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Abstract: Dopamine, which is synthesized in the kidney, independent of renal nerves, 

plays an important role in the regulation of fluid and electrolyte balance and systemic 

blood pressure. Lack of any of the five dopamine receptor subtypes (D1R, D2R, D3R, 

D4R, and D5R) results in hypertension. D1R, D2R, and D5R have been reported to be 

important in the maintenance of a normal redox balance. In the kidney, the antioxidant 

effects of these receptors are caused by direct and indirect inhibition of pro-oxidant 

enzymes, specifically, nicotinamide adenine dinucleotide phosphate, reduced form 

(NADPH) oxidase, and stimulation of anti-oxidant enzymes, which can also indirectly 

inhibit NADPH oxidase activity. Thus, stimulation of the D2R increases the expression of 

endogenous anti-oxidants, such as Parkinson protein 7 (PARK7 or DJ-1), paraoxonase 2 

(PON2), and heme oxygenase 2 (HO-2), all of which can inhibit NADPH oxidase activity. 

The D5R decreases NADPH oxidase activity, via the inhibition of phospholipase D2, and 

increases the expression of HO-1, another antioxidant. D1R inhibits NADPH oxidase 

activity via protein kinase A and protein kinase C cross-talk. In this review, we provide an 

overview of the protective roles of a specific dopamine receptor subtype on renal oxidative 

stress, the different mechanisms involved in this effect, and the role of oxidative stress and 

impairment of dopamine receptor function in the hypertension that arises from the genetic 

ablation of a specific dopamine receptor gene in mice. 
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1. Introduction 

The redox state of cells can be defined as the steady state condition whereby the generation of  

free radical/highly reactive species is balanced by antioxidant mechanisms. Reactive oxygen species 

(ROS) normally act as cellular messengers. Enzymes that produce ROS are present in subcellular 

compartments, including lipid rafts, such that ROS levels can increase to a critical level for signal 

transduction and then be destroyed in a timely manner [1,2]. ROS are also involved in the destruction 

of invading pathogens and low levels of ROS may increase life span (hormesis) [3]. However, 

increased oxidative stress and its failure to return to initially normal levels disrupt normal cellular 

signaling mechanisms [4–6]. The disturbance in the normal redox state of cells results in oxidative 

stress, a condition characterized by an overproduction of free radicals that are toxic to the cell. 

Several families of enzymes and receptors are involved in the regulation of redox balance, including 

the nicotinamide adenine dinucleotide, reduced form (NADPH) oxidase, and the dopamine receptors. 

The Nox family of NADPH oxidases is comprised of enzymes that couple electrons from NADPH to 

molecular oxygen to generate superoxide. There are seven Nox homologs, four of which (Nox1, Nox2, 

Nox4, and Nox5) are found in the vasculature and the kidney where they constitute the major sources 

of ROS [7,8]. Increased Nox activity boosts the production of ROS that participate in the pathogenesis 

of several disorders, including hypertension [7–9]. For example, Nox1, Nox2, and Nox4 are increased 

in several tissues in rats with spontaneous hypertension or angiotensin II-induced hypertension [10–13]. 

However, the role of Nox4 in hypertension is not entirely clear because Nox4 knockout mice are 

normotensive [9]. The protein expression of the Nox5 gene, which is present in humans but not 

rodents, is greater in renal proximal tubular cells from hypertensive than normotensive humans, and 

may account for the increased oxidative stress in renal proximal tubule cells from hypertensive humans [14]. 

Several studies have shown that NADPH oxidase [15,16], by direct and indirect mechanisms, can be 

positively regulated by ROS, causing a positive “feedback loop” that may trigger the development of 

diseases such as hypertension. However, oxidative stress has yet to be established as a cause of human 

essential hypertension. Species specificity has to be kept in mind. For example, the role of lipid rafts in 

the production of ROS is species-specific; in renal proximal tubule cells, lipid rafts keep NADPH 

oxidase in the active state in rats but keep NADPH oxidase in the inactive state in humans [17,18].  

