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Abstract: This article describes current experimental models of status epilepticus (SE) and 

neuronal injury for use in the screening of new therapeutic agents. Epilepsy is a common 

neurological disorder characterized by recurrent unprovoked seizures. SE is an emergency 

condition associated with continuous seizures lasting more than 30 min. It causes 

significant mortality and morbidity. SE can cause devastating damage to the brain leading 

to cognitive impairment and increased risk of epilepsy. Benzodiazepines are the first-line 

drugs for the treatment of SE, however, many people exhibit partial or complete resistance 

due to a breakdown of GABA inhibition. Therefore, new drugs with neuroprotective 

effects against the SE-induced neuronal injury and degeneration are desirable. Animal 

models are used to study the pathophysiology of SE and for the discovery of newer 

anticonvulsants. In SE paradigms, seizures are induced in rodents by chemical agents or by 

electrical stimulation of brain structures. Electrical stimulation includes perforant path and 

self-sustaining stimulation models. Pharmacological models include kainic acid, 

pilocarpine, flurothyl, organophosphates and other convulsants that induce SE in rodents. 

Neuronal injury occurs within the initial SE episode, and animals exhibit cognitive 

dysfunction and spontaneous seizures several weeks after this precipitating event. Current 

SE models have potential applications but have some limitations. In general, the 

experimental SE model should be analogous to the human seizure state and it should share 

very similar neuropathological mechanisms. The pilocarpine and diisopropylfluorophosphate 

models are associated with prolonged, diazepam-insensitive seizures and neurodegeneration 

and therefore represent paradigms of refractory SE. Novel mechanism-based or  
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clinically relevant models are essential to identify new therapies for SE and 

neuroprotective interventions. 

Keywords: perforant stimulation; pilocarpine; kainic acid; epilepsy; seizure; DFP; 

neurodegeneration 

 

Abbreviations: ACSF, Artificial cerebrospinal fluid; AD, Afterdischarge; AED, Antiepileptic 

drug; 4-AP, 4-Aminopyridine; DH, Dentate hilus; DFP, Diisopropylfluorophosphate; EEG, 

Electroencephalogram; FJB, Fluoro-Jade B; HCTL, Homocysteine thiolactone; KA, Kainic acid; MF, 

Mossy fibers; OP, Organophosphate; PPS, Perforant path stimulation; SSL, self-sustaining limbic; SE, 

Status epilepticus; TLE, Temporal lobe epilepsy. 

1. Introduction 

1.1. Epilepsy 

Epilepsy is a chronic condition characterized by recurrent unprovoked seizures. It affects about  

3 million people in the United States and approximately 65 million people worldwide [1,2]. Epilepsy 

affects people of all ages and both genders. Every year, nearly 150,000 new cases of epilepsy are 

diagnosed in the United States [2]. A seizure is an abnormal electrical discharge in the brain that 

causes alteration in consciousness, sensation, and behavior. When the risk of spontaneous seizures is 

sufficiently high, generally after two spontaneous seizures, the patient is diagnosed with epilepsy. 

However, a normal EEG never rules out the diagnosis of epilepsy. Epilepsy is a disorder with many 

possible causes. Epilepsy may develop because of an abnormality in brain wiring, an imbalance in 

inhibitory and excitatory neurotransmitters, or some combination of these factors. Primary epilepsy 

(50%) is idiopathic (“unknown cause”). In secondary epilepsy (50%), referred as acquired epilepsy, 

seizures may result from a variety of conditions including trauma, anoxia, metabolic imbalances, 

tumors, encephalitis, drug withdrawal seizures, or neurotoxicity. The most common risk factors for 

epilepsy are cerebrovascular disease, brain tumors, alcohol, traumatic head injuries, malformations of 

cortical development, genetic inheritance, and infections of the central nervous system [1].  

The mechanisms underlying development of epilepsy are not very well understood. The term 

“epileptogenesis” is used to describe the complex plastic changes in the brain that, following a 

precipitating insult or injury, convert a normal brain into a brain debilitated by recurrent seizures [3]. 

Current hypothesis about the epileptogenesis involves three stages (Figure 1): (i) the initial 

precipitating event; (ii) the latent period; and (iii) the chronic period with spontaneous seizures. 

Epileptogenesis is a slow process; it takes several months for spontaneous seizures to appear [4,5]. The 

time required for seizure occurrence (latent period) represents a window of opportunity for testing 

interventions in people at high risk for epilepsy [6,7]. Neuronal injury and neuroinflammation have 

been proposed to play a central role in the overall pathogenesis of acquired epilepsy (Figure 1).  
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Figure 1. The pathophysiological basis of epileptogenesis following SE episode. The 

mechanisms involved in epileptogenesis involve an interaction of acute and delayed 

anatomic, molecular, and physiological events that are both complex and multifaceted.  

SE-induced neuronal injury activates diverse signaling events, such as inflammation, 

oxidation, apoptosis, neurogenesis and synaptic plasticity, which eventually leads to 

structural and functional changes in neurons. It is a progressive process that produces 

rearrangement of synaptic circuitry, neurogenesis, mossy fiber sprouting and a 

hyperexcitability state over weeks or months or years (latent period). These changes are 

eventually manifested as spontaneous recurrent seizures (epilepsy) in susceptible persons. 

 

Epilepsy is a spectrum disorder. It is the fourth most common neurological disorders in the US after 

migraine, stroke, and Alzheimer’s disease [2]. Epileptic seizures are classified into partial seizures 

(60% of all epilepsies), those beginning focally in a cortical site, and generalized seizures (40% of all 

epilepsies), those that involve both hemispheres widely from the outset [8]. Temporal lobe epilepsy 

(TLE) is the most common form of partial epilepsy, likely affecting at least 20% of all patients with 

epilepsy [8,9]. TLE is the most common form of drug-refractory epilepsy [10]. Atrophy of mesial 

temporal structures is well known to be associated with TLE and hippocampal sclerosis is the most 

frequent histological abnormality in this form of epilepsy [11]. Several antiepileptic drugs (AEDs) are 

available for the treatment of epilepsy (Table 1). AEDs act on diverse molecular targets to selectively 

modify the excitability of neurons by reducing the focal seizure discharges or preventing spread of 

excitation (Table 1). Despite many advances in epilepsy research, nearly 30% of people with epilepsy 

have “intractable seizures” that do not respond to even the best available AEDs.  

Table 1. The molecular mechanisms of current antiepileptic drugs. 

Mechanism Drug 

Blockage of voltage-gated sodium channels Phenytoin 

 

Fosphenytoin 
Carbamazepine 

Valproate 
Lamotrigine 

Oxcarbazepine 
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Table 1. Cont. 

Mechanism Drug 

Enhancement of GABA inhibition Phenobarbital 

 

Primidone 
Diazepam 
Lorazepam 

Clonazepam 
Tiagabine 
Valproate 

Blockage of low-threshold (T-type) Ca2+ channels Ethosuximide 

 
Gabapentin 
Valproate 

Reduction of glutamate excitation Felbamate 

 
Gabapentin 
Parampanel 

1.2. Status Epilepticus 

Status epilepticus (SE) is a life-threatening emergency characterized by a prolonged continuous 

state of convulsions. SE is defined as continuous seizure activity or multiple seizures without regaining 

consciousness for more than 30 min [12]. SE is a medical emergency in humans that if untreated, can 

lead to brain damage and death [13–15]. There are two types of SE, generalized convulsive SE and 

nonconvulsive SE. Untreated SE can result in death due to an inability of the brain to control and 

terminate the seizures. The pathophysiology of SE is not clearly understood but excess excitatory 

(glutamate) neurotransmission and loss of normal inhibitory (GABA) neurotransmission are thought to 

be the most likely mechanisms. The first-line therapies of choice are intravenous benzodiazepines 

(e.g., lorazepam and diazepam), which potentiate the inhibitory responses mediated by GABA-A 

receptors [16]. Intramuscular midazolam is equally effective as intravenous lorazepam for prehospital 

SE cessation [17]. However, the efficacy of benzodiazepines dramatically decreases with increasing 

durations of SE [18]. In some cases of SE, there is a complete loss of the therapeutic efficacy of 

benzodiazepines and more drastic second-line (phenytoin and fosphenytoin) and third-line therapies 

(propofol or phenobarbital) must be employed, but are not always successful [19]. These 

pharmacoresistant forms of SE are termed refractory SE. Refractory SE, which occurs in up to 40% of 

all patients with SE, remains a challenge for management because of poor prognosis [20–22].  

