IFN-α 2a, three million international 

unit (MIU), three times per week, subcutaneously. Twenty six of 31 patients were evaluable for 

response to treatment. Two patients showed a PR and 14 patients SD in week 16. One patient 

experienced a PR for at least eight months, and nine patients had long durable disease stabilization 

(≥24 weeks). Clinical benefit was obtained in 42% (11/26) of the patients. The overall median survival 

was 30 months for the 31 patients treated with WX-G250 and IFNα, with 57% of patients still alive 

after two years. The patients receiving extended treatment showed a median survival of 45 months 

compared with 10 months in the non-extended group. Patients receiving extended treatment with 

cG250 showed a significantly longer survival rate than the non-response patients (79% vs. 30%). 

4. Future Prospects 

Clinical studies have now firmly established that cG250 adequately targets ccRCC. However, to 

prove that cG250 imaging can be used to guide clinical management, more evidence is needed. Thus 

far, patients for whom surgery was part of their clinical management have been studied, but the 

question whether watchful waiting can be applied in patients in whom no cG250 targeting is seen 

remains to be answered. As suggested by Divgi et al. [35], the role of cG250 imaging in influencing 

outcome would perhaps be best assessed in a clinical trial carried out in patients with small renal mass 

tumors and associated comorbidities.  
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Another issue that needs further study is choice of radionuclide for imaging purposes. As discussed, 
111In-cG250 SPECT may provide the same information as 124I-cG250 PET, but with the advantage that 

this can be produced as an off-the-shelf product that can be used on site. Alternatively, other 

radionuclides, such as 89Zr, might provide a useful alternative: it is similar with respect to its chemical 

characteristics, but is PET imageable. Although the adjuvant study in a group of high-risk patients did 

not reach it primary end-point, it is noteworthy to mention that in a subgroup analysis, patients with 

high CAIX expression as determined by IHC showed lower recurrence than patient negative or low in 

CAIX expression levels. Biomarker studies have demonstrated that CAIX staining correlates with 

survival, as well as with response to high dose IL-2 [58,59]. A cutoff of 85% CAIX staining provided 

the most accurate prediction of survival. Low CAIX (≤85%) staining was an independent poor 

prognostic factor for survival for patients with mRCC. For patients with nonmetastatic RCC and at 

high risk for progression, low CAIX predicted a worse outcome similar to patients with metastatic 

disease. Intriguingly, CAIX expression correlated with response to high dose IL-2: survival >5 years 

was only seen in high CAIX expressers [60,61]. It is tempting to speculate that high-dose IL-2 

treatment leads to expansion of CAIX-specific CTL, but characterization of 18 different TIL cultures 

suggested that anti-G250 reactivity is rare [13]. Patient stratification based on CAIX expression might 

lead to a (adjuvant) treatment strategy similar to, e.g., trastuzumab treatment of patients with breast 

cancer, where a very high correlation exists between HER2 expression and the success of trastuzumab, 

which targets HER2 [62].  

In summary, mAbG250 has shown remarkable targeting ability, and the main value of the antibody 

at present appears to be as diagnostic and, also, as a delivery vehicle for RIT.  

cG250 PET imaging holds great promise for the future, both in detecting localized and advanced 

disease, albeit that the radioisotope to use is still under investigation. In the near future, a clinical trial 

with PET tracer 89Zr-girentuximab will be initiated in our center, which will provide additional 

information about the use of girentuximab-based immunoPET in ccRCC. 

Clinical trials with unmodified cG250 suggest that treatment with cG250 can influence the  

disease course in mRCC patients. However, to validate whether cG250 treatment is of value, large, 

randomized trials are needed. 

Besides the usefulness in radioimmunodetection, girentuximab is a potent carrier for RIT in  

ccRCC. However, there are still several hurdles to overcome before girentuximab-based RIT can be 

implemented as a standard treatment. As previously mentioned, it is not clear which patients benefit 

most from RIT. Past results indicate that RIT is mainly suitable for treatment of small-volume disease 

or, possibly, as adjuvant treatment in selected cases, and more evidence regarding this topic is 

expected from the ongoing clinical trials with 90Y and 177Lu-labeled girentuximab in the upcoming 

years. Besides better patient selection in the future, advances in dosimetric analysis will presumably 

contribute to the improvement of RIT, as the trade-off between efficacy and toxicity can be better 

tailored to the individual patient. Lastly, an important deficit in our current knowledge is how to 

optimally combine girentuximab-based RIT with the current standard of care in metastatic ccRCC.  