1.1. Renal Dopaminergic System 

Dopamine is synthesized by the kidney, mainly by renal proximal tubule cells, independent of renal 

nerves. Unlike in neural tissue dopamine synthesized by renal tubules is not converted to 

norepinephrine. Renal dopamine is crucial in the maintenance of normal fluid, electrolyte balance, and 

redox balance and blood pressure [19]. The importance of renal endogenous dopamine in body 

homeostasis is demonstrated in genetically altered mice with decreased or increased renal dopamine 

production. The selective deletion in the mouse renal proximal tubule of aromatic amino acid 

decarboxylase (AADC), the enzyme responsible for the production of dopamine in the kidney, 

decreased intrarenal dopamine levels, and caused salt-sensitive hypertension [20]. Deletion of  

catechol-O-methyl transferase (COMT), which degrades dopamine to 3-methoxytyramine, is 

associated with increased dopamine levels. Transplanting the kidney from COMT−/− mice into diabetic 
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wild-type mice ameliorated the consequences of diabetes, decreasing albuminuria, glomerulopathy, 

inflammation, oxidative stress, and fibrosis, effects that were aggravated by the proximal tubular 

deletion of AADC [21].  

Dopamine exerts its actions via two subfamilies of G protein-coupled receptors (GPCRs), namely, 

the D1-like dopamine receptors (D1R and D5R subtypes) and D2-like dopamine receptors (D2R, D3R, 

and D4R subtypes). All the dopamine receptor subtypes are differentially expressed along the nephron, 

from the proximal tubule to the collecting duct. The D1-like receptors couple to Gαs and stimulate 

adenylyl cyclases, while the D2-like receptors couple to Gαi and Go, inhibit adenylyl cyclases and 

calcium channels, and modulate potassium channels. Dopamine also stimulates renal prostaglandin 

synthesis via D2-like rather than D1-like receptors [19]. Both subfamilies of dopamine receptors link 

to MAPK activation, although through different pathways. Dopamine receptors may also exert their 

actions by inhibiting signaling pathways. Thus, the D2R can suppress Akt (protein kinase B)  

signaling [22]. The dopamine receptors interact among themselves, resulting in new signaling 

pathways that are probably cell specific. For example, in neurons, the interaction between D1R and 

D2R can lead to stimulation of phospholipase C [23]. However, D1R, independent of D2R, can 

stimulate phospholipase Cβ1 in renal cortical cells [24] and phospholipase Cγ in fibroblasts [25].  

1.2. Reactive Oxygen Species 

ROS are important in the pathogenesis of hypertension and the increase in ROS production and 

blood pressure, caused by stimulation of the renin-angiotensin-aldosterone system, is well known. 

However, the negative regulators of ROS production are not well understood. Some downstream 

negative regulators of ROS, e.g., epoxyeicosatrienoic acids, are known but the negative regulators 

upstream to these pathways are relatively unknown. One such upstream negative regulator, under 

physiological conditions, may be the renal dopaminergic system [19]. Intrarenal dopamine counteracts 

the oxidative stress in deoxycorticosterone acetate/high salt-induced hypertension and angiotensin  

II-mediated renal injury [26]. Dopamine counteracts oxidative stress not only by inhibiting pro-oxidant 

enzymes, e.g., NADPH oxidase, but also by stimulating antioxidant enzymes, e.g., extracellular 

superoxide dismutase (SOD), heme-oxygenase (HO). However, dopamine, at high concentrations  

(≥10 µM) [27,28], can lead to increased ROS production as a consequence of auto- or enzymatic 

oxidation [29,30].  

In this review, we provide an overview of the role of each of the dopamine receptor subtypes in the 

regulation of renal oxidative stress, the mechanisms involved in these effects, and the participation of 

oxidative stress in the hypertension that develops in dopamine receptor knockout mice.  

