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Abstract: Neuronal nitric oxide synthase (nNOS) plays an important role in 

neurotransmission and smooth muscle relaxation. Selective inhibition of nNOS over its 

other isozymes is highly desirable for the treatment of neurodegenerative diseases to  

avoid undesirable effects. In this study, we present a workflow for the identification  

and prioritization of compounds as potentially selective human nNOS inhibitors.  

Three-dimensional pharmacophore models were constructed based on a set of known 

nNOS inhibitors. The pharmacophore models were evaluated by Pareto surface and 

CoMFA (Comparative Molecular Field Analysis) analyses. The best pharmacophore 

model, which included 7 pharmacophore features, was used as a search query in the SPECS 

database (SPECS®, Delft, The Netherlands). The hit compounds were further filtered by 

scoring and docking. Ten hits were identified as potential selective nNOS inhibitors. 
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1. Introduction 

Nitric oxide (NO) is one of the most studied biological signaling molecules and is produced by 

catalysis from nitric oxide synthase (NOS), which converts L-arginine to L-citrulline, and produces this 

tiny, short-lived molecule. To date, there are three distinct isoforms of NOS: neuronal NOS (nNOS), 

endothelial NOS (eNOS) and inducible NOS (iNOS). nNOS and eNOS are constitutively expressed 

and depend on increases in external calcium and binding of a calcium/calmodulin complex for 

activation. nNOS and eNOS play an important role in neurotransmission and smooth muscle 

relaxation, respectively, and iNOS is expressed during bacterial infection, tumor cell cytolysis and 

inflammation [1–3].  

As an inorganic reactive free radical gas, NO is believed to be involved in a number of 

physiological processes such as inflammation, neurotransmission, blood pressure regulation, platelet 

aggregation and pain [4–6]. However, overproduction of NO has been implicated in numerous disease 

states [7]. In particular, excess NO in the central nervous system from nNOS activity can lead to  

many neurological disease states including neurodegeneration during Alzheimer’s and Parkinson’s 

diseases [8], altered spinal transmission of neuropathic pain [9,10], and progression of migraine and 

chronic tension-type headaches [11]. Consequently, an inhibitor of nNOS has the potential to be 

therapeutic in these diseases; however, the functions of eNOS in blood pressure regulation and iNOS 

in immune responses must be preserved, and the selective inhibition of nNOS has been the challenge 

of many researchers in the past decade [12–15].  

Recently, several categories of selective inhibitors of nNOS have been designed and developed for 

the treatment of central nervous system (CNS) disorders [3,15–22]. Some showed significant efficacy 

in the rat Chung model of neuropathic pain [22] and in a rodent model of dural inflammation relevant 

to migraine pain [22]. X-ray structures of nNOS co-crystallized with various ligands [23–25] provided 

insights into the essential structural elements and motifs central to its catalytic mechanism and mode of 

binding. These findings provide useful information about the interaction between the ligands and the 

residues near the binding site and can be utilized to design even more selective and potent drug-like 

NOS inhibitors. 

Virtual screening based on a pharmacophore model as a 3D search query has been successfully 

employed as an efficient alternative to high throughput screening approaches for the development of 

new compounds with the desired biological properties [26]. Pharmacophore modeling can be used to 

analyze the common functional groups responsible for specific drug receptor interactions or as a prelude to 

three dimensional quantitative structure activity relationship (3D-QSAR) analyses that are aligned 

accordingly with a set of known active compounds in 3D space. 3D-QSAR has been successfully 

applied in drug discovery and design. As a popular QSAR method, Comparative Molecular Field 

Analysis (CoMFA) [27] studies incorporate 3D information of the ligands by searching for the sites on 

molecules that are capable of being modified into more specific ligands. As a useful methodology for 
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studying interaction mechanisms, receptor based molecular docking analysis can be used as a 

complementary tool to prioritize the hits from the pharmacophore-based virtual screening [28].  

In the present study, a 3D pharmacophore model for nNOS inhibitors was assembled and the 

generated model was used as a search query in the SPECS database containing 197,000 compounds. 

The virtual screening approach, in combination with pharmacophore modeling and molecular docking 

can be used to identify and design novel nNOS inhibitors with high selectivity. These molecules may 

be potential lead compounds for future drug development. 

2. Results and Discussion 

2.1. Pharmacophore Results 

Twenty pharmacophore models were generated using SYBYL X 1.3 (Tripos Associates Inc.,  

St. Louis, MO, USA). Table 1 lists the parameters of each model. Specificity is a logarithmic indicator 

of the expected discrimination for each query and is based on the number of features it contains, their 

allotment across partial match constraints, and the degree to which the features are separated in space. 

