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Abstract: DNA methylation plays a critical role in the regulation of gene expression. Most 

studies of DNA methylation have been performed in herbaceous plants, and little is known 

about the methylation patterns in tree genomes. In the present study, we generated a map  

of methylated cytosines at single base pair resolution for Betula platyphylla (white birch) 

by bisulfite sequencing combined with transcriptomics to analyze DNA methylation and  

its effects on gene expression. We obtained a detailed view of the function of DNA 

methylation sequence composition and distribution in the genome of B. platyphylla.  

There are 34,460 genes in the whole genome of birch, and 31,297 genes are methylated. 

Conservatively, we estimated that 14.29% of genomic cytosines are methylcytosines in 

birch. Among the methylation sites, the CHH context accounts for 48.86%, and is the 

largest proportion. Combined transcriptome and methylation analysis showed that the 

genes with moderate methylation levels had higher expression levels than genes with  

high and low methylation. In addition, methylated genes are highly enriched for the  

GO subcategories of binding activities, catalytic activities, cellular processes, response to 

stimulus and cell death, suggesting that methylation mediates these pathways in birch trees. 
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1. Introduction 

Cytosine DNA methylation is an epigenetic mark that is important in silencing transposons  

and other repetitive sequences, and has effects on diverse biological processes, including genomic 

imprinting, X-chromosome inactivation, and the expression of endogenous genes [1–4]. According  

to the sequence context of the cytosines, DNA cytosines can be classified into three types, i.e., CG, 

CHG, and CHH (H = A, G or T). In plants, methyltransferase 1 (MET1) maintain CG methylation  

by acting on hemi-methylated DNA after replication at symmetric sequence contexts. CG methylation 

is found in both genes and repeats, and is involved in gene expression regulation [5]. CHH 

methylations, and some CHG methylations, are generally maintained by domains rearranged 

methyltransferase (DRM1/DRM2), which are involved in de novo methylation of DNA [6].  

The plant-specific protein chromomethylase 3 (CMT3) maintain high levels of CHG methylation [7]. 

The two non-CG methylation types, CHG, and CHH, are mostly absent from genes and are mainly 

found in intergenic, repeat-rich regions of the genome and play a critical role in silencing transposons [8]. 

Sodium bisulfite converts unmethylated cytosines to uracils, but 5-methylcytosines remain 

unconverted. Hence, after polymerase chain reaction (PCR) amplification, unmethylated cytosines 

appear as thymines and methylated cytosines appear as cytosines [9]. Extensive research in herbaceous 

plants has described different DNA methylation patterns in different species and their functions and 

distributions [10–12]; however, there has been little work done on the DNA methylation of forest 

species, especially trees. Recently, Feng et al., compared DNA methylation among eight plant and animal 

species using bisulfite sequencing technology, and briefly reported the genome methylation patterns 

for Populus trichocarpa [13]. However, in that study, the Populus methylome had relatively low sequencing 

coverage, and was not sufficient to quantify the level of methylation of individual cytosines [13]. 

Forests cover 30% of earth terrestrial surface; they protect of biodiversity, and are the producers  

of the biosphere [14]. Forest trees are different to herbaceous plants in various ways. For instance, 

forest tree populations have evolved under more selective pressures than annual herbaceous plants. 

Trees show more extensive secondary growth, including the obvious growth and development  

of secondary xylem, compared with herbaceous plants. Although some plant methylation maps have 

been acquired, a high resolution, accurate profile of forest tree species is urgently to allow  

the exploration of the characteristics of woody plants. 