2. Renal Dopamine Receptor Regulation of Oxidative Stress  

2.1. D1-Like Receptors 

2.1.1. Renal Expression of D1-Like Dopamine Receptors 

The D1-like dopamine receptors, D1R and D5R, are expressed in the apical and basolateral 

membranes of the proximal tubule, medullary thick ascending limb of Henle, distal convoluted tubule, 
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and cortical collecting duct [19,31–33]. They are not found in the glomerulus [19], although they are 

expressed in mouse glomerular podocytes in culture [34]. D1R, but not D5R, is expressed in the 

macula densa and juxtaglomerular cells in rats [35]. The expression of either D1R or D5R has not been 

reported in macula densa or juxtaglomerular cells in the human or mouse kidney [33]. Both D1R and D5R 

receptors are present in the small and large intrarenal arteries in rodents and humans [32,33,36,37].  

Renal D1-like receptors are major physiological regulators of epithelial sodium transport and the 

lack of the expression or function of these receptors is associated with renal retention of sodium and 

increased blood pressure [19,38]. 

2.1.2. D1-Like Receptors Negatively Regulate ROS Production 

As with high concentrations of dopamine, high concentrations of D1-like receptor agonist (100 µM, 

SKF38393) [39] can also increase ROS production. However, low concentrations of D1-like receptor 

agonists decrease oxidative stress in many cells, including lymphocytes, and brain cortical, vascular 

smooth muscle, and renal proximal tubule cells [17–19,40–42], by decreasing the production of  

ROS [17–19,40–42] and reactive nitrogen [43]. Several signaling pathways are involved in the 

antioxidant effects of D1-like receptors. In retinal ganglion cells, D1-like receptor stimulation 

attenuated hydrogen peroxide-induced injury via the ERK and p38 pathways [44]. In vascular smooth 

muscle cells, D1-like receptor agonists inhibited platelet-derived growth factor-BB-mediated oxidative 

stress through activation of protein kinase A (PKA), and suppression of phospholipase D (PLD) and 

protein kinase C (PKC). The PKA inhibitor H-89 reduced the antioxidant effect of dopamine in rat 

vascular smooth muscle cells, effects that were blocked by treatment with antisense oligonucleotides to 

either D1-like receptor subtype, indicating that in these cells the two D1-like receptor subtypes mediate 

the antioxidant effect of dopamine [41,45].  

The antioxidant effects of D1-like receptors are eventually exerted by inhibiting the pro-oxidant 

enzyme, NADPH oxidase, and stimulating the anti-oxidant enzyme, heme oxygenase-1 (HO-1) [19]. 

The ability of D1-like receptors to stimulate antioxidant enzymes such as glutathione peroxidase, 

SOD-1, and glutamylcysteine transferase, involves Nrf-2 [46]. However, the pathways involved in 

these effects may be specific to D1R or D5R. Studies in HEK293 cells heterologously expressing 

either the human D1R or the human D5R have shown that the pathway involved in the inhibition of 

NADPH oxidase activity is D1-like receptor specific. Thus, the inhibition of NADPH oxidase by the 

D1R is mediated by stimulation of PKA and PKC cross-talk [47]. By contrast, the D5R decreases 

NADPH oxidase activity via inhibition of PLD [43] and activation of HO-1 [48]. Mice lacking D1R or 

D5R are hypertensive, highlighting the importance of these receptors in the regulation of blood 

pressure. Although the redox status of D1R−/− mice remains to be determined, the hypertension in 

D5R−/− mice is associated with increased oxidative stress related to increased pro-oxidant and 

decreased antioxidant activity [43,48,49]. D5R−/− mice have high levels of plasma thiobarbituric acid 

reactive substances, a byproduct of lipid peroxidation, and renal Nox2 (gp91phox) and Nox1 

(p47phox) expression. Nox activity is also increased in the brain and kidney in D5R−/− mice compared 

to their wild-type littermates, and chronic treatment with apocynin (an NADPH oxidase inhibitor) 

ameliorated the increased blood pressure, plasma thiobarbituric acid reactive substances, and NADPH 

activity in the brain and kidney of D5R−/− mice [49]. In contrast, the renal expression of HO-1 is 
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decreased in D5R−/− mice [48,49]; these mice have increased α/β hydrolase 1 mRNA expression, 

possibly as a compensatory mechanism to ameliorate the increased NADPH activity [50].  

