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Abstract: DNA mutations are the cause of many human diseases and they are the reason 

for natural differences among individuals by affecting the structure, function, interactions, 

and other properties of DNA and expressed proteins. The ability to predict whether a given 

mutation is disease-causing or harmless is of great importance for the early detection of 

patients with a high risk of developing a particular disease and would pave the way for 

personalized medicine and diagnostics. Here we review existing methods and techniques to 

study and predict the effects of DNA mutations from three different perspectives: in silico, 

in vitro and in vivo. It is emphasized that the problem is complicated and successful detection 

of a pathogenic mutation frequently requires a combination of several methods and a 

knowledge of the biological phenomena associated with the corresponding macromolecules. 

Keywords: single nucleotide polymorphism (SNP); pathogenic mutation; missense 

mutations; disease diagnostics; protein stability; protein interactions  
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1. Introduction 

There has been a rapid development of genome-wide techniques in the last decade along with 

significant lowering of the cost of gene sequencing, which generated rich and widely available 

genomic data. However, the interpretation of such genomic data as well as predicting the association of 

genetic differences with diseases still needs significant improvement. The problem stems from the fact 

that the effects of genetic differences on protein function vary widely making it difficult to decipher 

genotype-phenotype relationships. One plausible approach to reduce the ambiguity of disease 

association is to consider all molecular effects simultaneously by the means of combined efforts of  

in silico, in vitro and in vivo approaches. In this review, we summarize these computational and 

experimental methods that are used to reveal the potential impacts of genetic differences. The first 

section is devoted to the in silico methods and applications followed by a section on approaches and 

methods for in vitro investigations, and then a section reviewing the techniques and methods for  

in vivo studies. Finally, several methods described are applied to a case study to reveal the molecular 

mechanisms of several disease-causing mutations in two specific genes involved in X-linked mental 

retardations. These two genes, MECP2 (coding for methyl CpG binding protein 2 (MeCP2), which is 

important for the normal function of the cell) and the KDM5C (coding for lysine (K)-specific 

demethylase 5C, which participates in transcriptional repression of neuronal genes) were selected 

based on our ongoing research. 

2. In Silico Analysis of Pathogenic Mutations 

Genetic differences can cause a range of changes in the biophysical characteristics of macromolecules 

(DNA, RNA and proteins) including changes in stability, electrostatic properties, protein–protein, 

protein–DNA, protein–RNA and protein–membrane interactions, aggregation properties and structural 

characteristics. The latter includes changes in the H-bond network, pKa, hydrophobicity, flexibility 

and structural disorder. The potential impacts of mutations and methods used to study them are 

summarized in Figure 1. Understanding the rules that govern the changes caused by genetic mutations 

is crucial for disease diagnostics. Of particular interest are genetic differences resulting in amino acid changes 

of the corresponding protein, termed as non-synonymous single nucleotide polymorphism (nsSNP) or 

rare missense mutations. The methods developed to study the impact of single amino acid substitution 

cover a wide range of ideas from evolutionary and sequence-based predictions to detailed atomic 

energy-based methods, and several reviews albeit less comprehensive were published [1–8]. Here, we 

review these methods under broad categories and also provide examples of outcomes that advance our 

understanding of the changes in protein biophysical characteristics and interactions caused by mutations. 

2.1. Sequence and Evolutionary Analyses and Machine Learning Methods 

Disease-causing missense mutations are often found to occur at evolutionarily conserved positions 

that have a crucial role for protein structure and function. These sites are characterized through 

multiple sequence alignments, either with consensus sequences of the same protein in multiple 

organisms or with all homologues of the same protein. In many cases, the sequence identity implies 

structural similarity [9,10]. There have been a number of sequence-based methods developed to 
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identify whether a missense mutation is pathogenic or not [11–14]. Basically, the results from the 

alignment are normalized and then the degree of tolerance for specific mutations is produced based on 

sequence conservation data. The biggest advantage of these methods is that large databases of 

mutations can be screened efficiently. However, these methods are very sensitive to multiple sequence 

alignments, therefore, different predictions may be produced depending on the depth of the alignment. 

The list of web servers based on these principles include Sorting Intolerant from Tolerant (SIFT) [12], 

Alignment Grantham-Variation, Grantham-Deviation (Align-GVGD) [15], Mutation Assessor [16] and 

Multivariate Analysis of Protein Polymorphism (MAPP) [17]. 