Here, we developed a single base-resolution map of a forest species, Betula platyphylla (white 

birch), using bisulfite-based detection of methylated cytosines with high-throughput sequencing 

(Bisulphite Sequencing or BS-seq). White birch is widely distributed in Eurasia, can grow on infertile 

soil and is resistant to low temperature. With its rapid growth, white birch is a pioneer species of 

afforestation. In this study, we generated DNA methylation and transcriptomic profiles for the current 

year secondary xylem tissues. Our goal was to describe the cytosine DNA methylation pattern in birch 

and provided useful data for future studies on birch epigenetics. 
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2. Results and Discussion 

2.1. Generation of Methylation Data of B. platyphylla 

To generate a DNA methylation map across the genome of birch with the current year secondary 

vascular tissues, shotgun sequencing of bisulfite-treated birch genomic DNA was performed using 

Illumina sequencing technology (Illumina GA). After bisulfite conversion of the birch genome, 

genomic DNA libraries were constructed and sequenced. 178.02 million raw reads were generated 

(Table 1). To ensure the accuracy of the sequencing, filters were used to retain the reads mapping  

to sequences that are unique in the genome after bisulfite conversion from every possible methylation 

pattern. This resulted in a conservative dataset of 148.78 million effective reads. Thus, the sequence 

yield for final analysis was 13.08 gigabase pairs (Gb), which covered 83.58% of the reference  

B. platyphylla genome, with an average depth of 30-fold for the whole genome (Table 1). We used  

the unmethylated chloroplast genome [15] to calculate the sum of the non-conversion rate  

and T-C sequencing error rate, which was low (0.42) for the sample, indicating a high conversion rate 

and reliable data. 

Table 1. Summary of sequencing results and reads alignment. 

Raw Reads (M) 
Raw Base 

Number (Gb) 

Effective 

Reads (M) 

Effective Base 

Number (Gb) 
Genome Coverage (%) 

Average Depth Per 

Base and Strand (X) 

178.02 15.65 148.78 13.08 83.58 15.02 

2.2. Analysis of Percentages of Methylated Cytosines (mCs) in CG, CHG and CHH 

Methylation in B. platyphylla exists in three sequence contexts, i.e., CG, CHG (where H = A, C or T), 

and asymmetric CHH [1]. The percentages of methylated cytosines (mCs) in CG, CHG and CHH 

contexts were 27.43%, 23.71% and 48.86%, respectively (Figure 1a). The average methylation level in 

CG, CHG and CHH were 42.64%, 28.80% and 5.16%, respectively, with the methylation level being 

defined  as the proportion of reads showing mC among all reads covering the same cytosine site. In 

birch, there was tendency toward highly methylated CG sites methylated (most CGs were either 

unmethylated or highly methylated (80%–100%)), CHG showed a more uniform distribution between 

(20%–100%), and CHH sites showed a low level of methylation (were either unmethylated  

or methylated at 20%–30%) (Figure 1b). These trends were similar to those of Populus trichocarpa 

(percentages of CG, CHG and CHH are 41.9%, 20.9% and 3.25%, respectively) [13] rather than those 

of A. thaliana (percentages of CG, CHG and CHH are 24.60%, 6.98% and 1.70%, respectively) [5,6,16].  

The methylation level of CG and CHG are similar in these two tree species, but the methylation level 

of CHH in birch (5.16%) was almost twice that in popular. This result suggested that the DRM2 

methyltransferase, which maintains non-CG methylation in plants [7,17], may have higher expression 

level in birch than in popular. 
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Figure 1. DNA methylation pattern in Betula platyphylla. (a) Relative percentages  

of methylcytosines (mCs) in the sequence contexts of CG, CHG (where H = A, C or T), 

and asymmetric CHH; (b) Distribution of methylation level of mCs in each sequence 

context. Only mCs covered by at least five reads were used to calculate the methylation 

level. The x-axis was defined as the percentage of reads showing mCs at a reference 

cytosine site. The y-axis indicates the fraction of total mCs calculated within bins of 10%. 