Strong models should have a high Specificity value. Generally, the Specificity value should be at least 

5 in a pharmacophore model used as the query for a UNITY flex search [29]. For this study, MODEL 012, 

MODEL 019, and MODEL 003 had the high Specificity values of 5.138, 5.128 and 4.8580, 

respectively. These models yielded reasonable pharmacophore models. The N_HITS column shows 

the actual number of ligands hit by the model query, with the majority of the models matching at least 

5 ligands. The value in the FEATS column indicates the total number of features possessed by each 

model. All of the models had six or more features except for MODEL 011. The retained models had a 

PARETO rank value of 0, indicating that a single model is not superior to any other. The HBOND 

term is a measure of the overall pharmacophoric similarity among the ligand conformers. The STERIC 

term is a measure of the overall steric similarity among the ligand conformers; this term is basically the 

same as the HBOND term. The ENERGY term indicates the total energy (using the Tripos force field) 

of all molecules in the training set. 

Table 1. Parameters of the pharmacophore model a. 

No. SPECIFICITY N_HITS FEATS PARETO ENERGY STERICS HBOND

MOEDL_001 4.180 4 6 0 15.60 666.7 173.3 
MOEDL_002 3.881 8 7 0 15.44 703.1 161.8 
MOEDL_003 4.858 6 8 0 18.53 750.4 155.1 
MOEDL_004 4.108 6 6 0 18.62 712.0 166.6 
MOEDL_005 3.823 9 7 0 20.15 852.7 162.7 
MOEDL_006 3.735 6 7 0 17.54 714.7 160.5 
MOEDL_007 3.902 9 7 0 58.38 705.2 179.2 
MOEDL_008 4.051 6 6 0 19.3 784.6 171.4 
MOEDL_009 4.036 3 6 0 40.81 845.3 159.5 
MOEDL_010 3.393 5 9 0 35.12 612.2 178.2 
MOEDL_011 3.158 6 5 0 22.40 635.3 178.9 

  



Int. J. Mol. Sci. 2014, 15 8556 

 

 

Table 1. Cont. 

No. SPECIFICITY N_HITS FEATS PARETO ENERGY STERICS HBOND

MOEDL_012 b 5.138 5 7 0 41.13 870.1 166.1 
MOEDL_013 4.048 6 6 0 17.75 732.8 157.0 
MOEDL_014 4.124 6 6 0 19.25 861.2 160.2 
MOEDL_015 3.867 8 7 0 19.99 567.7 175.3 
MOEDL_016 4.050 5 6 0 23.76 834.0 165.7 
MOEDL_017 4.053 5 6 0 14.97 658.9 150.8 
MOEDL_018 4.058 5 6 0 55.07 859.6 162.8 
MOEDL_019 5.128 4 7 0 23.06 654.1 168.0 
MOEDL_020 4.050 5 6 0 16.91 748.1 158.3 

a SPECIFICITY is a logarithmic indicator of the expected discrimination for each query; N_HITS is the 

actual number of ligands hit by the model query; FEATS is the total number of features in the model query; 

PARETO indicates the Pareto rank of the each model; ENERGY is the total energy of the model; STERICS 

is the steric overlap for the model; HBOND is the pharmacophoric concordance; b The selected model 

(MODEL_012) is indicated in boldface. 

The most significant pharmacophore hypothesis was characterized by the conflicting demands of 

maximizing pharmacophore consensus, maximizing steric consensus, and minimizing conformer 

potential energy [30]. We constructed a 3D plot to visualize the Pareto surface and select the best 

pharmacophore model (Figure 1). Considering only the ENERGY and STERICS criteria, the best 

model is shown in the upper left-hand corner of the graph in Figure 1b, where the ENERGY is low and 

the STERICS score is high. In terms of ENERGY and HBOND criteria, the best model is shown in the 

lower part of the graph in Figure 1c, where the ENERGY is low and the HBOND score is high. 

Finally, in terms of ENERGY and HBOND, the best model is shown in the upper part of the graph, 

where both scores are high (Figure 1d). Among the considered models, MODEL_012 (represented 

with a red cross in Figure 1) has the optimal position because it fulfills the three criteria and it has the 

highest Specificity value [31]. 