Both D1R and D5R exert additional antioxidant effects by their negative regulation of the 

expression and function of the angiotensin II type 1 receptor (AT1R) [19], which can increase ROS 

production, in part, by activation of NADPH oxidase via PLC, PKC, and calcium signaling [51,52]. In 

rat renal proximal tubule cells the D1R inhibits AT1R function by different mechanisms depending on 

the duration of exposure. In the short-term (min), D1R causes a rapid partial internalization of the 

AT1R and complete abolition of AT1R signaling [53], while in the long-term (24 h), it decreases the 

total abundance of the AT1R receptor [54,55]. D5R stimulation increases the degradation of 

glycosylated AT1R in proteasomes in human renal proximal tubule cells consequently decreasing 

AT1R protein abundance [56]. Furthermore, the renal expression of AT1R is increased in D5R−/− mice 

relative to wild-type littermates [56,57] indicating that in the basal state the constitutively active D5R 

decreases AT1R expression. However, decreased D1R and increased AT1R function does not 

necessarily cause an increase in ROS production as demonstrated in G protein-coupled receptor kinase 

(GRK)4γ142V transgenic mice which have increased blood pressure and AT1R function, as well as 

decreased D1R function, but normal ROS production, probably related to increased HO-1  

expression [58]; hGRK4γ142V desensitizes the D1R but not the D5R [19,38]. 

2.1.3. ROS Negatively Regulate D1-Like Receptor Expression and Function 

While D1-like receptors inhibit ROS production [19,38,42,43,45–50], the function of these 

receptors is impaired by oxidative stress. Renal proximal tubule cells from old rats, which have 

increased oxidative stress, have decreased expression of D1R [59]. Treatment with tempol, an SOD 

mimetic, or exercise, reduced the renal oxidative stress and normalized renal D1R expression and 

function in old rats [60,61]. Decreasing the oxidative stress also restored the D1R coupling to  

G-proteins in obese Zucker [62] and streptozotocin-treated hyperglycemic rats [63]. In obese Zucker 

and streptozotocin-treated hyperglycemic rats, treatment with tempol restored the D1R responses and 

normalized the blood pressure in obese Zucker rats [62]; streptozotocin-treated hyperglycemic rats 

were normotensive and their blood pressures were not affected by tempol [63]. Sprague-Dawley rats, 

fed high salt diet and the oxidant L-buthionine sulfoximine (glutathione synthesis inhibitor) had 

increased blood pressure and impaired D1R function; these effects were prevented by treatment with 

tempol [64]. The impairment of D1R function by oxidative stress (e.g., H2O2) in renal proximal tubule 

cells was mediated by the nuclear translocation of nuclear factor kappa-light-chain-enhancer of 

activated B cells (NF-κB), activation of PKC, and translocation of GRK2 to the plasma membrane, 

which, in turn, caused D1R hyper-serine phosphorylation and uncoupling, thus, impairing its  

activity [46,65–67]. In obese Zucker rats, the D1R hyper-serine phosphorylation and uncoupling in 

renal proximal tubule cells was related to increased plasma membrane expression of GRK2 and total 

cellular expression of GRK4 [68]. GRK2 and GRK4 can impair the function of D1R [19,38]. 
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2.2. D2-Like Receptors 

2.2.1. Renal Expression of D2-Like Dopamine Receptors 

D2 like dopamine receptors, D2R, D3R, and D4R, are all expressed in the kidney [19]. D2R is 

expressed in the proximal tubule, thick ascending limb, distal convoluted tubule, and cortical 

collecting duct in mice, rats, and humans. D2R is also expressed in the outer medullary collecting duct 

in rats and humans but not in mice and inner medullary collecting duct in rats but not in mice or 

humans. Glomerular mesangial cells in rats and glomerular podocytes in humans also express D2R. 