(a) (b) 

2.3. Analysis of the Methylation Profiles 

We further analyzed the methylation profiles of the promoters (2 kb upstream), genes, 5'-Untranslated 

Regions (5'-UTR), Coding Sequences (CDS), Introns, 3'-Untranslated Regions (3'-UTR), Transcriptional 

Termination Region (TTR) (2 kb downstream), transposable elements (TEs) and small RNAs 

(including miRNA, rRNA, snRNA, tRNA) (Figure 2, Table 2). For accuracy, at each reference 

cytosine, the methylation levels (mC/C ratio) of at least five reads were required (Table 3). There was 

an obvious enrichment of methylation in TEs, and 5'-UTR had the lowest methylation level. The 

enrichment of methylation in TEs reflects the fact that DNA methylation is an important epigenetic 

event used by higher eukaryotes to regulate silencing of repetitive elements, and high methylation over 

TE sequences serves as a self-defense mechanism in case of transcription of TEs [18]. The lower 

methylation of 5'-UTRs may provide a high probability for genomic loci to be transcribed. 

Figure 2. Relative methylation level in each sequence context for different genomic regions. 

The sequence contexts are shown in the x-axis, and the y-axis shows the methylation level. 
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Table 2. DNA methylation patterns in different genomic regions. 

Methylation 

Pattern 
Total Promoter TTR Genes CDS Introns 5'-UTR 3'-UTR TE smRNA 

ML 0.1728 0.1864 0.1674 0.1248 0.1051 0.1428 0.0607 0.0712 0.2759 0.1164 

MD 0.4276 0.3829 0.4122 0.4800 0.5454 0.4465 0.4264 0.4777 0.4071 0.4218 

ML: relative methylation level; MD: methylation density; TTR: Transcriptional Termination Region  

(2 kb downstream); CDS: Coding Sequences; UTR: Untranslated Regions; TEs: transposable elements. 

Table 3. DNA methylation pattern in Betula platyphylla at difference depths. 

Pattern mCG mCHG mCHH 

Methylation level (depth ≥ 1×) 42.64 28.8 5.16 
Methylation level (depth ≥ 5×) 60.19 36.63 6.79 

We further calculated methylation levels in the context of gene bodies and 2 kb of their upstream 

and downstream regions (Figure 3a). Boundaries between gene bodies and flanking DNA showed  

a sharp drop in methylation; however, DNA methylation extended from TEs into the flanking DNA, 

showing a more gradual reduction (Figure 3b). This trend of methylation level was similar to that  

of Arabidopsis thaliana, Populus trichocarpa, Japonica and Oryza sativa, and may be a common 

characteristic of flowering plants (Chlamydomonas reinhardtii shows a different pattern) [13,19].  

The methylation level of birch exhibited a characteristic peak in the gene bodies, which was also 

observed genome-wide in A. thaliana, P. trichocarpa, Japonica and Oryza [13,20]. However,  

there appears to be some “CHG-gene body” methylation, which seems to be unique to birch. Although 

the function of this gene body methylation remains unknown, it has been hypothesized that it suppresses 

spurious transcription from cryptic promoters that might otherwise interfere with gene regulation [13,21]. 

Figure 3. Methylation level of transposable elements (TEs), gene body and its upstream 

and downstream sequences. (a) Methylation levels of the gene body and its upstream  

and downstream sequences. Two-kilobase regions upstream and downstream of each gene 

were divided into 50 bp intervals and analyzed. Each gene body was divided into  

40 intervals for analysis; (b) Methylation level of TEs. TEs and 0.5 kb flanking sequences 

regions on both sides were analyzed. Each TE was divided into 20 intervals. 
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In addition, we found a positive correlation between sequence length and methylation density for 

TEs (Figure 4a), but not for genes (Figure 4b), which is different to the case in A. thaliana, where 

sequence length and methylation density are positively correlated for both genes and TEs [5]. This 

may be related to the fact that a large number of genes in the birch genome are relatively shorter than 

those in Arabidopsis and these genes are almost all highly methylated in white birch compared with 

Arabidopsis (Figure S1). 

Figure 4. Analysis of the relationships between methylation level and sequence length. 

The relationships between methylation level and sequence length in TE regions (a)  

and genes (b). 