Figure 1. Flowchart illustrating the methods (left) used for assessment of potential impacts 

(right) of DNA mutations on protein properties and interactions. nsSNP, non-synonymous 

Single Nucleotide Polymorphism. 

 

In addition, a number of methods combine evolutionary sequence conservation with other structural 

implications to characterize whether a mutation is pathogenic or not. These and other methods that 

incorporate different approaches concurrently are termed as combined methods. For example, 

PolyPhen-2 [18], makes the predictions based on sequence conservation, physico-chemical characteristics 

of the amino acids involved in the substitution along with the sequence environment of the mutation 

site and the structural features affected by the mutation. Other tools based on similar approaches 

include Mutation Taster [19], LS–SNP/PDB [20], SNPeffect [13], Predicting Protein Mutant Stability 

Change (MuStab) [21,22], MUpro [23], MutPred [24], SNPdbe [25], NetDiseaseSNP [26], HOPE [27] 

and SNPs3D [28]. 

In addition to, or in combination with evolutionary and sequence-based methods, several machine 

learning approaches such as Neural Networks, decision trees and Random Forests, Hidden Markov 

Models, Conditional Random Fields and Support Vector Machines (SVMs) have been used to predict 

the effects of single point mutations and specifically the stability changes upon mutations [29]. The key 

idea in machine learning is to direct the computer to learn how to solve a problem rather than 

providing the way to the solution. 

Neural network and SVM methods have widely been applied in nsSNP analyses. Although neural 

network based methods can achieve comparable performance to SVMs, the latter has been more 

popular recently possibly due to the availability of general high-quality implementation of SVMs [30]. 
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The I-Mutant [31] and I-Mutant2.0 [32] webservers use a neural network-based method and SVM, 

respectively, to predict the sign of free energy change upon mutations. When the free energy difference 

is obtained by subtracting the wild-type free energy from that of the mutant, the positive sign of the 

resulting free energy change indicates destabilization of the protein. I-Mutant, which uses structural 

information as well as temperature and pH to build the neurons, achieved an accuracy of 0.81 in 

predicting the sign of the free energy change upon mutations. I-Mutant was shown to outperform three 

other tools, namely the FoldX [33,34], Distance-Scaled, Finite Ideal Gas Reference (DFIRE) [35,36] 

and Prediction of Protein Mutant Stability Changes (PoPMuSiC) [37,38] servers, which use 

biophysics-based or statistical potentials. On the other hand, I-Mutant2.0 was trained to predict both 

the sign and the value of free energy change and it uses pH, temperature, neighboring residues and 

solvent accessibility in addition to mutation data. Although it achieves less accuracy compared to  

I-Mutant (0.62–0.80 depending on the input, whether sequence or structure-based are used, and the 

types of datasets), its ability to predict from protein sequences and not necessarily requiring structural 

information is the main advantage. 

The MuPro server [23] also use SVMs to predict the sign of free energy change or the value of free 

energy change from sequence or structure-based input. A local window centered on the mutated 

residue is used as an input, which enables a direct use of the sequence information to the SVM. 

Superior correlation (0.86) with the experimental data was obtained compared to I-Mutant [31] as well 

as FoldX (0.75), DFIRE (0.68) and PoPMuSiC (0.85). Another server named Machine Learning for 

Protein Stability Changes (MLSTA) [39] utilizing SVM together with evolutionary features and 

different integration techniques, in which both sequence and/or structure-based input can be used, 

achieved slightly higher accuracy (0.84–0.90) than the machine learning methods described so far.  

In a more recent study [40], the sequence-based data with evolutionary properties were combined 

together with predicted structural features to make predictions upon mutations. This method achieved a 

slightly higher correlation coefficient than the MLTSA obtained. A subsequent study [41], utilized the 

same approach with a modified dataset and in result, obtained slightly better accuracy than all the 

methods previously described. It is suggested that the previous studies might be overestimating the 

correlation between the calculated and experimental stability because of the nature of the databases 

that were used. Therefore, it was argued that a fair evaluation can only be achieved by excluding 

different mutations of the same protein and only including proteins that have low sequence similarity in 

the training datasets. Aside from that, this method included evolutionary and predicted structural 

features as well as physical amino acid parameters. As a result, 66% and 74% accuracy was achieved 

in determining the stabilizing and destabilizing mutations, respectively. Also, a correlation of 0.51  

was obtained in comparing the value of the change in free energy upon mutations. The results were 

found to be superior in comparison with modified versions of MuPro and I-Mutant2.0, i.e., predictive 

properties added accordingly, using the same dataset. 