D2R is not expressed in juxtaglomerular cells but may be expressed in macula densa cells in  

rats [19,69]. The long form (D2LR), rather than the short form (D2SR) of D2R, is expressed in the 

renal tubule [70]. 

D3R is expressed in the proximal tubule and distal convoluted tubule in rodents, as well as in the 

thick ascending limb in mice but not rats while it is expressed in the cortical collecting duct in rats but 

not mice. D3R is also expressed in mesangial cells and podocytes, juxtaglomerular cell and macula 

densa, and arterial vessels in rodents. D3R is expressed in human renal proximal tubule cells; D3R 

expression in other segments of the human nephron has not been reported [19]. In the rat renal 

proximal tubule, D3R protein is mainly located in the apical and subapical areas [71].  

D4R is expressed in proximal and distal convoluted tubules [72], thick ascending limb, and cortical 

and outer medullary collecting ducts [69,73] in rodents. D4R is also expressed in the macula densa in 

rats but not mice [19,74]. D4R is expressed in arterial vessels but not glomeruli in rodents. D4R 

protein expression in the human kidney has not been reported although D4R mRNA is expressed in the 

human kidney [75].  

Dopamine D2-like receptors can be vasodilator or vasconstrictor, and natriuretic or  

antinatriuretic [19,76,77], depending on renal nerve activity or the state of sodium balance. D2-like 

receptor agonists also have antioxidant effects at low concentrations and have direct and/or indirect 

protective effects in vivo and in vitro via their antioxidant effects [78]. Ropinirole, a D2R/D3R/D4R 

agonist, which has the highest affinity for D2R among D2-like receptors, scavenged free radicals, 

suppressed lipid peroxidation but increased glutathione, catalase, and SOD activities in the striatum, 

and protected striatal dopaminergic neurons against 6-hydroxydopamine injury in mice. Pre-treatment 

with sulpiride, a D2R/D3R antagonist, prevented the antioxidant and neuroprotective effects of 

ropinirole [79].  

2.2.2. D2R Negatively Regulates ROS Production 

D2R agonists have neuroprotective effect against oxidative stress and scavenge free radicals [79–81], 

although high concentrations of D2R agonist (10 µM raclopride) [82], as with D1-like receptor 

agonists, can also increase ROS production. In cultured rat mesencephalic neurons, pre-incubation 

with low concentrations of D2-like dopamine receptor agonists provided neuroprotection against  

glutamate-induced oxidative stress. In vivo and in vitro studies have also shown that the protective 

effects of D2R agonists are abolished in the presence of D2R antagonists, indicating D2R  

specificity [83,84]. By contrast, D2R antagonists can induce oxidative damage in the brain. Adult male 

Wistar rats treated with haloperidol had increased ROS production in the striatum and protein 
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carbonyls in the hippocampus [81]. Stimulation of the D2R in neurons from rat embryonic ventral 

mesencephalon was protective of levodopa toxicity [84] and in mouse or human renal proximal tubule 

cells decreased ROS production, Nox4 expression, and NADPH oxidase activity [19,85,86]. 

2.2.2.1. D2R Protects against Oxidative Stress: Role of NADPH Oxidase  

A protective role of the D2R against oxidative stress was also uncovered in mice lacking D2R 

(D2R−/−). These mice have high blood pressure [19,87], are salt-sensitive [87], and have increased 

oxidative stress [85,86,88], proved by increased urinary excretion of 8-isoprostane and renal 

expression of Nox isoforms and activity of NADPH oxidase. Apocynin normalized the elevated blood 

pressure in D2R−/− mice. Spironolactone also normalized the high blood pressure of D2R−/− mice but 

did not normalize the renal expression of NADPH oxidase, indicating that the increased ROS 

production was only partly mediated by impaired aldosterone regulation [88] and that, in this model, 

increased ROS were involved in the development or maintenance of high blood pressure.  