 

2.4. Exons Have Lower Methylation Levels than Introns in Birch Genes 

To examine gene body methylation, we further explored methylation levels across introns and 

exons (Figure 5; Table 2). Strikingly, we found that methylation level in introns was higher than  

in exons, which is opposite to A. thaliana, P. trichocarp, and O. sativa [13]. This high enrichment  

of methylation in introns may have a direct or indirect role in the regulation of transcription in birch. 

To analyze the whole methylation trend, all the coding genes of birch were classified into seven 

transcription elements, including upstream, first exon, first intron, internal exon, internal intron, last 

exon, and downstream. The result showed that methylation level of CG, CHG and CHH contexts  

in exons were all lower than in those in introns (Figure S2). This trend was opposite to that of 

Arabidopsis, Rice, poplar, and Ciona, which showed clear enrichment of methylation in exons [13]. 

Figure 5. Methylation levels across exons and introns. Only internal exons (flanked  
by introns on both ends) that did not contain any 5'- or 3'-UTR (Untranslated Regions) 

bases were used. Upstream and downstream regions of exons for analysis were a similar length 

to the exon. Two vertical blue lines mark the intron–exon and exon–intron boundaries. 
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2.5. There Is no Correlation between Sequence Context and Methylation Preference in Birch 

In some plants, methylation preference is found to correlate with sequence context [5,21]. To reveal 

whether there was a relationship between sequence context and methylation preference in birch,  

we calculated the methylation percentage of all possible 7-mer sequences in which the methylated 

cytosine was in the fifth position (allowing an analysis of four nucleotides upstream of CG, CHG,  

and CHH methylation). The result showed that there was no obvious sequence context specificity  

in white birch, indicating that there is no correlation between sequence context and methylation 

preference (Figure 6). This trend is not consistent with a previous observation in A. thaliana [5],  

in which the lowest CG methylation sequences were highly enriched for the sequence ACGT; poorly 

methylated CHG sites were depleted of upstream cytosines, but tended to contain cytosine following 

the methylated base (which was similar to the trend in wheat germ DNA sequences [22]); and highly 

methylated CHH sequences showed a tendency for cytosines, CG dinucleotides were present upstream 

and the sequence TA followed the methylated cytosine. In contrast, poorly methylated CHH sequences 

contained a cytosine following the methylated cytosine, and frequently contained a cytosine, but 

always lacked an adenine, two nucleotides downstream [5]. 

Figure 6. Sequence preferences for methylation in CG, CHG, and CHH contexts. (a) The mC 

site methylation level was divided into three groups: High Methylation (ML ≥ 0.8), 

Intermediate Methylation (0.2 < ML < 0.8) and Low Methylation (ML ≤ 0.2) for 7-mer 

sequences in which the methylated cytosine is in the fifth position; (b) all genomic7-mers 

in whole genome were analyzed. ML indicated methylation level. 
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2.6. Methylation and Gene Expression 

To reveal the functional consequences of gene body methylation, we generated the transcriptome  

of genome-wide genes for two biological replicates of samples (sample A and B), using Illumina 

sequencing techniques. In total, we obtained 25,647,400 and 26,811,962 clean reads from the two 

samples. After filtration, Q20 percentages of the two samples both reached 98% (Table S1), and there 

was a good correlation between the sample A and B (R2 = 0.976) (Figure S3), indicating that consistent 

results were produced from these two samples. 

We then used the data of transcriptome analysis and methylation level (in promoter, gene body  

and TTR) to analyze the relationship between methylation and gene expression. Genes were 

categorized into unmethylated and methylated groups, and the methylated ones were further divided 

into five groups according to their relative methylation levels (with 20% intervals). We chose  

the genes at 3 to 8 (in x-axis) for further study, because the genes in other parts have low frequencies 

(Figure 7a,b). The results showed that the repression effect is weak for the slightly and moderately 

promoter- and TTR-methylated genes; while the repression effect is strong for the heavily methylated 

ones from 3 to 8 in the x-axis (Figure 7), in which, slightly methylated ones have the largest fraction  

of genes to express. This confirmed the well-known gene regulatory mechanism that promoter  

and TTRs methylation play an essential role in gene expression. We observed that there is no obvious 

difference in frequencies among the different gene methylation levels at the first expression level  