In general, refractory SE is treated with coma induction using anesthetics such as propofol or 

pentobarbital [23]. Therefore, novel life-saving anticonvulsants are needed with improved profile for 

effective therapy of SE (Table 1). 

Experimental models have been developed that mimic the continuous seizure state or SE. TLE can 

be induced with pharmacologic agents or by electrical stimulation in rodents. The common 

pharmacological models of SE are kainic acid [24,25], pilocarpine [26,27] and perforant path 

stimulation [28]. A single seizure episode is of short duration and usually self-limiting. During SE, 

seizure activity is not limited and seizures occur continuously with polyspiking detected by EEG. The 

models of SE are being used to study the transition of a single episode of SE into chronic epilepsy; the 
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mechanisms of neuronal injury and susceptibility; synaptic reorganization (sprouting); the 

hippocampal sclerosis; the seizure-induced changes in gene expression and neurogenesis; and the 

development of new anticonvulsant drugs. Chemical induction of SE in rodents similarly results in the 

progressive loss of benzodiazepine efficacy [29,30]. In addition, SE is the most widely used approach 

for inducing chronic epilepsy, especially TLE in rats and mice [31–34]. Unlike acute seizure models, 

in TLE models, animals exhibit spontaneous seizures without any provocation. The SE episode is 

generally considered as a trigger to initiate the epileptogenesis in TLE (Figure 1).  

This article provides a brief overview of different models of SE and acute neuronal injury (Table 2). 

Many forms of epilepsy can be modeled in rodents, with seizures induced by chemical treatment, by 

electrical stimulation or by genetically induced mutations [3,35–37]. Animal models are extremely 

helpful for the development of an effective drug for SE and neuronal injury [38]. There are several 

desired features for an ideal SE model: 

• Exhibit appropriate seizure phenotype 

• Consistent with the neuropathological features of human SE 

• Exhibit appropriate latent period following initial insult 

• Show post-SE chronic hyperexcitability and neuronal plasticity 

• Express spontaneous seizures following a latent period 
• Respond to drug therapy and exhibit resistance to certain anticonvulsants 

• Allow rapid screening of novel compounds 

The ideal animal model of SE should reflect a pathophysiology similar to those of human  

SE [34,39,40]. Because human SE is a complex neurological disorder that encompasses many causes 

and seizure phenotypes, it is highly unlikely that any one animal model will truly recapitulate the full 

spectrum of SE features. Therefore, it is necessary to screen the test compounds in a battery of animal 

models and also in refractory SE paradigms.  

Table 2. Classification of animal models of SE.  

Classification Model References 
Electrical models Perforant pathway stimulation [28,41–43] 
 Self-sustaining stimulation [44–46] 
Chemical models Kainic acid [25,31,47–52] 
 Pilocarpine [26,53–58] 
 Lithium-pilocarpine [26,59,60] 
 Organophosphates [37,61–63] 
 Flurothyl [64–67] 
 Cobalt-homocysteine thiolactone [68] 
Thermal models Hyperthermia or febrile seizures [69–74] 
In vitro models Low magnesium in brain slices [75–77] 
 High potassium in brain slices [78–80] 
 4-Aminopyridine in brain slices [81–84] 
 Organotypic slice cultures [85–89] 
Refractory models Lithium-pilocarpine [37,90,91] 
 Kainic acid [25,31,92–94] 
 DFP [37,62,95,96] 
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2. Electrical Stimulation Models of SE 

Electrical stimulation models are the first series of paradigms advanced to study seizures, SE and 

neuronal excitability. The electrical stimulation models of SE include perforant pathway stimulation 

and self-sustaining limbic stimulation models.  

2.1. Perforant Path Stimulation Model 

The perforant path stimulation (PPS) approach is widely used for induction of persistent seizures in 

rats and was pioneered by Sloviter [24,41,97,98]. In this model anesthetized rats receive intermittent, 

unilateral perforant path stimulation for 24 h. Repetitive tetanic stimulation of hippocampal afferents 

such as the perforant path [44,98–102], hippocampus [45,103–105], or amygdala [42,104,106] have 

been used to induce SE and a detailed description of this model is covered elsewhere [38]. 

2.1.1. Methodology 

Rats are stimulated with 0.2 to 0.4 millisecond monophasic rectangular pulses at 20-Hz with  

10 s train duration and 30 s intertrain interval through chronically implanted electrodes in angular 

bundles or fimbria [44]. Electrical stimulation is stopped when 10 consecutive trains each produced  

30 s of hippocampal afterdischarge (AD). Rats are then monitored for self-sustained EEG  

seizure activity; 85% exhibited SE within 7 h. Sloviter described detailed changes following PPS 

stimulation [98]. Behavioral seizures are rated according to Racine’s scale [104]: stage 0, no response 

or behavior arrest; stage 1, chewing or facial twitches; stage 2, chewing and head nodding or wet dog 

shakes; stage 3, unilateral forelimb clonus; stage 4, bilateral forelimb clonus and rearing; stage 5, 

bilateral forelimb clonus, rearing and falling. 

2.1.2. Model Features 

Unilateral sustained PPS in anesthetized rat causes necrosis of CA1 and CA3 pyramidal cells and 

hilar neurons, whereas CA2 neurons are generally unaffected [98]. Unilateral or bilateral neuronal 

damage was evident following unilateral or bilateral stimulation evoked granule cell discharges, 

respectively [42]. In addition to the hippocampal lesions, electrical stimulation of the amygdala causes 

neuronal necrosis in the piriform cortex [99]. Electrical stimulation of the angular bundle can cause 

extensive aberrant mossy fiber (MF) sprouting in the inner molecular layer of the dentate gyrus [107].  

2.1.3. Pros and Cons 

The advantage of PPS model is that hippocampal SE can be induced without the complications of 

direct excitotoxic damage that results from the KA or pilocarpine models. PPS results in a limited 

lesion in the dorsal hippocampus. Depending upon the area of the brain and the intensity of pulse train 

electrical stimuli, these models show minor variations in the site and the severity of brain lesions. 

However, all protocols are generally successful in producing the hippocampal lesions. Histopathologic 

findings are comparable to those in KA and pilocarpine models, but neurodegeneration is relatively 

less as compared to KA and pilocarpine models. However, electrode implantation is cumbersome and 
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labor intensive, which reduces the desirability of this model relative to chemoconvulsant models. PPS 

is a very complex electrical seizure model, which requires sophisticated stimulating-recording 

equipment. It is primarily used for unilateral or bilateral stimulation to induce SE in rats.  

2.2. Self-Sustaining Stimulation Model 

The self-sustaining limbic (SSL) SE model was advanced by Lothman [45] and other  

groups [44,46]. Lothman (1989) developed one version of this model of SE, which is centered in the 

limbic system and elicited by continuous focal electrical stimulation of the hippocampus [45]. The 

other variations include ventral hippocampal stimulation [46] and hippocampal kindled or naive  

animals [44]. In the SSL model, a standardized amount of electrical stimulation is delivered to each rat. 

Under appropriate conditions, the SE persists for many hours after discontinuing the electrical 

stimulus. The critical determinant for the establishment of the SE is the length of stimulation, rather 

than the side (left vs. right) of stimulation or kindling before stimulation. It shares some similarities 

with the PPS model and all variations of this model induce SE without direct excitotoxic effects as 

seen in KA or pilocarpine. A detailed description of this model is described previously [38]. 

2.2.1. Methodology 

Rats are implanted surgically with stimulating electrodes. One week after the surgery, the AD 

threshold is determined with a standard stimulus of a 10 s train (50 Hz, 1 ms pulse width, square 

waves). Only rats with an AD threshold less than 250 μA are used. Animals are given stimulation 

consisting of continuous electrical stimulation delivered to the hippocampus (50 Hz, 1 ms pulses,  

400 μA). An individual stimulus epoch lasts 10 min consisting of 10 s on and 1 s off for 9 min.  

Stimulation is stopped at the 10th min and repeated 9 times. The total duration of stimulation is  

90 min. All animals that exhibit SE for 6 to 12 h are classified as SSL-SE. Some animals fail to exhibit 

SE, which are categorized as non-SSL-SE group [38].  

2.2.2. Model Features 

Behavioral and electrographic SE features are analyzed in each rat. Mild limbic seizures are 

equivalent to kindled seizure stages 1 and 2, while severe seizures are equivalent to kindled seizure 

stages 3 to 5 [104]. Phenobarbital and diazepam have been shown to suppress behavioral seizure 

activity when given 2 h post SE [108]. However, phenytoin is ineffective in this model. Animals 

exhibit cell loss in the hippocampus similar to chemoconvulsant models. Bilateral cell loss is observed 

in CA1 and dentate hilar region [109,110]. Spontaneous seizures are evident in these animals that are 

similar to complex partial seizures [111]. Self-sustaining SE induced by high intensity (700 μA) 

electrical stimulation of the basolateral amygdala produced neuronal necrosis in the ipsilateral 

amygdala, piriform cortex, entorrhinal cortex, endopiriform nucleus, and mediodorsal thalamus in rats. 