In addition to the studies briefly reviewed above, there are a number of other studies and 

webservers available that utilize machine learning approaches to decipher the stability changes due to 

mutations. Namely, these servers are ESLPred [42], SVMProt [43], svmPRAT [44,45], Automute [46,47], 

FISH [48,49], onD-CRF [50], proSMS, PROTSRF, iPTREE-STAB [51], MuPro, SCide [52,53], 

SCpred [52], MuStab [21,22], PopMuSiC, PMut [54–56], SNAP [57], SNPs and Gene Ontology 
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(SNPs&GO) [58], Parepro [59], CanPredict [60], nsSNPAnalyzer [11,61,62], MutPred [24],  

Hansa [63,64], Mutation Taster [19] and BeAtMuSiC [65]. 

Besides studying the protein stability changes upon mutations, the sequence-based machine 

learning methods are also used for analysis of the effects of mutations on the subcellular localization of 

the corresponding proteins. It is anticipated that proteins function properly if they are in their native 

localization, although some exceptions do exist [66–68]. In about 1% of cases, nsSNPs occur at a 

signaling region that may cause protein subcellular delocalization [66–68]. The change in protein 

subcellular localization due to mutations often disrupts normal cell function by changing protein 

concentrations [66–68]. Therefore, these mutations are closely associated with phenotypes. Several 

computational tools are available to predict the protein subcellular localization as reviewed below. 

Most of the methods that predict protein subcellular location are sequence-based and utilize machine 

learning. The idea is to represent the proteins in a classifiable manner based on sequence and use a set 

of proteins with known subcellular locations to train the computer, and then the method can be used to 

predict subcellular locations of new sequences after the approach is tested with a control dataset. 

The protein subcellular location predictors mainly differ in several aspects including (1) the coverage 

scope, i.e., how many subcellular locations are covered; (2) multiple or single-site cases, i.e., whether 

proteins with multiple subcellular locations are predicted or not; (3) training dataset construction,  

i.e., the amount of sequence identity is tolerated in the database; (4) organism-specific approach,  

i.e., whether the approach is for multiple organisms or organism-specific; (5) representation of the 

protein sequence; and (6) prediction algorithms such as classifiers used in machine learning and testing 

algorithms [67]. In general, the desirable features are the wide coverage, inclusion of multiple sites, 

reduced sequence identity in datasets to exclude the homologous effects, rigorous protein representation 

method and organism-specific approach to increase the accuracy of the application along with solid 

learning and testing algorithms. 

Since the earliest subcellular predictors PSORT [69], SignalP [70,71] and TargetP [72], there has 

been substantial progress in the development of these predictors. One of these, Hum-mPLoc 2.0 [73–75], 

which is a human subcellular localization predictor, shows a substantial advancement over earlier 

versions, the Hum-Ploc and Hum-mPLoc. Briefly, the datasets included only proteins with 25% or less 

pairwise sequence identity, 14 localization classes were covered, and both single and multiple-site 

proteins can be predicted. Their method hybridizes a higher level GO approach [76] and an advanced 

pseudo amino acid composition method [75,77]. The accuracy reached is 63%. This method has 

recently been improved [78] and the server Gene Ontology Annotation SVM (GOASVM), which 

achieved 72% prediction accuracy, was made available. 

In another tool, LocTree2 [79], cellular protein sorting mechanisms are mimicked by utilizing SVM 

with a decision-tree like architecture of localization classes. A similar approach was also used in 

LocTree [80]. Eighteen localization classes are covered for eukaryotic proteins in LocTree2 as 

opposed to six in LocTree. Also, the sequence bias was reduced compared to LocTree by using the 

UniqueProt approach [81]. This corresponds to a threshold of 20% and 25% sequence identity  

for sequences longer than 250 amino acids for the development and testing datasets, respectively.  