The best GALAHAD MODEL 012 is displayed in Figure 2. All of the aligned conformers  

represent low-energy conformations of the molecules, and the final alignment shows a satisfactory 

superimposition of the pharmacophoric points. Cyan, magenta, green and red spheres indicate 

hydrophobes, donor atoms, acceptor atoms and positive nitrogens, respectively. Model 012 includes  

7 pharmacophore features: three hydrophobes (HY_1, HY_2 and HY_3), one donor atom (DA_4),  

one acceptor atom (AA_5) and two positive nitrogens (NP_6 and NP_7). The magenta sphere is 

covered by a green sphere because the donor atom and the acceptor atom are in the same position in 

this molecule. 
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Figure 1. Plot of the STERICS, ENERGY and HBOND values for the models with the top ten 

Specificity values. (a) 3D plot; (b) plot of STERICS vs. ENERGY; (c) plot of ENERGY 

vs. HBOND; (d) plot of STERICS vs. HBOND. The red cross represents MODEL_12. 

 

Figure 2. Selected pharmacophore MODEL_012 and the molecular alignment of the 

compounds used to elaborate the model. 

 

2.2. CoMFA (Comparative Molecular Field Analysis) Statistical Results 

We used MODEL 012 as a template to align all molecules. The generated steric and electrostatic 

fields were scaled by the CoMFA-Standard scaling method in SYBYL with the default energy cutoff 

value. The CoMFA model yielded a good cross-validated correlation coefficient (q2) of 0.513 with an 

optimized component value of 4, which suggests that the model should be a useful tool for predicting 

the IC50 values. A high non-cross-validated correlation coefficient (r2
ncv) of 0.933 with a low standard 



Int. J. Mol. Sci. 2014, 15 8558 

 

 

error estimate (SEE) of 0.134 and an f value of 149.950 were obtained. The steric and electrostatic 

contributions were 45.1% and 54.9%, respectively. The predicted activities for the inhibitors are listed 

in Table 2 and the correlation between the predicted activities and the experimental activities is 

depicted in Figure 3. The predictive correlation coefficient (r2
pred) was 0.742 for the test set. The 

statistical results indicate that the CoMFA model is a reliable predictor.  

Table 2. Structure and biological values (pIC50) of nNOS inhibitors. 

No. Structure 
pIC50 

Observed Predicted 

S

H
N

NH
N

O

Y
X

 series 1 [22] 

- X Y - - 

1 H N(CH3)2 6.237 6.089 
2 * H N(Et)2 5.656 5.750 

3 H 
N

6.108 5.922 

4 H 
N

6.796 6.650 

5 H N

H3C
H

5.979 6.148 

6 F N(CH3)2 5.474 5.770 
7 H CH2N(CH3)2 5.943 5.971 

8 H N

H

H

5.914 6.021 

S

H
N

NH
N

RX  series 2 [15,22] 

- X R - - 

9 * H -CH2CH2CH2N(CH3)2 6.569 6.588 
10 H -CH2CH2NCH3 6.754 6.741 

11 * H -CH2CH2N CH2CH3 6.857 6.694 
12 H -CH2CH2NCH(CH3)2 6.573 6.585 
13 H -CH2CH2N(CH3) (C2H5) 7.013 6.987 

14 * H -CH2CH2N(CH3)2 6.367 6.510 
15 H -CH2CH2N(C2H5)2 6.585 6.642 
16 F -CH2CH2N(C2H5)2 7.032 6.757 
17 H -(CH2)3NCH3 6.629 6.736 
18 H -CH2CH2N(CH3) (CH2)2OH 6.876 6.960 
19 H -(CH2)2NH(CH2)2OH 6.939 6.964 
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Table 2. Cont. 

No. Structure 
pIC50 

Observed Predicted 

20 H -(CH2)3NH(CH2)2OH 6.772 6.667 

21 H N
H

H
7.009 6.925 

22 H N
H

H
6.886 6.896 

23 * H 
NH

6.606 6.385 

24 H N 7.066 7.118 

25 H N 6.086 6.233 

26 H NH 6.268 6.430 

27 * H N 6.444 6.550 

X

H
N

NH

H
N

R  series 3 [21] 

- X R - - 

28 S 
N

6.699 6.694 

29 S N 6.097 6.225 

30 S N 6.921 6.701 

31 S 
N

5.824 5.830 

32 S 
N

6.347 6.304 
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Table 2. Cont. 