Aberrant mossy fiber sprouting was evident in the inner molecular layer of the dentate gyrus [112]. 
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2.2.3. Pros and Cons 

The advantage of SSL model is that sustained SE can be induced without the complications of 

direct excitotoxic damage that results from the KA or pilocarpine models. The technical feasibility 

issues including labor and animal care are similar to PPS model.  

3. Pharmacological Models of SE 

There are several chemicals (chemoconvulsants) that are commonly used to induce SE in rodent 

species. The SE induced by the chemoconvulsants kainic acid, pilocarpine, lithium-pilocarpine and 

diisopropylfluorophosphate are widely employed to characterize the pathophysiology and to  

evaluate therapeutic interventions. Glutamate is the primary excitatory neurotransmitter and GABA  

is the inhibitory neurotransmitter in the brain. Chemoconvulsants that enhance glutamatergic 

neurotransmission or block GABAergic inhibition are able to induce seizures or SE, while enhancing 

cholinergic neurotransmission can also trigger seizures by cholinergic hyperactivation.  

3.1. Kainic Acid Model 

Kainic acid (KA) is a prototype agonist of kainate glutamate receptors with potent convulsant 

activity. KA model of SE is one of the most extensively studied seizure models. Ben-Ari [25] proposed 

KA-induced seizures as a model with particular relevance to TLE as it shares many of the features of 

human TLE. KA is a neurotoxic extract of the seaweed Digenea simplex [113]. It is a powerful 

neuronal excitant with high affinity for kainate glutamate receptors [114].  

3.1.1. Methodology 

Animals are implanted with two surface electrodes (cortex and cerebellum) and a depth electrode in 

the hippocampus for continuous EEG recording. In rats, intracerebroventricular (0.4–0.8 μg) or 

systemic administration (8–12 mg/kg, s.c. or i.p.) of KA induces convulsions and progressively 

developing SE, coupled to epileptiform discharges originating in limbic structures and propagated to 

other brain areas [47]. In mice, the convulsant dose of KA (20–40 mg/kg, i.p.) is somewhat variable 

depending on the strain. Following i.p. KA injections, rats display convulsive behavior starting with 

wet-dog shakes, staring, searching and gnawing, leading to hyperactivity, forelimb clonus and  

tonic-clonic convulsions [48]. The behavioral seizure activity is generally rated according to Racine’s 

scale [104]. Wet dog shakes, head nodding and facial clonus are given a seizure score of stage 1 to 2, 

forelimb clonus is stage 3, rearing is stage 4 and continued rearing and falling is stage 5. During the 

first hour after KA injections there are changes in the behavior that include staring episodes followed 

by head bobbing and numerous wet dog shakes. This is followed by isolated limbic motor seizures that 

increase in frequency, eventually leading to SE. Similar behavioral reactions in rats and mice were 

reported following ICV injections of KA. KA induced SE mimics human SE in progressive, sequential 

EEG changes. In order to get consistent SE and lesion accompanied by MF sprouting and spontaneous 

seizures, a multiple KA injection method was developed [31,92]. Adult rats are given KA  

(5 mg/kg, i.p.) once per hour until continuous SE develops. Repeated stage 4 and 5 seizures occur over 

a 4–6 h period, and the survival rate is better than through a single large dose protocol.  
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3.1.2. Model Features 

KA induced SE results in extensive damage in the following brain regions: hippocampus, amygdala, 

piriform cortex, entorrhinal cortex, septum and medial thalamus. Damage in the hippocampus includes 

CA1 and CA3 pyramidal neurons and hilar neurons in the dentate gyrus [31]. The CA2 pyramidal 

neurons and dentate granule cells appear to be resistant to damage induced by KA. The pattern of 

neuronal loss after KA-induced SE is symmetrical, that is, bilateral structures exhibit the same degree 

of cell death. However, the pattern of damage is often variable among rats receiving the same 

treatment [31,43,47,49–51]. SE induced by KA later leads to the development of spontaneous limbic 

seizures and MF sprouting in the dentate gyrus of the hippocampus. This sprouting is similar to that 

observed in human hippocampal tissue from cryptogenic epileptic patients [52,115,116]. New axon 

fibers from the granule cells grow into the inner molecular layer of the dentate. It has been suggested 

that the new pathway is functional and proconvulsant, synapsing on the dendrites of the granule cells, 

thereby creating a recurrent excitatory pathway [4,117]. 

3.1.3. Pros and Cons 

KA produces robust and persistent seizures associated with neuronal damage similarly found in 

human epileptogenic tissue. It is very simple to use and does not require sophisticated equipment, 

except for monitoring of EEG. Regardless of the route of administration, KA induces SE that 

electrographically resembles SE in humans [118]. A major drawback of the KA model is the variable 

sensitivity of rats of different strains, sex, age and weight to KA [47]. Aged rats exhibit SE at lower 

doses of KA with greater neuronal damage [119,120]. The other limitation of KA model is the direct 

excitotoxic action of KA that makes it difficult to separate direct neuronal damage from  

seizure-induced neuronal damage [31]. However, it is a less than ideal model for testing 

anticonvulsants for SE because not all of the currently effective drugs are effective in the KA model.  

3.2. Pilocarpine Model 

The pilocarpine model of SE is one of the well-established animal models for SE and shares many 

of the characteristics of human TLE [121]. Turski first reported that pilocarpine, a muscarinic 

cholinergic agonist, induces robust limbic seizures when systemically administered to rats (400 mg/kg) 

and mice (300–350 mg/kg) [27]. They observed a sequence of behavioral alterations including staring 

spells, limbic gustatory automatisms, and motor limbic seizures that overtime (1–2 h) progressively 

developed into limbic SE that last for several hours [53,54]. The pilocarpine is given via 

intraamygdaloid [55], intrahippocampal [56] or systemically by intraperitoneal injections [27,57]. 

Pilocarpine induced changes in EEG activity first appear in the hippocampus followed by the 

amygdala and neocortex, but later it was shown that initial EEG alterations occur in ventral  

forebrain [26]. This may explain the absence of wet dog shakes at the beginning of  

pilocarpine-induced SE. Within 24 h of pilocarpine injection, the seizures subside and the EEG returns 

to normal activity [27]. Pretreatment with scopolamine and diazepam are able to prevent the 

pilocarpine-induced seizures [53]. This model allows for studying the generation and spread of 

convulsive activity in the hippocampus and amygdala. The initiation of the seizures is due to activation 
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of cholinergic system since pretreatment with atropine prevents the seizure occurrence. It is thought 

that pilocarpine initiates SE by cholinergic hyperactivation, but that continuation of seizure activity is 

likely through a glutamatergic mechanism. Neuronal loss and spontaneous seizure activity occurs 

secondary to seizure-induced glutamate release [26,59]. 

3.2.1. Methodology 

For continuous EEG recording, two surface electrodes (cortex and cerebellum) and a depth 

electrode in the hippocampus are implanted in the rat or mice under anesthesia. After a recovery period of 

1–2 weeks, the animals are given pilocarpine injections (rats, 400 mg/kg, i.p.; mice, 300–350 mg/kg, 

i.p.). The animals are pretreated with scopolamine methylnitrate (1 mg/kg), a muscarinic antagonist by 

s.c. injection to prevent the peripheral effects of pilocarpine. Thirty minutes later pilocarpine 

hydrochloride (300–400 mg/kg) dissolved in saline is injected intraperitoneally. Limbic motor seizures 

are initiated by pilocarpine within 30 min of the injection. The latency from the time of the pilocarpine 

injection until the onset of behavioral seizures and SE appears to be dose dependent [58]. With higher 

doses more animals exhibit SE, but this is accompanied by an increase in mortality.  

3.2.2. Model Features 

Injections of large doses of pilocarpine induce EEG and behavioral limbic seizures and SE. 

Pilocarpine-induced SE causes massive neuronal damage when examined at 24 to 72 h. Studies have 

found cell death in olfactory cortex, the amygdaloid complex, thalamus, neocortex, hippocampus and 

substantia nigra [27,55–57,122]. The extensive brain damage, characterized by shrunken neuronal cell 

bodies with edematous neurophil, is present in the anterior olfactory, piriform and entorhinal cortex. 