The highest accuracy reached is 65% (eukaryotic proteins), showing comparable performance to the 

Subcellular Localization Predictor (CELLO v. 2.5) [82,83] and Wolf PSORT [84] for 52 eukaryotic 

proteins and 201 human proteins; the accuracy is 40% for the latter. 
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Recently, a Naïve Bayesian Classification (NBC) method was used utilized in n-gram-based 

Bayesian Localization Predictor (ngLOC) tool [85], which uses only the sequence information and is 

capable of predicting 11 sites for eukaryotic sequences with a high accuracy rate (89% for animal and 

91% for plant proteins). Its performance was compared to SherLoc2 [86] (predicts 11 sites, requires 

sequence and text-based input together with phylogenetic profiles and Gene Ontology (GO) terms) and 

WegoLoc [87] (predicts 10 sites, uses sequence and weighted GO input). The ngLOC was found to 

outperform SherLoc while showing a comparable performance compared to WegoLoc. Since ngLOC 

only needs sequence information as input, it is applicable to a broad genomic data. However, it was 

noted that the performance of the method strongly depends on the size and the similarity in the datasets 

used [85]. Other predictors include pTARGET [88–90] and YLock [91,92]. A more comprehensive list 

of similar webservers and other methods without webservers are listed in the PSORT website 

(http://www.psort.org). Here, we focused on predictors for eukaryotic proteins and refer the reader to 

other reviews for other organisms and also for more information [66]. In addition, it is worth 

mentioning a recently released database named COMPARTMENTS [93], which is a unified, 

comprehensive database of protein subcellular location with all protein identifiers and GO terms. 

Another area where the machine learning approaches are widely used is the prediction of folding 

rate changes caused by mutations. In one of these studies, the PRORATE webserver [94], a structure-based 

method using machine leaning is implemented to predict the folding rate changes upon mutations.  

In this approach, structural topology parameters with the complex network properties are used as the 

input features for support vector regression, which are then used to calculated the folding rates [94]. 

The method was shown to reach a correlation coefficient of 0.90 with respect to experimental folding 

rates. Other servers for calculating protein folding rates include K-Fold [95], FOLD-RATE [96–98], 

Prediction of long-range Contacts (PROFcon) [99] and Protein Property Prediction and Testing 

Database (PPT-DB) [100]. 

Similarly, machine learning methods can also be used to predict protein aggregation properties.  

For example, the Protein Aggregation Prediction Server—Random Forest (ProA-RF) and ProA-SVM 

servers [101] utilize a machine learning-based method. Out of 560 physico-chemical properties,  

16 were identified as important to protein aggregation, which then were used to make new predictions. 

These 16 features include hydrophilicity of polar amino acid side chains, various descriptions of 

hydrophobicity, accessibility reduction ratio, shape and surface features of globular proteins among 

others. The ProA was shown to outperform several other sequence-based predictors, namely, Waltz [102], 

PAGE [59], FoldAmyloid [103] and ZYGGREGATOR [104]. 

Considering the growth of data size in genomics, machine learning stands out as a substantially 

efficient approach. Besides efficiency, machine learning methods have an advantage over biophysics-based 

approaches due to their ability to learn complex nonlinear functions from mutation information to 

sequence and structure. However, they cannot predict the molecular mechanism of the effect and will fail 

in predicting mutations that are not observed in the training database. Because of that, biophysics-based 

approaches are very much needed. 
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2.2. Statistical Potentials 

The statistical potential energy functions are an alternative to the energy functions delivered from 

first principles, i.e., biophysics-based energy functions. Any structural characteristic in the 3D network 

of interactions in folded structures can be incorporated in the derivation, where these characteristics  

are converted to the corresponding free energies (potential of mean force) through Boltzmann  

statistics [105–107]. Despite their simplicity, these knowledge-based potentials have been used  

with considerable success in mutation-induced stability change predictions and many other 

applications [65,108–111]. Over time, the features that incorporate multi-body effects and collectivity 

have been added to increase the accuracy of predictions [108,112–115]. Although this can be 

considered an advantage over pairwise first principle-based potentials, statistical potentials are 

inheritably approximate because the statistics are collected from unrelated proteins, which implies that 

different structures used all belong to the same thermodynamics ensemble [116]. These approximations 

may result in a database-dependence in the delivered potentials [117]. Different statistical potentials 

such as distance-dependent potentials, distance-independent contact energies, backbone torsional 

potential and solvent accessible potential differ in how the statistics are calculated. Also, depending on 

the level of details included, there are coarse-grained residue level and atomic level potentials [116]. 