No. Structure 
pIC50 

Observed Predicted

X

H
N

NH
N

R  series 4 [17] 

- X R - - 

33 S N-(1-(3-(dimethylamino)propyl)- 6.328 6.419 
34 * S N-(1-(3-(cyclopropylamino)propyl)- 6.585 6.366 
35 S N-(1-(3-morpholinopropyl)- 6.181 6.120 
36 S N-(1-(3-((1-ethylpyrrolidin-2-yl)methylamino)propyl)- 6.886 6.700 
37 S N-(1-(3-adamantanaminopropyl)- 6.444 6.388 
38 S N-(1-(2-(dimethylamino)ethyl)- 6.770 6.736 
39 S N-(1-(2-(piperidin-1-yl)ethyl)- 6.770 6.930 
40 S N-(1-(2-(1-methylpiperidin-2-yl)ethyl)- 7.046 7.131 
41 S (S) N-(1-(2-(1-methylpyrrolidin-2-yl)ethyl)- 7.700 7.564 
42 O N-(1-(2-(1-methylpyrrolidin-2-yl)ethyl)- 6.602 6.824 
43 S N-(1-(1-methylazepan-4-yl)- 6.921 6.893 
44 O N-(1-(1-methylazepan-4-yl)- 6.367 6.443 

45 * S N-(1-(8-methyl-8-azabicyclo[3.2.1]octan-3-yl)- 6.120 6.168 
46 S N-(1-(quinuclidin-3-yl)- 6.444 6.417 
47 S N-(1-(1-methylpiperidin-4-yl)- 6.387 6.286 

S
NH

N

S
NHRHN

6

5
 series 5 [16] 

 Substituted R   

48 5 2-(Pyridin-2-yl)ethyl 5.959 6.025 
49 5 2-Morpholinoethyl 5.886 5.976 

50 * 5 1-Benzylpiperidin-4-yl 6.398 6.281 
51 5 1-(4-Fluorobenzyl)piperidin-4-yl 6.097 5.986 
52 5 (±)-2-(1-Methylpyrrolidin-2-yl)ethyl 7.523 7.582 
53 6 2-(Pyridin-2-yl)ethyl 5.886 5.83 
54 6 2-Morpholinoethyl 5.699 5.676 
55 6 1-Benzylpiperidin-4-yl 6.301 6.216 
56 6 1-(4-Fluorobenzyl)piperidin-4-yl 6.699 5.779 

57 * 6 2-(1H-Imidazol-5-yl)ethyl 6.523 6.789 
58 6 4-Bromophenethyl 5.357 5.188 
59 6 Tetrahydro-2H-pyran-4-yl 5.699 5.736 

* Compounds taken for the test set. 
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Figure 3. Correlation between the experimental and CoMFA (Comparative Molecular Field 

Analysis) predicted activities of compounds. 

 

The CoMFA steric and electrostatic contour maps are shown in Figure 4 using compound 41 as a 

reference structure. In Figure 4a, the blue contour indicates regions in which an increase of positive 

charge enhances the activity, and the red contour indicates regions in which more negative charges  

are favorable for activity. The two large blue contours around the red sphere indicate that the 

substituent in this region should be electron deficient for increased binding affinity with a protein. 

Another small blue contour is found around the guanidine isosteric group indicating that a negatively 

charged substituent in this area is unfavorable. The CoMFA model showed the same result as the 

pharmacophore hypothesis. In Figure 4b, the steric field is represented by green and yellow contours, 

in which the green contours indicate regions where a bulky group is favorable and the yellow regions 

represent regions where a bulky group will decrease activity. In this case, the green contours around 

the substituent R demonstrated that bulky groups enhance the binding affinity of the nNOS. Most 

compounds with high activities in this dataset have the same such properties. The CoMFA contour 

maps and the predicted result further indicated that MODEL 012 can be used as a theoretical screening 

tool that is able to discriminate between active and inactive molecules [31]. 

Figure 4. (a) CoMFA steric contour maps and (b) CoMFA electrostatic contour maps. 
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2.3. Virtual Screening  

The pharmacophore based virtual screening was conducted to find potential nNOS inhibitors.  

A stepwise virtual screening procedure was applied, wherein the pharmacophore based virtual 

screening was followed by drug-likeness evaluation, screening of the pharmacophore query, QFIT 

(The QFIT score is a value between 0 and 100, where 100 is best and represents how close the ligand 

atoms match the query target coordinates within the range of a spatial constraint tolerance) scoring 

filtration, and a molecular docking study. The sequential virtual screening flowchart we employed is 

depicted in Figure 5, in which the reduction in the number of hits for each screening step is shown. 

Figure 5. Virtual screening flowchart. 