The basal amygdala and ventral hippocampus are very sensitive to pilocarpine-induced SE. The 

majority of the damage in the dorsal hippocampus occurs in CA3 and CA1. Neocortical cell loss 

occurs mostly in layer 2 and 3, with some cell loss in layer 5. The par reticulata of the substantia nigra 

is extensively damaged in this model [26]. Loss of hilar interneurons is a hallmark in the pilocarpine 

model of SE [123–125]. SE induced by pilocarpine later leads to the development of spontaneous 

limbic seizures and MF sprouting in the dentate gyrus of the hippocampus. 

3.2.3. Pros and Cons 

Pilocarpine is a powerful cholinergic agent and produces persistent seizures associated with 

neurodegeneration. It is very simple to use and require little sophisticated equipment. Pilocarpine is 

generally used for systemic administration to induce SE in rats and mice. The SE induced by 

pilocarpine is similar to SE induced by kainic acid and the site of initial EEG changes in the two 

models is different. The pattern of neuronal damage is similar to KA model but pilocarpine induces 

greater neocortical damage [126]. As in the KA model, the pilocarpine-induced SE leads to the 

development of spontaneous limbic motor seizures and MF sprouting in the dentate gyrus [127]. Since 

hippocampal synaptic reorganization and MF sprouting is a common feature of human epileptogenic 

tissue [115,116,128], the pilocarpine model is often used to examine the relationship between MF 

synaptic reorganization and spontaneous seizure activity [127,129]. 
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3.3. Lithium-Pilocarpine Combination Model 

Pilocarpine alone at a high dose of 400 mg/kg (i.p. or s.c.) may not induce consistent SE. In order to 

enhance the action of pilocarpine, a small amount of lithium chloride (LiCl; 3 mEq/kg, i.p.) is given to 

rats 19 to 24 h prior to the administration of pilocarpine. This results in a significantly lower dose of 

pilocarpine (20–30 mg/kg) needed to induce SE. The progression of continual seizures that occurs can 

be considered as generalized convulsive SE [130]. Pretreatment with LiCl seems to potentiate the 

effect of pilocarpine, since lithium in combination with a low dose of pilocarpine induces most 

consistent SE in rats [26,60,122]. All other features are similar to SE induced by high doses  

of pilocarpine.  

3.3.1. Methodology 

Rats are implanted with two surface electrodes (cortex and cerebellum) and a depth electrode in the 

hippocampus for continuous EEG recording. Persistent SE is chemically induced by lithium-pilocarpine 

in adult rats [90]. Briefly, rats are injected with two doses of pilocarpine (20 mg/kg, i.p., per 30 min) to 

induce persistent SE. Lithium chloride (3 mEq/kg, i.p.) treatment is given 18–24 h prior to pilocarpine. 

Scopolamine (1 mg/kg, s.c.) is given 30 min prior to pilocarpine to counteract peripheral side effects of 

pilocarpine. The onset and termination of SE are determined by behavioral seizures and EEG 

recordings from the hippocampus and the cortex. Animals are perfused at different time points after SE 

induction for immunohistochemical studies.  

3.3.2. Features 

The electrographic and behavioral features of the lithium-pilocarpine regimen are almost identical 

to the pilocarpine model. Treated animals exhibit electrographic and behavioral SE for over 5 h, which 

represent a state of refractory SE. Moreover, these seizures respond to benzodiazepines when given 

early, but become resistant with time. The extent of neuronal injury is comparable to pilocarpine or 

other chemical models of SE.  

3.3.3. Pros and Cons 

Lithium-pilocarpine induced SE shares similar time characteristics for onset and duration with the 

high-dose pilocarpine model, although they differ starkly in onset severity. The mortality rate in the 

lithium-pilocarpine model is very low compared to the high dose pilocarpine model.  

3.4. Organophosphate Pesticide Model  

Organophosphate (OP) pesticides are able to induce sustained SE in rodents. OP pesticides such as 

diisopropylfluorophosphate (DFP) and paraoxon are highly neurotoxic agents [131,132]. When 

exposed deliberately, or by accident or natural disaster, they cause SE and neuronal damage quite 

similar to that of nerve agents. Benzodiazepines such as diazepam and imidazenil protect against  

DFP-induced seizures when given early after exposure [61,95]. Recently, the DFP model of SE was 

characterized in rats [62,63]. DFP is very similar in structure to the nerve agents soman and sarin. The  
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OP pesticides and nerve agents are extremely lethal and produce neurotoxicity via common  

mechanisms [133–135]. They cause devastating damage to the brain primarily due to their irreversible 

inhibition of acetylcholinesterase, leading to an excessive accumulation of acetylcholine, a powerful 

excitatory neurotransmitter in the brain. Exposure to OP intoxication results in cholinergic 

hyperactivation and causes a set of predictable toxic signs: hypersecretion, fasciculations, tremor, 

convulsions, respiratory distress and death. CNS manifestations following OP exposure include 

convulsive seizures and SE, which can last 30 min or longer with profound brain damage, resulting in 

death, or long-term neuronal damage. The effects of OP intoxication are very long lasting and 

survivors suffer chronic brain damage such as risk of epilepsy and cognitive deficits.  

3.4.1. Methodology 

The procedure involves systematically administered DFP-induced persistent seizures and SE in  

rats [37,62,63]. Animals should be pretreated with pyridostigmine bromide (0.026 mg/kg, i.m.)  

30 min before DFP injection. One minute following DFP injection (1–4 mg/kg, s.c.), animals should 

be given pralidoxime chloride (2-PAM, 25 mg/kg, i.m.) and an atropine injection (2 mg/kg, i.p.). This 

increases survival rates without affecting the severity of seizures, since atropine and 2-PAM do not 

cross the blood-brain barrier. Rats are allowed to undergo convulsions and SE-like activity following 

DFP. Behavioral and EEG activity are monitored to assess the seizure activity. When animals exhibit 

at least 10 min of seizure activity, they will be injected with test drugs. Behavioral and EEG seizure 

activity are recorded for 24 h by a video-EEG system. DFP intoxication seizures are rated as per the 

modified Racine scale: stage 1, chewing or excess secretion (SLUD, salivation, lacrimation, urination, 

and defecation); stage 2, whole body twitching/tremors; stage 3, unilateral forelimb clonus or 

paralysis; stage 4, bilateral forelimb clonus; stage 5, severe convulsions; and stage 6, death.  

3.4.2. Pros and Cons 

OP agents produces SE in a similar fashion to pilocarpine. However, their mechanism of action is 

quite different from pilocarpine. OP pesticides are irreversible acetylcholinesterase inhibitors while 

pilocarpine acts as agonist at muscarinic cholinergic receptors. OP pesticides are very potent and 

difficult to handle in the lab. Moreover, there are few effective antidotes for OP intoxication, 

especially for rapid termination of seizures, SE and brain damage. Current approved treatment for OP 

intoxication or nerve agent exposure is a specialized drug combination containing; (i) atropine—a 

muscarinic receptor antagonist; (ii) pralidoxime—a drug to regenerate acetylcholinesterase activity; 

and (iii) diazepam—a benzodiazepine to reduce seizures [61,134]. Diazepam treatment must be 

administered within 40 min, after which there is no protection against seizures and progressive 

neurological damage occurs. High doses of diazepam are needed to control recurrent seizures, resulting 

in sedation, respiratory depression and tolerance. Seizures induced by OP intoxication can become 

self-sustained and develop time-dependent refractory SE—a serious condition with significant brain 

injury and mortality. Benzodiazepines are not highly effective against refractory SE that occurs at later 

times after OP exposure [93]. The DFP is an important chemical model that replicates several features 

of refractory SE and could be useful for testing novel AEDs, as the current treatment is not always 

successful when given late after seizure onset. 
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3.5. Flurothyl Model 

Flurothyl is a volatile liquid that belongs to the halogenated ether family. It has stimulant and 

convulsant properties [64,65]. It was previously used in psychiatric medicine for shock therapy, but 

such use has now been discontinued. Flurothyl is widely used in experimental epilepsy research for 

inducing seizures in animals. Flurothyl is used mainly for acute testing of seizure threshold or to 

sustain the seizures during the flourothyl exposure period. Rats are observed for behavioral seizures 

following exposure to inhalational flurothyl. Flurothyl seizures are induced in an airtight chamber 

(volume 9.4 L). The animal is placed in the chamber and flurothyl delivery is initiated at a constant 

rate of 40 μL per min onto a pad of filter paper [66,67]. Flurothyl (SynQuest Laboratories, Inc., 

Alachua, FL) is liquid convulsant ether with a low boiling point temperature. Therefore, it easily 

evaporates from the filter paper and is inhaled by the tested rat. Flurothyl induces two different 

primarily generalized seizures: clonic seizures of face and forelimbs with preserved righting ability, 

and tonic-clonic seizures of all four limbs after the righting ability has been lost. It has been 

determined that in immature rats, flurothyl-induced clonic and tonic-clonic seizures develop in very 

fast succession [67]. From collected data, thresholds can be calculated for seizure types in terms of 

amount of infused flurothyl required for the induction of that particular seizure and latency to onset of 

clonic and tonic-clonic seizures [136]. Continued administration of flurothyl results in prolonged 

seizure and SE. Unlike pentylenetetrazol or other chemoconvulsants, flourothyl is a very volatile 

compound and easy to administer by inhalation techniques. This is a rapid test for determination of 

seizure threshold in rodents. It is also used to assess the seizure susceptibility of genetically-altered 

mouse models.  