Among the most popular statistical potentials is the DFIRE [35], which is a distance-dependent, 

pairwise statistical potential. The DFIRE has been developed in search of a transferable, pairwise 

potential that is built on a physical basis with few or no adjustable parameters. Its database dependence, 

ability to capture 20 amino acid characteristics, solvent exposure dependence, transferability and 

accuracy in different applications were tested. It produced superior results in comparison with two 

other statistical potentials RAPDF [118] and KBP [109]. In addition, it was found to achieve a success 

rate of 70% compared to RosettaDesign [119] and FoldX [33,34]. Its poor performance in a few  

cases [35] can be attributed to the fact that it is a pairwise potential that only depends on distance,  

and also the solvent effects, polar–polar interactions and hydrogen-bonding are taken onto account 

only implicitly. Subsequent improvements include the development of DFIRE2 [36] and dDFIRE [35], 

which are based on orientation dependent interactions by treating each polar atom as a dipole with a 

direction. The dDFIRE and DFIRE2 servers produce a protein conformational free energy score based 

on provided structures. 

In parallel with the DFIRE development, another statistical potential, the Site Directed Mutator 

(SDM) [110] server, was developed to predict the stability changes due to nsSNPs. In the first test 

case, using the same set of input proteins as PoPMuSiC2, the SDM performed comparably, but not 

better than a number of other methods used in comparison when predicting whether a given mutation 

is stabilizing or destabilizing [110]. Other servers based on statistical potentials include Cologne 

University Protein Stability Analysis Tool (CUPSAT) [111] PopMusic2.0 [38], AUTOMUTE [46], 

BeAtMuSiC [65], MuPro[23], MuX-S [120], MuX-48 [23] and Hunter [1,121,122]. 

Aside from the statistical potentials, graph methods can also be used for screening large datasets.  

A recent study [123] used a graph-based method (mCSM server) in which distance patterns between 

atoms were used to represent the structural information of residues and to train the predictive models. 

mCSM was shown to perform significantly better than PoPMuSiC (1.0 and 2.0) [38], Automute [46], 
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CUPSAT [111], Dmutant [113], ERIS [124], I-Mutant2.0 [32] and SDM [110]. Another graph-based 

server is the Bonds on Graphs (BONGO) server [125]. 

2.3. Biophysics-Based Methods 

The statistical/knowledge-based potentials that were reviewed in the previous section can be 

replaced by physics-based empirical potentials (energy components). In this approach, typically,  

a linear interaction energy based formulation [126] has been used to calculate the binding free energy 

or folding free energy differences between the mutants and the wild type. A typical form of the free 

energy change as commonly used recently is as follows [127–130]: 

G = αሺ∆VvdWሻ + βሺ∆Velecሻ + γሺ∆SAሻ + δ (1)

In this formulation, the contributions of van der Waals energies, electrostatic energy (Coulombic 

and polar solvation energy) and nonpolar component of solvation energy (a term based on solvent 

accessible area) are calculated based on wild-type and mutant structures. Note that the general formula 

should include internal energy, an estimation of entropy and other energy terms, but various 

investigations have omitted them based on some assumptions or how they affect the overall 

performance of the method [127–130]. 

The parameters in the linear interaction energy (LIE) equation are optimized by fitting the predicted 

energy changes against large databases of experimentally determined charges of folding or binding 

free energies upon mutations. The free energy is calculated using the thermodynamic cycle shown 

below. Therefore, the overall free energy change is calculated in a path-independent manner (Figure 2). 

Figure 2. Schematic diagram of different states involved in the energy calculations and the 

corresponding equations used to predict the change of the folding free energy upon mutation. 

WT, Wild-type; MT, Mutant; Green: Folded WT protein in vacuum (V, gray); Light Green: 

Folded WT protein in solvent (S, blue); Violet: Folded MT protein in vacuum; Light Violet: 

Folded MT protein in solvent, Unfolded (U) states are represented by black curved lines. 
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Previous studies that used this approach differ in three aspects; how the initial structures for the 

wild-type and mutants are generated, which contributions to the free energy are taken into account and 

how the unfolded state is modeled. In one of these studies [128], an ensemble of initial configurations 

generated by the program Concoord [131] were used as initial structures. Also, the polar and nonpolar 

contributions to solvation energy were calculated through an efficient continuum solvent approach by 

solving the Poisson-Boltzmann equation using the DelPhi package [132] which then was averaged 

over the structural ensembles. Also, the entropy was calculated based on a quasiharmonic approximation 

proposed by Schlitter [133]. The final free energy equation included the electrostatic, van der Waals, 

solvent accessible surface area, and entropy terms with three adjustable parameters and a constant. 