CAIX has also been used as a target in gene therapy studies with modified autologous T-cells [63].  

In these studies, patients with advanced RCC were infused with escalating doses of T-cells genetically 

retargeted with a chimeric antibody receptor (CAR) directed towards carbonic anhydrase IX. Thus, the 

antigen-specific variable regions of mAbG250 (targeting to RCC) were linked to T-cell receptor 
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signaling chains, leading to CAIX targeting in an MHC-independent context. Liver toxicity was 

observed at the lowest cell dose, illustrating the potency of the modified T-cells. The liver toxicity 

could be prevented by pre-dosing with cG250 before administering modified T-cells [64]. Given that 

similar to mAb studies, the observed “on”-target toxicity could be prevented by blocking antigenic 

sites in off-tumor organs, higher T-cell doses might be possible. Although this is a very intriguing 

approach, patient recruitment has been very slow, and the final results are awaited. 

Finally, the clinical management of mRCC has changed significantly over the last few years. 

Implementation of various tyrosine kinase inhibitors and mTOR inhibitors has led to improved 

progression-free survival. However, therapy resistance is a major issue, and these therapies are 

directed against the tumor vasculature and not against the tumor cells. Combination of TKI and cG250 

might be beneficial: they attack different targets, and the combination might lead to synergistic effects. 

In a preclinical study, the biodistribution of cG250 was determined in TKI treated mice. TKI are 

known anti-angiogenic drugs, and thus, the accessibility of tumor cells is likely to be altered. In nude 

mice bearing human RCC xenografts treated orally with sunitinib, vandetanib or sorafenib, tumor 

uptake of cG250 decreased dramatically, and vascular density decreased considerably, as judged by 

various markers [65]. This is comparable to the TKI effects on tumors in patients: large central 

necrotic areas can develop in tumors when patients are treated with TKI. When treatment was stopped, 

robust neovascularization, mainly at the tumor periphery, became apparent. Consequently, cG250 

uptake recovered, albeit that cG250 uptake appeared to be restricted to the tumor periphery, where 

vigorous neovascularization was visible. This animal study demonstrated that simultaneous 

administration of TKI and mAb cG250 is unlikely to improve therapy outcome. This was also 

demonstrated in patients; a markedly decreased uptake of 111In-girentuximab after treatment with TKI 

sorafenib was observed [66]. Data from this study suggest that the effect of girentuximab-based RIT 

would be severely hampered if given during TKI treatment. However, the observation that shortly after 

discontinuation of TKI treatment, mAb accumulation was restored, suggested that sequential treatment 

strategies might be useful [65]. Because cG250 and TKI appear to be feasible in sequence only, studies 

were designed to determine the optimal interval between TKI treatment and cG250 administration. 

Biodistribution studies in two different animal models demonstrated that a 3D time interval was 

sufficient to reach optimal antibody accumulation (manuscript in preparation). Because TKI are also 

given in cycles in patients (four week treatment followed by two weeks off treatment), it appears that, 

indeed, combination of Sunitinib with mAb cG250 is feasible in mRCC patients, but the optimal 

treatment schedule needs to be determined.  

Anti-CAIX antibodies that combine inhibition of the enzymatic activity of CAIX with ADCC 

and/or CDC might be more potent than mAbG250, which does not inhibit the enzymatic activity of 

CAIX. Recently, a CAIX-specific antibody with an inhibitory effect on the carbonic anhydrase activity 

was described [67]. Up to 76% of CAIX activity was inhibited with the full-length IgG antibody 

MSC8. The authors speculated that combining target specificity with enzymatic inhibition in one 

antibody molecule may have an additive effect on reducing tumor growth. This interesting hypothesis 

will need to be substantiated.  
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5. Conclusion 

In summary, mAbG250 has shown outstanding targeting ability, and cG250 PET imaging holds 

great promise for the future, both in detecting localized and advanced disease, albeit that the most 

favorable radioisotope still needs to be determined. 

Confirmation of the results obtained in the non-randomized clinical trials with unmodified cG250 is 

needed to substantiate the value of cG250 treatment in mRCC. Girentuximab-based RIT hold promise 

for treatment of patients with small-volume disease or, possibly, as adjuvant treatment in selected 

cases, and ongoing clinical trials in the upcoming years should provide evidence for this assumption. 

Lastly, whether combination of girentuximab-based RIT with the current TKI is possible needs to  

be established. 
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