3.6. Cobalt-Homocysteine Model  

The cobalt-homocysteine model of SE was pioneered by Walton and Treiman in 1988. Generalized 

convulsive SE can be induced in rats with cortical cobalt lesions when challenged with  

D,L-homocysteine thiolactone (HCTL) by intraperitoneal injection [68]. This induced focal motor 

seizures that secondarily generalized, providing a unique model of SE. An active epileptic focus is 

induced with application of cobalt powder in the left anterior lobe, through holes drilled in the skull 

while the rat is under anesthesia. Animals are allowed to recover at least 4 days, at which time EEG 

activity is monitored daily. After the occurrence of behavioral and electrographic seizure activity, each 

animal is injected with HCTL (5.5 mmol/kg, i.p.). The average time from placement of cobalt until 

injection of homocysteine thiolactone is 9 days. Seizures occur within 10 to 15 min after the HCTL 

and secondarily generalized tonic-clonic seizures are observed within 30 min of the HCTL injection. 

EEG patterns observed during SE are very similar to those seen during human SE. Phenytoin, 

phenobarbital, diazepam and lorazepam are effective in terminating the generalized seizures when 

given i.p., after the second such seizure. This profile is predictive of their efficacy in the treatment of 

human SE [137]. However, the model has significant limitations. First, the neuropathology associated 

with SE has not been characterized in this model. Second, there is significant mortality during SE in 

this model. Finally, it is a tedious model with a great deal of preparation time for cobalt lesion 

followed by HCTL challenge.  
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4. Thermal Models 

Thermal models mostly consist of increasing core body temperature or eliciting febrile (fever) 

seizures in rodents. Febrile seizures are the most common in children under 5 years of age. Febrile 

seizures are simple or complex depending on the severity and duration of seizures. Febrile seizures that 

are prolonged reaching SE or recurrent within a given fever are referred as “complex febrile seizures”. 

Such prolonged febrile seizures occur in a fraction of children and such children are at high risk for 

later acquired epilepsy [138,139]. Given the emerging data suggesting that longer febrile seizures are 

more likely to lead to epilepsy, there is increasing interest in developing febrile seizure models of SE 

and neuronal injury.  

4.1. Hyperthermia (Complex Febrile) Model 

There has been a great deal of effort to develop a practical and clinically relevant animal model of 

febrile seizures. There are numerous obstacles to develop and validate a realistic model. Because 

febrile seizures are provoked by fever, the idea is to induce fever-like conditions in rodents. However, 

it is not easy to provoke fever in young rodents during the developmental ages that correlate with 

human childhood. Consequently, many complex approaches have been utilized to model the fever in 

rodents. In one model, rats are treated with the bacterial endotoxin lipopolysaccharide, which causes an 

immune response and augments core temperature in immature rodents by about 1 °C. Seizures are then 

evoked by a chemoconvulsant [140]. The most widely employed method has been to raise the core 

temperature by heating the animal [69–72]. Over the years, a variety of heating methods has been used, 

including hot water, infrared heat lamp, and warmed air stream. In these models, the animal’s core 

temperature rises and consequently, brain temperature also rises and this leads to hyperthermic 

seizures [71]. Although hyperthermic seizures represent febrile seizures, such seizures are not true 

febrile seizures, which are triggered by endogenous pyrogenic mediators. Nevertheless, febrile seizures 

models can provide valuable insights on the mechanisms underlying the injury and the long-term 

impact on neurological functions.  

4.1.1. Methodology 

Baram and colleagues developed a rat model in which seizures are induced by an external heat 

stream using a hair dryer [69,70,72,73]. Febrile seizures are induced in rat pups at P11. Two rats are 

placed in a glass jar and were subjected to a regulated airstream (39.5–41 °C) to raise their core 

temperature. Core temperatures are measured at baseline, at seizure onset (an average of 2.9 min from 

the onset of hyperthermia) [69] and every 2 min during the seizures, and were maintained by moving 

rats that were close to the higher end of this range to cool surfaces for 2 min. There are two protocols 

with varied duration: 30 or 70 min. The behavioral seizures induced by the hyperthermia have 

previously been correlated with EEG seizures [73] and are stereotyped, consisting of sudden 

movement arrest, followed by facial automatisms (chewing) and forelimb clonus, which might evolve 

to body flexion with biting of an extremity and rarely to generalized (tonic) seizures. After 70 min of 

hyperthermia, animals are weighed and moved to a cool surface until core temperature is reduced to 

the normal range for age (34–35 °C), and then returned to the dams.  
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4.1.2. Pros and Cons 

Hyperthermic models are simple paradigms for febrile seizures. Prolonged hyperthermia may 

mimic the complex febrile seizures including the risk for epileptogenesis. Seizures in this model occur 

reliably when core temperature reaches 39.5 to 41 °C, usually within 3 min of hyperthermia, and 

involve fever mediators. The seizures are remarkably reproducible and exhibit characteristics that 

suggest limbic origin, involving behavioral arrest, staring, chewing and other facial automatisms, and 

forepaw clonus. Like human febrile seizures, rats experiencing hyperthermic seizures have elevated 

levels of the interleukin IL-1β, and show interictal discharges representing hyperexcitability. However, 

no neuronal death is observed in these models [74]. However, fever in children is an endogenous 

phenomenon due to pyrogenic substances. In rodents, it is induced with forceful heating of the body. 

The consequent heat injury could be a major confounder in these models. Moreover, there is debate 

about the duration of hyperthermia state or seizures. In children, a febrile seizure of either 24 min or  

64 min would be considered complicated, while the 64-min seizures qualify as febrile SE for modeling 

considerations. Epileptogenesis is observed in a significant proportion of rats experiencing  

post-hyperthermia SE events with little neuronal loss. This phenomenon is used to exemplify that 

neuronal death is not necessary for acquired epileptogenesis in the immature brain [141].  

5. In Vitro Models of SE 

In vitro techniques such as electrophysiological approaches are commonly used for elucidating the 

mechanism of action of anticonvulsants. The most popular and widely employed electrophysiological 

approaches include hippocampus slice electrophysiology and patch-clamp in single neurons. The most 

direct evidence support a specific mechanism at the receptor or ion channel level is obtained from 

patch-clamp electrophysiology. Although time-consuming and labor intensive, electrophysiology can 

provide extremely valuable information on the ability of a drug to modify a receptor-gated or  

voltage-dependent ion channel. Electrophysiological recordings are often conducted using acutely 

dissociated neurons, neurons maintained in primary culture, or neurons in an acutely isolated brain 

slice. Different recording configurations are used (e.g., whole-cell, cell-free, and nucleated patches) to 

examine macroscopic or single-channel activity. Brain slices are the most convenient preparations for 

in vitro studies. The neuronal circuitry inherent in the slices makes it suitable for the study of 

epileptiform activity under both control and hyperexcitable conditions. Extracellular recording 

techniques using isolated brain slices can provide useful information pertaining to the effect of an AED 

on population events and evoked or spontaneous epileptiform bursting, depending on whether the slice 

is obtained from a healthy or epileptic animal. Spontaneous epileptiform bursting in epileptic animals 

can be studied using extracellular recordings. Epileptiform bursting can be evoked by perfusion of 

hippocampus slices with ion channel blockers such as 4-aminopyridine, bicuculline or  

picrotoxin [81–83,142–146]. Low magnesium ACSF is the most widely used approach for eliciting 

spontaneous epileptiform bursting in the hippocampal slices. Test compounds can be applied in the 

perfusion and their ability to reduce the spontaneous epileptiform bursting or evoked activity provides 

a powerful index of drug’s efficacy to reduce seizure activity.  
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There are numerous advantages with brain slice preparation: (i) it has well characterized neuronal 

circuitry; (ii) anatomical boundaries are easily visualized under microscope; (iii) absence of input from 

the remainder of the brain structures; (iv) precise electrode placement for recording; (v) rapid 

alteration of activity with fast exchange of drug solutions; and (vi) provides the convenience of onset 

and offset of changes in activity. Moreover, this technique avoids the inherent problems associated 

with penetration through the blood brain barrier in animal models. However, there are several 

limitations with this technique. There is significant difference in the response due to lack of 

endogenous or circulating factors, absence of input from the remainder of the brain, and greater 

variability in response depending on age and time-course of recording in the slice.  