This method named Concoord/Poisson-Boltzmann surface area (CC/PBSA server) produced a correlation 

coefficient of 0.75 for seven proteins and 582 mutants, which was compared to results from FoldX  

(R = 0.73, with five adjustable parameters) and Eris (R = 0.75, with 20 adjustable parameters) [128]. 

More recently, a similar approach [129] also used three adjustable parameters a constant, and in result, 

obtained a correlation coefficient of 0.72 for 10 proteins and 822 mutations. Energy minimized 

structures for wild-type proteins were used and the mutant structures obtained based on these wild-type 

structures only differed at the mutation site. The mutant residue side chain structure was modeled 

through a rotamer search. The unfolded state was represented using a 5-residue segment (mutant 

residue and two neighboring residues on each side) from the folded structures. 

Another recent study [134] used the method named scaled molecular mechanics generalized  

Born method (sMMGB) to calculate folding free energy differences for 1109 mutants (662 of them 

were used to fit the weights of each contribution to the energy). The free energies were calculated 

through the GB method in TINKER software [135] using three different molecular mechanics force 

fields and then averaged. The resulting free energies were scaled with a linear coefficient and a 

constant using the experimental free energy values of 662 mutants. The results were found to be 

comparable to those from Eris, FoldX and I-Mutant. In addition, the unfolded state was modeled with 

3, 5, 7, 9, 11 and 13 residue segments with the mutant residue in the middle and not surprisingly the 

smallest one provided best results. This is because of the fact that this approach assumes the same 

unfolded state for the rest of the protein except the segments considered and this assumption is 

expected to hold better with smaller length segments. 

Most recently, a similar physics-based linear interaction energy approach named modified MM-PBSA 

(molecular mechanics Poisson–Boltzmann Solvent Area) [130] was used to predict the protein stability 

changes upon mutations using large datasets (several thousand mutations). The binding free energy 

was composed of van der Waals energy, polar component of solvation energy and the solvent 

accessible surface area in the binding interface. Effects of using different minimization schemes and 

using different dielectric constants for solvation energy component were also assessed. The predicted 

energies produced the highest correlation constant of 0.69. This method provides fast predictions that 

are applicable to large datasets. 

Other resources that also use similar physics-based energy approach to calculate the stability 

changes upon mutations are the methods and webservers; Eris [124], FOLDEF [136], EGAD [137]  

and FoldX [33,34]. 
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In principle, the statistical mechanics based methods such as molecular dynamics (MD) give the 

most detailed information about the biological systems studied. The all-atom MD simulations produce 

the physical movements of the atoms in a system by numerically solving Newton’s equations of 

motion. As a result, a number of different properties can be obtained from the ensemble of structures 

generated by MD such as H-bond network, flexibility of the protein (based on fluctuations), and radius 

of gyration. In a recent MD study [138], the observed conformational changes in the mutant F28L 

compared to the wild-type structure of RAC1 protein in a ~300 ns long MD simulation. It was shown 

through the RMSD, RMSF and H-bond network change that the mutation caused loss of native 

conformation in the Switch I region, which is associated with its oncogenic transformation. 

Although detailed structural and dynamical information about the proteins can be obtained through 

the MD simulations, the direct calculation of free energy from the standard MD is possible through 

more advanced methods. In principle, the most accurate methods to calculate free energy differences 

include free energy perturbation (FEP) and thermodynamic integration (TI), which use the trajectories 

from MD or Monte Carlo (MC) simulations [139–142]. First, a real or alchemical pathway is defined 

from one state to another. Then, in the TI approach, the free energy change between the two states is 

calculated by integrating over enthalpy changes along the path. On the other hand, in the framework of 

the FEP approach, the free energy difference from state A to B is obtained using Boltzmann sampling 

through the equation; ∆G = −kBTln (e−(EB−EA)/kBT), where kB is the Boltzmann constant and T is temperature. 

Although, the coupling of these methods with several advanced sampling approaches increases the 

efficiency of these methods, they still are not suitable to study large datasets of mutants. Therefore, 

more efficient methods, as summarized in this section, based on approximations to the free energy have 

been developed to predict the protein stability changes that are applicable to large databases of mutants. 