2.2.2.2. D2R Protects against Oxidative Stress: Role of the Antioxidant, DJ-1 

The regulation of ROS production by the D2R involves not only the inhibition of pro-oxidant 

systems (e.g., NADPH oxidase, vide supra) but also the stimulation of antioxidant systems [85,86,88]. 

D2R−/− mice have decreased renal expression of the antioxidant enzyme HO-2 in the kidney. HO-2 can 

inhibit NADPH oxidase activity [89]. The antioxidant effect of D2R also involves its interaction with 

two other proteins, DJ-1 (also known as Park 7) and paraoxonase 2 (PON2). DJ-1 is a protein originally 

described as an oncogene and identified as an autosomal-recessive gene of Parkinson disease [90]. DJ-1 is 

expressed in several rodent and human tissues, such as the brain, heart, kidney, liver, pancreas, and 

skeletal muscle [90] and its protective role against oxidative stress has been demonstrated in several 

disease states [91–93]. DJ-1 has intrinsic antioxidant activity as it is an atypical peroxiredoxin-like 

peroxidase that scavenges H2O2 through oxidation of Cys-106 [94] and also regulates the expression of 

several antioxidant genes, such as SOD [95–97]. In the absence of oxidative stress, DJ-1 binds to and 

represses the translation of antioxidant factors, such as SOD, and proteins involved in glutathione 

synthesis [98–100]. By contrast, oxidized DJ-1 dissociates from these transcripts, allowing their 

translation [100]. DJ-1 expression modulated astrocyte-mediated protection against neuronal oxidative 

stress [101] and lack of DJ-1 impaired astrocyte-mediated neuroprotection [102]. Although DJ-1 

protects against neurotoxicity [103], DJ-1−/− mice did not display increased vulnerability to 

inflammation-related nigral degeneration, in spite of decreased antioxidant response [104]. In the  

brain the loss of DJ-1 function resulted in the attenuation of D2R-mediated responses without any 

change in receptor expression suggesting that the antioxidant effect of DJ-1 is downstream of D2R  

activation [105]. However, the precise function of DJ-1 in neuronal responses downstream of D2R 

activation remains to be defined.  

DJ-1 is highly expressed in normal heart tissue. DJ-1-deficient mice subjected to oxidative stress 

had cardiac hypertrophy and increased susceptibility to developing heart failure [106]. DJ-1 has also 

been reported to protect mouse erythroid cells [107] and pancreatic β-cells [108] from oxidative 

damage. Indeed, oxidative stress caused by high concentrations of dopamine (≥50 µM) has been 

reported to increase DJ-1 expression [28]. 
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D2R and DJ-1 colocalize and coimmunoprecipitate in the mouse kidney. Mice with deletion of one 

D2R allele (D2+/−) or with selective renal D2R silencing are hypertensive and have increased ROS 

production and renal cortical expression of Nox4 but decreased expression of DJ-1 [85]. D2R can 

positively regulate DJ-1 expression [85] but the mechanisms by which D2R regulates the expression of 

DJ-1 are unknown. The negative regulation of ROS by D2R may be related to its positive regulation of 

DJ-1 as selective renal silencing of DJ-1 expression in mice increased NADPH oxidase activity and 

blood pressure [85].  