5.1. Low Magnesium Model in Slices 

Low or zero-Mg2+ is a commonly used in vitro model of epileptiform activity in  

entorrhinal-hippocampal slices used to determine the effect of drugs on seizure activity and 

mechanisms of antiepileptiform activity [75,76,147,148]. The zero-Mg2+ model in horizontal  

entorrhinal-hippocampal slices is of particular importance: epileptiform activity is progressive and 

develops resistance to benzodiazepines after prolonged periods [75,149,150]. Horizontal  

slices containing key cortical areas and the hippocampus are isolated from neonatal or young mice or 

rats [77]. The zero-Mg2+ model produces synchronized epileptiform activity in hippocampal slices, as 

assayed by extracellular field potential recordings in several temporal lobe areas, including the 

entorrhinal cortex and CA1 areas [149]. The epileptiform activity progresses through two stages: the 

first stage is characterized by seizure-like events that are sensitive to benzodiazepines, and the second 

stage occurs after nearly 1 h, and is characterized by an abrupt change to late recurrent discharges that 

are insensitive to benzodiazepines [75,149]. Epileptiform activity is assessed through the frequencies, 

durations, and amplitudes of seizure-like events and late recurrent discharges throughout the recording 

period. Drug efficacy is determined by a complete cessation of the field potentials [75]. These 

parameters are also plotted against time as a measure of the temporal development of drug-resistant 

epileptiform activity.  

5.2. High Potassium Model in Slices  

Epileptiform activity can be evoked with high [K+]o ACSF perfusion of hippocampal  

slices [78–80]. Preliminary studies of the concentration-response of K+ concentration in the ACSF are 

needed to determine the K+ levels that are below and above threshold for generation of paroxysmal 

depolarization shifts (PDSs) in CA1 pyramidal neurons. In many hippocampus preparations, 7 mM 

[K+]o ACSF is consistently threshold for evoking PDSs for several applications. Elevated [K+]o seizure 

models are particularly relevant to studies of astrocytes, which play a key role in buffering 

extracellular K+ affecting neuronal excitability.  

5.3. 4-Aminopyridine Model in Slices 

4-Aminopyridine (4-AP) is a potent convulsant. 4-AP acts as a blocker of K+ currents, mainly of the 

early transient K+ current and acts on presynaptic targets leading to enhancement of neurotransmitter 
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release at both inhibitory and excitatory synapses, including release of glutamate. When applied or 

injected in low concentrations, 4-AP readily evokes epileptiform activity in both in vivo and in vitro 

models [142–144]. The convulsant properties of 4-AP have also been reported clinically in  

humans [81]. Unlike other convulsant drugs that act primarily by diminishing the efficiency of  

GABA-mediated inhibition [84], the evidence available indicates that 4-AP-induced epileptiform 

discharges occur despite the presence of normal or even enhanced synaptic inhibition [144,151,152]. 

Hence, 4-AP is thought to be a suitable model to investigate the pathophysiological mechanisms 

involved in the generation of epileptiform activity in conditions where synaptic inhibition is preserved. 

However, the mechanisms underlying the 4-AP’s seizure induction remains unclear. 

4-AP is the most popular in vitro method for testing compounds on epileptic seizures because of its 

potent and reproducible induction of epileptiform bursting in slices [83,84,151–153]. In this model, 

extracellular recordings are made from the CA3 region using glass microelectrodes filled with 2 M 

NaCl (resistance, 2–10 m). After equilibration of slice, an insulated bipolar stimulating electrode is 

positioned in the dentate gyrus mossy fibers, and a glass microelectrode filled with ACSF is positioned 

in the stratum pyramidale using an optical microscope. The position of the recording electrode can be 

adjusted to obtain a maximal amplitude signal. This is optimized by recording population responses 

that were evoked with a bipolar stimulating electrode via a constant-current isolation unit at an 

intensity of 200–350 μA for 100 μs. 4-AP (75 μM) is bath applied at a rate of 2–3 mL/min for 

induction of spontaneous epileptiform bursting [82,83]. Perfusion of ACSF containing 4-AP  

(75 μM) elicits typical high frequency epileptiform bursting (~30 events/min) recorded from area CA3. 

The spontaneous bursting typically starts within 5 min of the onset of 4-AP perfusion and increases 

gradually to a plateau level at about 30 min. Bath washing of slices with ACSF free of 4-AP leads to a 

gradual disappearance of bursting. In this preparation, test drugs can be perfused simultaneously with 

4-AP to check their ability to suppress spontaneous bursting. The inhibitory effect of test compounds is 

observed for the 60 min recording period. The slice model provides important insights about the 

cellular mechanism of anticonvulsant agents under conditions that avoid confounding factors such as 

differences in absorption, metabolism, and brain accessibility. 

5.4. Organotypic Slice Culture Model  

Acute brain slices are prepared and used on the same day. Organotypic slice techniques are 

introduced to allow for the use of brain slices in prolonged culture. Brain slices from young rodents 

can be maintained in culture for many weeks to months [85–89]. Such organotypic slices are prepared 

in much the same way as acute slices but the tissue is usually taken from neonatal animals. They are 

generally prepared according to the interface culture method from 8 to 11-day-old rats. They are 

maintained by culturing at an air/liquid interface, either by continuously rotating the preparation 

(roller-tube cultures) or by culturing them on semiporous membranes (stationary interface cultures). 

The basic requirements include a stable substratum, culture medium, sufficient oxygenation and 

incubation at a temperature of about 36 °C. Under these conditions, nerve cells continue to 

differentiate and to develop a tissue organization that closely resembles that observed in situ. Slice 

cultures are useful for a variety of applications including induction of SE.  
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Organotypic hippocampal slices are commonly used to study epileptiform discharges and neuronal 

injury. They have several advantages over acute slices. Drugs can be applied in known concentrations 

and removed when desired. Due to their high neuronal connectivity, slice cultures provide a very 

useful tool for studying the properties of synaptic transmission between monosynaptically coupled cell 

pairs. It provides a convenient in vitro system to study paired recordings between two neurons in a 

slice. Application of chemical substances or excitotoxins to slice cultures can be used to examine their 

short-term or long-term consequences on epileptic discharges, as well as the effects of test compounds 

to prevent or block the neuronal abnormality including seizure activity [154–158]. The slices tend to 

thin out in culture, providing an optically advantageous preparation. Organotypic brain slice cultures 

are also used as a medium throughput, in vitro neuroprotection assay for studies of neuroprotection 

following SE and other brain insults. By using fluorescent compounds that binds to the DNA of 

injured or dying neurons, such as propidium iodide, neuronal cell death can be analyzed in slice 

cultures following application of chemoconvulsants such as KA or glutamate receptor agonists. 

Organotypic slices have many disadvantages. They are more difficult to prepare and maintain than 

acute slices, and it has not been feasible to make such slice cultures from adult brains. It is generally 

recognized that the synaptic organization is not exactly the same as in native brain tissue. Moreover, 

many chemoconvulsants do not produce excitotoxicity in organotypic hippocampal slices. This limits 

its utility in seizure-induced neuronal injury and neuroprotection studies.  

6. Refractory SE Models  

Benzodiazepines are the drugs of choice for the treatment of SE. However, 35%–50% patients 

exhibit partial or complete resistance to standard drugs, a condition known as refractory SE. Newer 

anticonvulsants are needed for rapid and effective termination of refractory SE. Key features of 

refractory SE can be observed in experimental models. Walton and Treiman first observed drug 

refractoriness in an experimental model of SE [159]. In refractory models, SE is characterized  

by persistent seizures, progressive internalization of GABA-A receptors, and benzodiazepine  

resistance [93,94]. However, there is little information on the comparative analysis of animal models 

that recapitulates neurological features of refractory SE [160]. There are several models that have been 

well characterized to represent the refractory SE by determining diazepam’s resistance to abort 

seizures and neurodegeneration. The protracted seizures caused by pilocarpine, KA and DFP are 

widely employed to model refractory SE in rodents. There is evidence for time-dependent phenytoin’s 

resistance in an electrical stimulation model of SE [161]. 