In addition for studying the free energy changes, the biophysics-based methods were used to study 

the protein kinetics such as protein association/dissociation rates, protein folding rates and aggregation 

rates. Apart from being exhaustive, we will briefly review representative studies in each of these aspects, 

starting with the TransComp server [143], which is based on the transient-complex theory [144] for 

predictions of protein–protein and protein-RNA association rate constants. In this approach, a two-step 

reaction mechanism is assumed as shown below (Equation (2)), in which the transient-complex, A*B,  

is first formed and then the functional dimer. The two proteins have a near-native separation and right 

orientation at the transient-complex but yet to form specific short-range interactions of the native complex. 

 
(2)

where, the overall rate constant is ka = kDkc/(k−D + kc). At this point, the method assumes that the 

association is diffusion limited as opposed to conformational rearrangement (kD >> kc and also kc >> k−D), 

therefore once the transient-complex is formed, the reaction proceeds to form the native complex.  

The rate constant for the formation of the transient-complex by random diffusion is called the basal 

rate constant, ka0 and the overall association rate constant is calculated by ka = ka0e
−∆Gel*/kBT where 

∆Gel* is the electrostatic interaction free energy of the transient-complex. The diffusion is efficiently 

modeled through Brownian dynamics, and the electrostatic free energy is calculated through the  

Poisson–Boltzmann equation. Again, this method works for diffusion limited cases that correspond to 

cases where the association rate constant ≥~104 M−1·s−1 (the full range of association rate constants 
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span a range of 1–1010 M−1·s−1). Single point mutations are not expected to make a significant change 

in terms of the random diffusion because the proteins are treated as rigid bodies with no charge for 

efficiency during this process, therefore, the accuracy of the change in rate constants of mutants with 

respect to wild-type structures strongly depends on the electrostatic free energy calculation. 

Other approaches have also emerged from the need for a fast and widely applicable method.  

In general, methods like standard MD or biased MD are either limited by time and/or the complexity 

of the procedures. A structure-based method was developed [145] to predict both dissociation and 

association constants along with equilibrium rate constants. The structural features were determined 

based on a diverse dataset of 62 protein complexes with known experimental rate constants. This method 

uses structural information as only input and linear models were developed for predictions based on 

the structural input using Bayesian information criteria [146]. In result, the method produced 

correlation constants of 0.80, 0.73 and 0.77 for koff, kon and kD, respectively. 

Recently, a method [147] based on hotspots data was developed to predict the change in protein–protein 

dissociation rates upon interface mutations. In general, hotspots are defined as a set of interface 

residues that destabilize the protein changing the binding free energy by 2 kcal/mol or more upon 

being mutated to alanine [148]. In this approach, a set of descriptors are generated through machine 

learning using the data from alanine scans of hotspots and hot regions in relation to changes in 

dissociation rates upon mutation. As a result, a mutation to any residue type can be studied as well as 

multi-point mutations with an accuracy of 0.79 compared to experimental off-rates. 

Single point mutations also affect protein/peptide aggregation kinetics depending on their effects on 

the protein biophysical characteristics. In a simple approach [149], the changes in hydrophobicity 

(∆Ihydr), secondary structure propensity (∆ISS), and charge (∆Ich) were related to the ratio of wild-type 

and mutant protein/peptide aggregation rates (log (vwt/vmt)) with coefficients obtained by fitting to 

experimental values as shown below (Equation (3)) with three adjustable parameters αhydr, αSS, αch: 

log ൬vwt

vmt൰ 	= αhydr∆Ihydr + αSS∆ISS + αch∆Ich (3)

Despite its simplicity, this type of consideration produced a correlation coefficient of 0.8 with 

experimental and predicted aggregation rates for a series of proteins and peptides. 

Another simple approach [150] that utilized a simple mathematical expression with no adjustable 

parameters produced a correlation coefficient of 0.85. The method is based on amino acid properties at 

the mutation site, total charge and β-propensities as shown below (Equation (4)): 
vmt

vwt
= ΦhΦβΦAΦC (4)

where, Φh is the ratio of solvent accessible surface area of mutant residue to wild-type residue or  

vice versa depending on whether the mutation is from apolar to apolar, i.e., no dipole or charge in side 

chain or polar to polar. If the mutation is from polar to apolar or vice versa, then dipoles are used.  

The second factor (Φβ) is the β-propensity of mutant to wild-type. The last term, ΦAΦC, approximates 

the effect of aromatic residues (A) and total charge (C); ΦAΦC = e(ΔA−Δ|C|/2). 