 

2.3.1. Database Searching  

Flexible 3D screening was performed using the UNITY tool to screen the SPECS database [32], 

which contains approximately 197,000 compounds. The database query was generated based on the 

pharmacophore MODEL 012. The database was restricted with Lipinski's rule. In general, this rule 

describes molecules that have drug-like properties. Drug-likeness is a property that is most often used 

to characterize compound libraries such as combinatorial or screening libraries that are screened to find 

novel lead chemical compounds [33]. According to this rule, we used simple molecular descriptors,  

such as molecular weight (≤500), hydrophobicity (MLogP ≤ 4.15) and the number of H-bond donor 

(≤5) and acceptor atoms (≤10), as the first filter to select the molecules with good absorption or 

permeation [34]. The remaining 223 compounds were further screened on the basis of QFIT to reduce 

the dataset, where QFIT is the pharmacophore match between the query and hit [35].  

2.3.2. Molecular Docking  

To predict the appropriate binding conformation for nNOS inhibitors and the reported hit 

compounds from virtual screening, Surflex Docking (Tripos Associates Inc., St. Louis, MO, USA) was 

used to generate an ensemble of docking conformations. The top 62 hit compounds with the highest 

QFIT score from screening after UNITY filtering were further screened using molecular docking into 

the binding site of nNOS to select the compounds with the ability to form favorable interactions with 

the active site. The docked compounds were filtered based on scoring function and interaction with the 
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crucial residues [24] in the binding site. Finally, ten compounds were selected on the basis of the dock 

score and favorable interactions with the key residues. The results of the hit compounds with their 

dock score and QFIT values are shown in Table 3. Among the active compounds reported [24], 

AG_205/36953325 has a similar linker length and two aromatic ring centers on both ends. There is 

also a hydrogen bond donor in the aromatic ring center and at least one hydrogen bond donor on the 

linker. The phenolic hydroxyl makes a hydrogen bond with the NOS active site GLU592, which is 

conserved in all mammalian NOS isoforms [24], and the hydrophobic phenyl ring π-stacks with the 

heme (HEM801) next to the GLU. The long, flexible linker extending from the phenyl ring allows the 

2-phenyl-2,3-dihydro-1H-pyrazole to reach and to π-stack with TYR706 (Figure 6). The binding mode 

of this hit compound is similar to that of the reported co-crystallized compound [24] and indicates that 

the identified hit compounds may have the same mechanism of action as known nNOS inhibitors. 

Table 3. Chemical structures of the hit compounds and their dock scores and QFIT values. 

SPECS ID Structure Dock Scores QFIT

AG_205/36953325

OH

N

N

S
S NH

O

N N

O
8.29 65.74 

AG_205/11218159 Br

OH

N

N

S
S NH

O

N N

O
8.20 65.74 

AG_205/11218337

N

N

S
S NH

O

Br

O

O

Br
8.01 65.82 

AG_205/11218321

N

N

S
S NH

O

F

O

O

7.86 65.82 

AG_205/36564022

OH

N

N

S
S

O

NHO 7.65 65.82 

AG_205/36953138

N

N

S
S NH

O

O

O

OH

7.63 65.81 
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Table 3. Cont. 

SPECS ID Structure Dock Scores QFIT

AG_205/09949027

F

S

N
S

N

O
7.34 65.82 

AG_205/36953406
N

N

S S

O

O2N

OH

F

6.78 65.82 

AG_205/36265063
S

N
S

N

O

Br

OH
NO2

6.51 65.82 

AG_205/36940042

N

N

S
S NH

O

OH

6.22 65.81 

Figure 6. (a) Mapping of the hit molecule (AG_205/36953325) by MODEL 012 from 

SPECS databases; (b) The orientation of AG_205/36953325 in the active site of nNOS;  

(c) The secondary structure of the active site and AG_205/36953325; and (d) The 

MOLCAD (a software package of SYBYL) cavity depth potential surfaces structure of the 

binding site within AG_205/36953325. The cavity depth color ramp ranges from blue 

(outside of the pocket) to light red (cavities deep inside the pocket).  
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3. Experimental Section  

3.1. Compounds and Biological Data  

Fifty-nine novel nNOS inhibitors were taken from the literature [15–17,21,22] with their biological 

activities in terms of IC50 values; 49 compounds were used as a training set and the remaining  

10 compounds were used as a test set, based on random selection. The compounds in the test set have a 

range of biological activity values similar to that of the training set. The IC50 values of the inhibitors 

were converted into pIC50 (log (1/IC50)) and used as dependent variables in the Pharmacophore 

generation and CoMFA calculations. The structures of the compounds and their pIC50 values are  

given in Table 2. All molecular modeling calculations were conducted using SYBYL X 1.3 (Tripos 

Associates Inc.). Molecular building was performed with a molecule sketch program in the same 

software. The molecular geometry of each compound was first minimized using the standard Tripos 

molecular mechanics force field with 0.01 kcal/(mol A) energy gradient convergence criterion. Partial 

atomic charges were calculated by the Gasteiger-Hückel method and energy minimizations were 

performed using the Conjugate Gradient method with 1000 iterations [36,37]. 