6.1. Pilocarpine Model 

The pilocarpine with or without lithium priming is widely used as a model of human SE because it 

reproduces many of its features, including refractory seizures, selective interneuron loss, and poor 

control of seizures by anticonvulsants [37,90,91]. SE is induced by pretreatment with lithium  

(3 mEq/kg, i.p.) followed 18–24 h later by two pilocarpine (20 mg/kg, i.p.) doses separated by 30 min. 

Such a regimen produces behavioral seizures and electrographic SE that lasts for >5 h. Rats treated 

with lithium-pilocarpine exhibit typical behavioral features of cholinergic stimulation and progressive 

SE such as behavioral arrest, excessive salivation, chewing, facial twitching, unilateral and bilateral 
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forelimb clonus, rearing with or without loss of postural control, and running. EEG recordings are 

essential to show the electrographic activity during SE, both before and after diazepam treatment. 

Diazepam (5–10 mg/kg, i.p.) treatment is given at 1 or 2 h after seizure onset because previous reports 

showed refractoriness to diazepam in a time-dependent fashion, especially at the late time  

points [30,90]. When administered 40-min or later after the onset of SE, diazepam often fails to reduce 

the severity of seizures, and seizure recurrences is more common during the course of treatment 

monitoring. Therefore, the prolonged seizure activity that is not effectively terminated by the late 

intervention by diazepam certainly represents a state of refractory SE [37]. The main morphological 

features of acute consequences of pilocarpine treatment include: (a) Hippocampal damage 

characterized by cell loss in the hilus, CA3, and CA1 regions, (b) The cell loss of CA3 pyramidal cells 

that leads to an important reduction in the Schaffer collateral input, (c) Cell loss in CA1 affecting 

specific types of GABAergic interneurons, (d) Cell loss in other limbic structures such as amygdala, 

but not within the hypothalamus and cortical structures.  

6.2. KA Model 

KA causes persistent seizures that are often referred to as refractory SE. The KA model induces a 

continuous seizure pattern of SE in mice that results in electrical spiking and tonic-clonic seizures that 

progressively worsen over the course of several hours [25,31,92]. Benzodiazepines are first-line drugs 

commonly used to suppress seizures in humans and animal models of SE [93]. However, the 

therapeutic dosage must be substantially increased after 50 min of continuous seizures in rats [30] and 

this is similar to the lack of therapeutic efficacy of benzodiazepines after prolonged periods of SE in 

human patients. Key parameters such as EEG recordings and behavioral seizure ratings are used to 

demonstrate the drug efficacy in the KA model of refractory SE. The efficacy of drug treatment is 

measured as the reciprocal of the total number of spike waveforms observed between 5 min after drug 

administration and the point at which the animals are euthanized. Based on the mortality rates in 

various studies, investigators use percent survival as another measure of the therapeutic efficacy of test 

drugs. EEG spike waveforms are routinely used to determine the latency to first seizure, total time 

spent seizing, the number of seizures and spike waveforms, and the percent survival for each treatment 

group. Biochemical investigations are performed to determine the mechanisms that underlie seizure 

progression and pharmacoresistance to benzodiazepines in the KA model of SE. 

6.3. DFP Model 

With the renewed focus on chemical threat agents and pesticide poisoning, DFP has received 

prominence due to its ability to cause SE, especially refractory SE in rodent models [37,62,95,96]. 

Persistent SE can be induced by OP intoxication in rats with exposure to DFP, an OP insecticide that, 

like nerve agents, causes SE and neuronal damage. To increase the survival, atropine sulfate and  

2-PAM are administered to mimic available field treatment regimens. Diazepam is administered at  

40 or 60 min after the onset of SE to attenuate seizures and ascertain benzodiazepine resistance. The 

onset and termination of SE are generally determined by video EEG recordings for up to 24 h.  

DFP-treated animals show electrographic and behavioral SE for over 8 h, which represent a state of 

refractory SE. Diazepam partially reduces seizures but sustained suppression of either behavioral or 
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electrographic seizure activity is not observed in many animals, a profile indicative of refractoriness. 

Moreover, at 72 h following SE induction, a massive neuronal death in CA1, CA3 pyramidal regions, 

and in the dentate hilus regions is evident [37]. The extent of neuronal damage in the DFP model was 

similar in pilocarpine and KA models. Diazepam produced marginal protection against the SE-induced 

neurodegeneration in both models [37]. Overall, in the DFP model, persistent seizure activity and 

neurodegeneration are comparable to pilocarpine model; therefore it may provide a field model of 

refractory SE that has unique advantages than other models. 

7. Morphological Approaches 

In many animal SE models, cell necrosis and neurodegeneration are hallmark features. Acute 

neuronal injury and neurodegeneration are routinely assessed to estimate the extent of protection 

provided by the test compounds. The following methods are used to determine the neuroprotective 

potential of test compounds. 

7.1. Cell Necrosis and Apoptosis 

7.1.1. Nissl Staining 

Histological assessment is made using Nissl (Cresyl violet, CV) staining techniques, as described 

previously [31,162]. CV stains all neurophil components and any changes in cytoarchitecture of the 

hippocampal cell layers like loss of cells is determined. Cresyl Violet Acetate solution is used to stain 

Nissl substance in the cytoplasm of neurons. It stains both neurons and glia and is very useful to 

identify the overall cell loss and neuronal damage.  

7.1.2. TUNEL Assay 

To measure apoptotic cell death, terminal deoxynucleotidyl transferase and digoxigenin-11-dUTP 

nick end labeling (TUNEL) staining is mostly widely employed using the Apoptag peroxidase in situ 

apoptosis detection kit [31]. For quantification of cell death, photomicrographs (30-μm) of three 

sequential sections are taken at dorsal hippocampus level of each animal. The representative sections 

from different animals (n = 4) are permeabilized by treating with 0.25% trypsin solution in 0.01 N HCl 

for 30 min at 37 °C and then washed in PBS, and nonspecific sites are blocked by using 0.1 M Tris 

buffer containing 3% bovine serum albumin and 20% normal bovine serum for 30 min at 37 °C. After 

this, sections are washed in PBS and incubated in TUNEL reaction mixture for 90 min at 37 °C. The 

TUNEL reaction mixture comprised enzyme solution and fluorescein label solution at a ratio of 1:9. 

The sections designated as negative controls were incubated in fluorescein label solution only. The 

nucleus of apoptotic cells in sections treated with the TUNEL mixture exhibits a clear green 

fluorescence. TUNEL-positive cells within a square millimeter area are counted by an observer blind 

to the treatment conditions.  
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7.1.3. Fluoro-Jade B Staining 

For detecting degenerating neurons and their processes, Fluoro-Jade B (FJB) staining is commonly 

performed in brain sections from rodent models [31,162]. This staining procedure is a sensitive and 

reliable marker for neuronal degeneration that results from SE or brain injury [163,164]. The extent of 

neurodegeneration after the SE is determined with FJB staining in dentate hilus (DH), CA3 and CA1 

sub-regions of the hippocampus. The rats are perfused with 4% paraformaldehyde solution and the 

brains collected and processed in 30% sucrose. Consequently, 30 µm thick sections of these brains are 

cut with cryostat at the dorsal hippocampus level and collected in phosphate buffer solution (PBS) and 

later stored at −20 °C in cryo-buffer. To visualize neurons undergoing degeneration after SE, three 

sequential sections each 450 µm apart through the dorsal hippocampi are collected in each animal, 

mounted on gelatin-coated slides and air dried at room temperature overnight. Slides were then washed 

sequentially in 100% ethanol, 70% ethanol and deionized water. The slides were then incubated in 

0.06% potassium permanganate solution for 15 min (with slow shaking), washed in deionized water, 

and incubated in 0.004% FJB (Histo-Chem Inc., Jefferson, AK ) dissolved in deionized water with 

0.1% acetic acid for 30 min. Then slides were washed three times for 1-min in deionized water, dried 

on a slide warmer at 55 °C, briefly immersed in xylene and cover slipped using DPX mounting media. 

The sections are analyzed by confocal microscope using FITC filter. Cells labeled by FJB were 

detected as individual green shiny pyramidal shaped spots clearly identifiable from background. The 

number of FJB positive cells (dying neurons) per image field in the hippocampal DH, CA3 and CA1 

are counted in each of the three sections per animal [165]. 