2.2.2.3. D2R Protects against Oxidative Stress: Role of the Antioxidant, PON2 

The antioxidant effect of D2R is mediated not only by DJ-1 but also by paraoxonase (PON). The 

PON family consists of three genes: PON1, PON2, and PON3. PON2 is cell associated, not found in 

plasma, and expressed in a variety of tissues, including the kidney, and protects against oxidative  

stress that may be related to hydroperoxidase activity [109–111]. Mouse peritoneal macrophages  

from PON2−/− mice were reported to have increased susceptibility to urokinase plasminogen  

activator-induced oxidative stress [112]. Overexpression of PON2 prevented apoptosis in vascular 

endothelial cells [113] and inhibited the development of atherosclerosis in mice [111,114,115], via 

antioxidant mechanisms. Overexpression of PON2 also inhibited cell-mediated low-density lipoprotein 

oxidation [116]. It should be noted, however, that ROS can also increase D2R mRNA and protein 

expression [117], an example of negative feedback inhibition. 

D2R colocalized and coimmunoprecipitated with PON2 in brush border membranes of proximal 

tubules of mouse kidney. Renal D2R can regulate PON2 expression because PON2 mRNA and protein 

expression were increased by D2R stimulation [86]. Conversely, mice lacking D2R from germline 

deletion or from renal selective downregulation of the gene had decreased renal PON2 protein 

expression. The antioxidant effect of D2R was partially prevented by downregulation of PON2 

indicating its participation in the antioxidant effect of the D2R. Indeed, silencing PON2 increased the 

expression of Nox2 and Nox4, and NADPH oxidase activity, and completely abolished the inhibitory 

effect of a D2R agonist on Nox2 and Nox4 expression [86]. The increase in NADPH oxidase activity 

with renal silencing of DJ-1 was associated with increased ROS production and blood pressure. 

Therefore, the positive regulation of PON2 by D2R mediates, with DJ-1, the inhibitory effect of renal 

D2R on NADPH oxidase activity and ROS production. However, the mechanisms by which DJ-1 and 

PON2 regulate NADPH oxidase are not yet clear. It is also not known if DJ-1, PON2, and HO-2 

interact but we do know that DJ-1 and PON2 do not physical interact in the kidney.  

2.2.2.4. D2R Protects against Oxidative Stress and Inflammation  

Oxidative stress has been extensively linked to inflammation and vice versa [118]. It is known that 

stimulation of NF-κB, an important pro-inflammatory transcription factor, increases intracellular ROS 

production [119]. D2R agonists increased the secretion of anti-inflammatory cytokines by de novo 

gene expression in resting T lymphocytes [120], but suppressed their production in activated T and 

mast cells [121]. Silencing the D2R in mouse renal proximal tubule cells increased NF-κB 

transcriptional activity, tumor necrosis factor α (TNFα), and monocyte chemoattractant protein-1 

(MCP-1) levels. Selective unilateral renal D2R down-regulation in mice, in the absence of elevated 
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blood pressure, reproduced the alterations in inflammatory factors and renal injury observed in D2R−/− 

mice, increasing the expression of several pro-inflammatory cytokines such as, TNFα, MCP-1, and 

MCP-2, suggesting that D2R plays a protective role against the development of renal inflammation [122]. 

Several human polymorphisms of D2R associated with decreased expression or function of the 

receptor [123,124] have been associated with essential hypertension [125,126], but further studies are 

needed to determine if the experimental evidence for the role of the D2R in the regulation of oxidative 

stress in hypertension can be translated to humans.  

2.3. D3R and Oxidative Stress 

The effect of D3R on ROS production is controversial. The D3R has been reported to increase an 

endogenous factor that has antioxidant actions and thus the D3R may have antioxidant effects, albeit 

indirectly [127]. Pramipexole, a selective D3R agonist, protected against free-radical induced 

cytotoxicity, inhibited lipid peroxidation in neurons [128], increased the activity of antioxidant 

enzymes (glutathione peroxidase and catalase) and inhibited the production of ROS by the mitochondria, 

however, these effects were independent of D3R activation [129,130]. In contrast, pretreatment with 

D-264, a D3R agonist, prevented neurotoxin- and lactacystin-induced neurodegeneration, effects that 

were lost in the presence of a D3R antagonist [131], indicating that the D3R has antioxidant effects.  