(0–1 in x-axis). After a certain point, heavy gene-body methylation appears to repress gene expression 

(Figure 7c), and the genes with moderate levels of body methylation tend to have the higher frequency 

to express than the slightly and heavy gene body methylated genes (Figure 7c). These observations  

are consistent with previous studies in rice [19,23] and A. thaliana [6,16]. It has been showed that 

gene-body methylation play a role in preventing transcriptional initiation from cryptic sites within 

genes, but at the cost of impending transcriptional elongation [16], which might lead to the observation 

that moderately body-methylated genes have the highest frequency of expression. 

Figure 7. Correlation between DNA methylation and expression levels of genes.  

(a) Expressions of genes with methylated promoters compared with genes with 

unmethylated promoters; (b) Expression of genes with methylated transcription 

termination regions (TTRs) compared with genes with unmethylated TTRs; (c) Expression 

of methylated compared with unmethylated genes. Genes were rank-ordered based  

on promoter, TTS, gene body methylation level and divided into quintiles. The first 

quintile is the lowest and the fifth is the highest. 
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We further used the BGI WEGO (Web Gene Ontology Annotation Plotting) [24] to categorize  

the methylated and unmethylated genes functionally. GO analysis indicated that methylated genes 

tended to be enriched in the GO terms of binding activities and catalytic activities (Figure 8). For 

biological processes, methylated genes were mainly associated with cellular processes, response to 

stimuli and cell death (Figure 8). In contrast, unmethylated genes were mainly enriched in transcription 

regulators and functions associated with biological regulation and pigmentation processes. These 

results suggested that DNA methylation plays a direct or indirect role in binding and catalytic activities 

and the pathways of in response to stimulus and cell death; however, it has a relatively lower effect on 

transcription, biological regulation and pigmentation processes [25]. 

Figure 8. Analysis of methylated and unmethylated genes using WEGO (Web Gene 

Ontology Annotation Plotting) analysis. Annotations are grouped into the terms of cellular 

components, molecular function or biological process based on the Betula GO annotation 

information (unpublished). Gene numbers and percentages (on the log scale) are listed  

for each category. 

 

3. Experimental Section 

3.1. Plant Materials 

Secondary xylem tissues were collected from a four-year-old wild-type birch in Harbin, China. 

DNA was isolated from secondary xylem tissues by the CTAB method, and RNA was isolated using  

a modified CTAB (cetyl trimethylammonium bromide) method [26]. 

BS-Seq (Bisulphite Sequencing) libraries construction and sequencing. Genomic DNA was 

fragmented by sonication, using a Diagenome sonicator, to a mean size of approximately 200–300 bp, 
followed by blunting, addition of dA (Adenine deoxyribonucleotides) to the 3'-end, and adaptor 

ligation according, to the manufacturer’s instructions (Illumina, San Diego, CA, USA). Bisulfite 

conversion of birch DNA was carried out using a ZYMO EZ DNA Methylation-Gold kit with  

EpiMark HotStart Taq (NEB, Ipswich, MA, USA). The resultant DNAs were subjected to paired-end 
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sequencing with the read length of 44 or 75 nt for each end, using the ultrahigh throughput Illumina 

Hiseq 2000 according to the manufacturer’s instructions [19,27]. 

3.2. Mapping and Processing of Bisulphite Sequencing (BS-Seq) Reads 

All reads from the sample were mapped to the birch genome sequence, which is available online [28]. 

DNA methylation has strand specificity; therefore, the plus strand and the minus strand of  

B. Platyphylla genome should be separated and used as different alignment target sequences for  

BS-Seq reads. Thus, each cytosine in reference genome sequences was converted to thymine, termed 

the T-genome, which represents the plus strand. Meanwhile, each guanine in reference genome 

sequences was converted to adenosine, termed the A-genome, which represents the minus strand.  