7.2. Neurodegeneration, Neurogenesis and Mossy Fiber Sprouting 

7.2.1. Neurodegeneration 

The extent of neurodegeneration after the SE is determined by the immunostaining of sections for 

NeuN (principal neurons) and parvalbumin- or neuropeptides-Y-positive (interneurons) cells [31]. The 

neuronal nuclei antigen (NeuN) is a very specific protein that is highly expressed in nucleus and less 

expressed in cell body in differentiated neurons. NeuN is not expressed in glial cells, oligodendrocytes, 

astrocytes, or microglial cells, and cerebellar Purkinje cells. Thus, NeuN immunohistochemistry is 

commonly used to identify neuronal loss and to quantify total number of neurons in various rat brain 

regions. To analyze the overall neurodegeneration after the SE, the brains are removed, postfixed in 

4% paraformaldehyde and cryoprotected in PBS containing 30% sucrose. Cryostat sections are cut at 

30-µm coronally through the entire anteroposterior axis of the hippocampus and collected serially in 

PBS. Every 20th section through the entire hippocampus is selected in each of the animals and 

processed for Nissl staining. Nissl staining demonstrates the hippocampal cytoarchitecture of principal 

cell layers and confirmed the presence of bilateral hippocampal injury in rats after SE. The extent  

of neurodegeneration within different regions of the hippocampus is further assessed by NeuN 

immunohistochemistry and quantified from 24 to 72 h post-SE. Because the overall neurodegeneration  

in different regions of the hippocampus appeared mostly symmetrical between the two sides, 

quantification is performed on only one side. The number of cells in hippocampal subregions such as 

the dentate hilus (DH), CA3 and CA1 are counted and compared with controls or between various 
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treatment groups. Reduction or lack of neuronal loss is indicative of neuroprotective potential of the 

test drug.  

7.2.2. Neurogenesis 

There is strong evidence of dramatic changes in neurogenesis in the hippocampus dentate gyrus 

subgranular zone following SE and neuronal injury. Quantification of the extent of neurogenesis and 

type of cells that are born after injury would be helpful to study the pathophysiological role of 

neurogenesis following SE and acute neuronal injury. Interestingly, hippocampal neurogenesis is very 

sensitive to physiological and pathological stimuli. Certain pathological stimuli such as seizures alter 

both the amount and the pattern of neurogenesis [166]. Therefore, it is helpful to identify whether  

SE-induced changes in neurogenesis contribute to vulnerability to neurological conditions such as 

cognitive dysfunction, depression and epilepsy. Neurogenesis within the adult central nervous system 

is demonstrated using an exogenous cell tracer, 5'-bromo-2'-deoxyuridine (BrdU), in combination with 

endogenous neuronal markers [167–169]. Specific primary antibodies raised against these markers are 

widely available and their visualization is possible with the use of fluorescently tagged secondary 

antibodies. BrdU is a thymidine analog that incorporates into dividing cells during DNA synthesis. 

Once incorporated into the new DNA, BrdU will remain in place and be passed down to daughter cells 

following division. Typically, BrdU is injected intraperitoneally. Different survival times required by 

the desired experimental time-line will yield data on specific phases of neurogenesis: proliferation, 

differentiation and maturation. One limitation of using BrdU is uncertain penetration of the targeted 

cells with a uniform concentration of the compound. Thus, for experiments requiring measurements of 

cell proliferation, Ki67 can be used as an acceptable alternative. The protocol takes 3–5 days, allowing 

for sectioning and staining. 

7.2.3. Mossy Fiber (MF) Sprouting  

Sprouting of neuronal axons including MF that contain zinc is generally visualized with Timm 

staining [170]. In the chronic epilepsy model, MF sprouting is indicative of epileptogenesis and is 

commonly identified by Timm staining of the brain section at various intervals after induction of SE. 

There is little or subtle change in Timm staining in acute models of SE; MF sprouting is mostly 

observed in chronic post-SE models of TLE. 

7.3. Neuroinflammation Markers 

Neuroinflammation is a common consequence of seizures and other neuronal injury events. Acute 

seizures and SE causes neuroinflammation by activating microglia, astrocytes, and induction and 

enhancement of inflammatory cytokines such as IL-1β, IL-6 and TNF in key brain regions such as the 

hippocampus [105,171–175]. Further seizure related expression of inflammatory cytokines occurs in 

brain regions that may undergo neuronal damage [176]. A recent report suggests that seizure-induced 

release of inflammatory cytokines like IL-1β from astrocytes may cause brain inflammation and 

damage the blood brain barrier. Neuroinflammation and its secondary consequences may partly 

contribute to generation of recurrence of seizures [176]. Immunohistochemistry of brain sections for 
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specific glial markers such as glial fibrillary acidic protein (GFAP, astrocytes) and Iba-1 (microglia) is 

helpful to identify the pattern of neuroinflamation and relevant damage. There is a marked increase in 

the number of astrocytes and microglia and their processes due to inflammation. It is shown that the 

neurosteroid allopregnanolone can reduce inflammation in traumatic brain injury models [177,178]. 

Quantification of biomarkers of neuroinflammation is also very helpful to assess the course of 

inflammation following seizures and neuronal injury events.  

8. Conclusions and Perspectives 

There are four key areas of unmet clinical needs in epilepsy, which include (i) new AEDs for  

drug-resistant seizures and SE, (ii) disease-modifying drugs that prevent or ameliorate the process of 

epileptogenesis especially after brain injury or SE, (iii) new therapies for the comorbidities in people 

with epilepsy or caused by untreated SE, and (iv) new drugs for special subpopulations and age- or 

gender-specific epilepsies such as catamenial epilepsy (women), pediatric epilepsy (children) and 

geriatric epilepsy (aged population). Animals models are standard paradigms employed in drug 

discovery in epilepsy because seizures are a network phenomenon that cannot be created through 

tissue culture or simulations [179–182]. Epileptic seizures arise due to multiple factors that regulate 

neuronal excitability and synchrony. Most AEDs currently on the market had been advanced to clinical 

evaluation on the basis of their ability to block evoked seizures in one or more animal epilepsy models. 

SE requires rapid treatment for control of persistent seizures. Benzodiazepines are used for initial 

therapy, but new and effective anticonvulsants are needed for effective control of late self-sustaining or 

refractory SE.  

A variety of models are employed for screening of new compounds for their anticonvulsant activity 

against SE. The ideal characteristics are: 

• Rapid onset of action and intermediate duration 

• Ease of administration 

• Broad spectrum of activity 

• Minimal sedative potential 

• Aqueous solubility for i.v. solution formulations 

• Effective against convulsive and non-convulsive SE 

• Lack of tolerance upon repeated administration 

• Possess antiseizure activity for maintenance therapy 

• Should be effective when given late (>40-min) after SE onset 

Pharmacological models of SE such as kainic acid, pilocarpine, and DFP are most widely used for 

evaluation of test agents (Table 3). Post-SE models have become the standard models to study 

epileptogenesis. However, there is no single animal model of epilepsy that truly predicts the clinical 

efficacy of new compounds. It is suggested that a battery of experimental paradigms are essential to 

identify the potential lead compounds. Test agents should be tested in multiple protocols including 

pretreatment and post-exposure paradigms. Behavioral and EEG data are analyzed for anticonvulsant 

efficacy as the primary outcome measure of drug effectiveness. The efficacy of drugs in terminating 

SE or reducing its severity is evaluated by assessing multiple parameters that include severity and 
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duration of behavioral seizures, frequency and duration of ictal spike activity, and latency for 

termination of SE activity. The ability of a test agent to terminate the SE and reduce neuronal damage 

should be compared with a benzodiazepine such as diazepam or midazolam. The animal studies 

submitted for regulatory approval are generally expected to be conducted in accordance with good 

laboratory practice regulations. 

Table 3. General profiles of selected animal models of SE.  

Feature  Kainic acid  Pilocarpine DFP PPS  Hyperthermia 

Technical feasibility Simple Simple Complex Tedious Tedious 

Mortality rate High High Medium Low Low 

Acute neuronal injury Severe Severe Severe Moderate Minimal 

Diazepam response 
(early: <10-min) 

Sensitive Sensitive Sensitive Sensitive Sensitive 

Diazepam response  
(late: >40-min) 

Insensitive  Insensitive Insensitive Sensitive Sensitive 

Neuroinflammation Robust Robust Robust Moderate Moderate 

Chronic hyperexcitability Severe Severe Severe Severe Moderate 

Neurodegeneration  
(>2 months post SE) 

Severe Severe Severe Moderate Minimal 

Spontaneous seizures  
(>2 months post SE) 

Severe Severe Severe Moderate Minimal 

Mossy fiber sprouting  
(>2 months post SE) 

Severe Severe Severe Moderate Moderate 
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