Disruption of the D3R gene in mice (D3R−/−) caused renin-dependent hypertension that was 

associated with decreased ability to excrete an acute intravenous and chronic dietary salt load [132]. 

However, the hypertension and salt sensitivity in D3R−/− mice were not associated with increased renal 

oxidative stress as demonstrated by normal renal expression of Nox isoforms and nitrotyrosine, as well 

as normal urinary excretion of 8-isoprostane. The expression of renal D5R, which has antioxidant 

property [43,45,48,49], was increased in D3R−/− mice suggesting that compensatory mechanisms may 

be involved in maintaining a normal production of ROS in these mice [133].  

2.4. D4R and Oxidative Stress  

Some of the neuroprotective effects of D4R agonists are apparently independent of any action on 

ROS [134]. However, the D4R antagonist L-745,870 has been reported to decrease the vulnerability of 

neuronal and non-neuronal cells to oxidative stress-induced apoptosis [135]. By contrast, the activation 

of D4R has been reported to protect against hypoxia/reoxygenation-induced oxidative stress and cell 

death in HT22 cells derived from mouse hippocampal neurons [136]. In addition, the protective effects 

of dopamine and D4R agonist on glutamate-induced ROS production were antagonized by a D4R 

antagonist [137]. However, mice lacking D4R have increased blood pressure, in part caused by increased 

AT1R expression [138], but there was no evidence for an increase in oxidative stress in these mice. 

3. Summary 

Physiological concentrations of dopamine have protective effects on oxidative stress in the kidney. 

D1R, D2R, and D5R inhibit NADPH oxidase activity and ROS production and are needed to keep a 

normal redox balance (Table 1, Figure 1). D1R inhibits NADPH oxidase activity via PKA and PKC 

cross-talk and stimulates SOD, glutathione peroxidase, and glutamylcysteine transferase. The D5R 
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decreases NADPH oxidase activity, in part by inhibiting PLD2 and increasing the expression of HO-1, 

an antioxidant. The D2R also decreases ROS production by increasing the expression of the 

antioxidants DJ-1, PON2, and HO-2. Lack of any of the dopamine receptor subtypes results in 

increased blood pressure that is not always associated with increased oxidative stress. Whether or not 

D3R and D4R protect against oxidative stress remains to be determined; the hypertension in mice 

lacking D3R and D4R is not associated with oxidative stress. 

Table 1. Dopamine receptor subtypes D1R, D2R, and D5R regulate the production of 

reactive oxygen species by inhibiting pro-oxidant and stimulating antioxidant enzymes. 

Dopamine receptor subtype Pro-oxidant enzymes (inhibition) Anti-oxidant enzymes (stimulation) 

D1R 
NADPH oxidase, via PKA/PKC 

cross talk [19,45,47] 

SOD, glutathione peroxidase, glutamyl 

cysteine transferase, and HO-1 [46,65] 

D2R NADPH oxidase [19,85,86,88] 
DJ-1, PON2, and HO-2 [19,85,86] 

glutathione, catalase, and SOD [79] 

D5R NADPH oxidase, via PLD2 [43,49] 
SOD, glutathione peroxidase, glutamyl 

cysteine transferase, and HO-1 [46,48] 

Figure 1. D1R, D2R, and D5R inhibit NADPH oxidase activity and decrease ROS 

production in the kidney. D1R inhibits NADPH oxidase activity via PKC/PKA pathway 

(and pathways similar to D5R, see Table 1). D5R inhibits the expression of PLD2 and 

therefore, NADPH oxidase and increases the expression of HO-1, which also inhibits 

NADPH oxidase activity. D2R increases HO-2, DJ-1, and PON2 expression, all of which 

inhibit NAPDH oxidase activity. D2R inhibits TNFα expression and NFκB activity. HO-1, 

HO-2, DJ-1, and PON2 have antioxidant properties. AT1R increases NADPH oxidase 

activity. D3R and D4R do not directly affect ROS production. 
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