To map the raw 44 or 75 nt pair-ended BS-Seq reads, the original reads were computationally 

converted to the alignment forms by the following steps: (1) observed cytosines on the forward read  

of each read pair were in silico replaced by thymines; (2) observed guanines on the reverse read  

of each read pair were in silico replaced by adenosines. 

We used the software SOAPaligner [29], allowing up to two mismatches for 44 nt reads and four 

mismatches for 75 nt reads to map the computationally transformed reads to the alignment target 

sequences. Multiple reads mapping to the same start position were regarded as clonal duplication, 

which might be generated during PCR process, and only one of them was retained. For mC detection, 

we transformed each aligned read and the two strands of the birch DNA back to their original forms to 

build an alignment between the original forms. Cytosines in the MethylC-seq reads that also matched 

the corresponding cytosines in the plus (Watson) strand, or guanines in the MethylC-seq reads that 

matched the corresponding guanines in the minus (Crick) strand were regarded as potential mCs.  

The Q score, which is used in the base-calling pipeline (Illumina) to detect sequences from the raw 

fluorescent images, was calculated as: 

Q = 10log10 [p(X)/(1 − p(X)] (1)

where p(X) is the probability that a read is correctly called. We then carried out a filtering process  

to filter out all potential mCs with Q scores less than 20, guaranteeing that a base would be correctly 

called at more than 99% probability, which is highly conservative for calling reliable bases [19,24]. 

3.3. Construction of a cDNA Library and Illumina Sequencing 

Total RNA was isolated from birch using the CTAB method, and mRNA was isolated by total RNA 

Oligo (dT) magnetic beads adsorption, and sheared into small fragments for synthesis of cDNA. cDNA 

was synthesized using mRNA fragments as templates and random primers. To create blunt ends,  

the synthesized cDNAs were digested with T4 DNA polymerase and Klenow DNA polymerase such 

that the 3' to 5' exonuclease activity of these enzymes removed the 3' overhangs and the polymerase 

activity filled in the 5' overhangs. The polymerase activity of the Klenow fragment added an adenine 

“A” base to the 3' ends of the blunt phosphorylated DNA fragments. The DNA fragments with “A” 

overhang ends were ligated with specific adaptors equipped with a single thymine “T” base overhang 

at their 3' end. The fragments were electrophoresed through an agarose gel and fragments of about  

200 nucleotides were identified, gel purified, and PCR amplified using a primer set the specifically 
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anneals to the ends of the “T” adapters. The PCR products were purified using the QIAquick PCR 

Purification Kit (QIAGEN, Hilden, North Rhine-Westphali, Germany) and the size, purity, and 

concentration of the constructed library were evaluated. 

Transcriptome sequencing was conducted using Illumina RNA-seq. An Illumina HiSeqTM 2000 

(Illumina, San Diego, CA, USA) generated the raw PE reads. After filtering of low quality reads,  

the remaining high-quality RNA reads were aligned to the birch genome using Bowtie, with perfect 

matches. Reads aligned to multiple locations in the birch genome were not included in the analysis. 

4. Conclusions 

In conclusion, we generated a high depth single base-resolution methylome of the birch tree. The 

percentages of mCs in CG, CHG and CHH contexts were 27.43%, 23.71% and 48.86%, respectively. 

The methylation level of birch exhibited a characteristic peak in the body of protein-coding genes. 

There was a positive correlation between sequence length and methylation density for TEs, but not  

for genes. In addition, some distinct methylation phenomena that are different to those observed 

previously in other plants are found; i.e., in birch, the methylation level in introns was higher than in 

exons, and there was no relationship between sequence context and methylation preference. Our study 

also showed that DNA methylation in birch is involved in binding and catalytic activities, cellular 

processes, responses to stimuli and cell death. 

Supplementary Materials 

Supplementary materials can be found at http://www.mdpi.com/1422-0067/15/12/22874/s1. 
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