3.2. Pharmacophore Generation  

Pharmacophore models were generated and analyzed using the GALAHAD module. In this study, 

ten compounds (13, 16, 19, 21, 24, 30, 40, 41, 43, and 52) were selected to carry out the 

pharmacophore hypothesis, and the genetic algorithm was used to create conformers for all molecules. 

The compounds that were selected to generate the pharmacophore hypothesis are highly active. All of 

the ligands were aligned with a population size value of 60, a maximum generation value of 60 and a 

value of molecular required hitting of 5. Twenty models were generated with default parameters. 

3.3. CoMFA Field Calculation Partial Least Square Analysis 

The standard CoMFA procedure as implemented by SYBYL X 1.3 (Tripos Associates Inc.) was 

performed. Each set of aligned molecules was positioned inside a 3D cubic lattice with a grid spacing 

of 2.0 A (default distance) in all Cartesian directions and was generated to enclose the molecule 

aggregate. The fields generated were automatically scaled by the CoMFA standard in SYBYL. The 

partial least squares (PLS) methodology was used to derive a linear relationship for the CoMFA, and 

cross-validation was performed using the leave-one-out (LOO) method to choose the optimum number 

of components (ONC) and assess the statistical significance of each model. In PLS, the independent 

variables were the CoMFA descriptors, and the pIC50 values were used as dependent variables. The 

ONC was the number of components that led to the highest cross-validated correlated correlation 

coefficient q2 (or r2
cv). Non-cross-validation was performed to calculate conventional r2

ncv using the 

same number of components [38–40]. 

3.4. Virtual Screening  

The selected pharmacophore model was validated and converted into a UNITY query for 

pharmacophore guided virtual screening studies. The query was screened against the SPECS database. 
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The flex search option was implemented to perform virtual screening. Primary filters such as 

Lipinski’s rule of five were applied to reduce the dataset. Further screening of the hits was carried out 

using the Surflex Dock in SYBYL. 

The docking study was performed to validate the hits obtained from the virtual screening. The 

crystal structure of nNOS was retrieved from the RCSB Protein Data Bank (PDB code: 4EUX) [24]. 

The nNOS structure was utilized in subsequent docking experiments without energy minimization. 

Protein structures were prepared using the biopolymer module of SYBYL. Hydrogen atoms were 

added to the structure, atom types and charges were assigned using AMBER7 FF99 force field, and 

side chain amides were modified. The ligand method was used as the mode of construction for the 

protomol, threshold and bloat using default values to determine the extent of the protomol.  

4. Conclusions 

nNOS is a therapeutic target for central nervous system diseases that has attracted interest from 

pharmaceutical companies and researchers. Selective inhibition of nNOS activity represents an 

exciting drug approach for the development of new therapeutic agents to treat neurodegenerative 

diseases. In this study, we described a rational strategy for identifying novel nNOS inhibitors using a 

pharmacophore-based virtual screening protocol. The best pharmacophore model (MODEL 012) was 

established and showed good statistical parameters in the validation process. MODEL 012 was further 

employed as a 3D search query to screen the SPECS compound database. Molecular docking studies 

were also performed to improve the reliability and accuracy of the virtual screening. Ten hit 

compounds were identified as potential selective nNOS inhibitors and exhibited good search scoring, 

high docking scores, similar binding mode to experimentally proven compounds and favorable  

drug-like properties. The pharmacophore models developed in this work, and the information gained 

about the interactions between nNOS and the potential selective inhibitors, indicated that the combination 

of pharmacophore, molecular docking, and virtual screening efforts is a successful approach for 

identifying effective inhibitory compounds that may have an impact on future experimental studies in 

selective nNOS inhibition. The identified hit compounds were structurally different from available 

inhibitors and may serve as potential leads or starting points for structural optimization to identify 

novel nNOS inhibitors. 
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