Another method, the TANGO server [151–153], used a statistical mechanics algorithm based on the 

physico-chemical characteristics of secondary structure formation with the assumption that the core 

regions of aggregates are fully buried. The TANGO algorithm basically calculates the partition 
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function of the phase space, where every segment of each peptide is allowed to populate different 

conformational states according to Boltzmann distribution to form aggregates. The energetic penalty 

for complete desolvation of the core regions in aggregates involves contributions from solvation,  

van der Waals, H-bonding, entropy and electrostatics. As a result, solvation propensities of 179 peptides 

were correctly predicted with a correlation coefficient of 0.74. 

Moreover, a method, named Prediction of Amyloid Structure Aggregation (PASTA) [154,155] was 

developed to calculate sequence-specific interaction energies between pairs of protein fragments using 

statistical analyses of the native folds of globular proteins. In parallel to PASTA, the AGGRESCAN [156] 

webserver was developed, which calculates the aggregation propensities based on the predetermined 

aggregation propensities through experimental data of each amino acid in given sequences. 

3. In Vitro Analysis of Pathogenic Mutations 

SNPs encompass a high density distribution of genetic variation in the human genome. Each SNP 

represents a difference in a single nucleotide, including transition, transversion, insertion or deletion 

between individuals of a biological species or alleles in the paired chromosomes. Since 1994 SNPs 

have been proposed as the third generation of genetic markers, as well known as the restriction fragment 

length polymorphism (RFLP) and simple sequence repeats (SSRs) [157,158]. Over 10 million SNPs 

have been found at a frequency of 1–10 in 1000 base pairs through the whole human genome, which 

may affect individual development and reflect human evolution. Immediately following their discovery, 

SNPs attracted the attention of more and more researchers. SNPs contributed to the susceptibility for 

complex diseases based on the statistical genetics [159], and make whole-genome association studies 

more feasible, e.g., Alzheimer’s Disease, Breast Cancer and Coronary Heart Disease [160]. In this 

section, we will review the most common and newly developed detection methods and functional 

screening for SNPs. 

3.1. Single Nucleotide Polymorphisms (SNPs)—Detection Methods and Technology 

During the past decade, new detection methods and technologies with high sensitivity were 

introduced to help detect SNPs more efficiently, such as Next Generation Sequencing (NGS), 

restriction fragment length polymorphism, and random amplified polymorphic DNA. At the same 

time, a prototype of the SNP database was established that compiled the contributions from many 

different research groups. However, most of the traditional technologies were based on the detection  

of gel electrophoresis, which are difficult to perform in high-throughput and multiplex format. The 

development of SNP microarray technology makes SNP detection highly efficient, fully automated, 

and relatively inexpensive. It is even possible to apply SNPs as aids for molecular diagnostic, clinical 

examination, drug design and individual medical diagnosis. To collect and catalog the molecular 

variation within SNPs, researchers also submit their data to a SNP database, an online resource that  

is designed to contain all identified genetic variation. By accessing the database, researchers are not 

only promised to advance the variety of genetically based natural phenomenon, but also investigate 

evolutionary relationships. However, no single method meets the needs of all studies. In the next 

section we will discuss major methods and technologies that are widely used. 
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3.1.1. Traditional Methods for SNP Genotyping 

To scan for new polymorphisms and identify known gene variants in target genome, researchers 

have developed a number of technologies driven by the Human Genome Project. By referencing 

against the completed human genome sequence, DNA sequencing to the target genome is the most 

direct and accurate method. It is used as the gold standard for SNP genotyping. Like others, the DNA 

sequencing technologies are evolved from a single but complicated method to a variety of automated 

methods to meet different requirements. The development of next-generation sequencing technologies 

promoted whole genome SNPs screening at levels not previously possible [161,162]. As it has become 

more widely accessible, usage has extended from basic research into clinical contexts. The challenge is 

not genome sample preparation or the cost, but how to analyze the newly generated data and how to 

handle the rising error rate. The NGS technologies lead sequencing base call accuracy range from 

99.9% to 99.9999% [163]. Even for the lowest error rate, the absolute number of miscalled genome 

variants is still unwieldy. Indeed, post-processing techniques to help reduce the uncertainty in the final 

genotyping variant call including K-Spectrum approach, Suffix Tree/Array approach, Multiple Sequence 

Alignment approach and Hybrid approach have been developed [163]. Careful sample selection and 

preparation may save more time and cost for a given gene based on these two broad areas; known  

SNP identification and unknown SNP exploration. For both global and regional target genomes, DNA 

sequencing followed by various gene amplification approaches are suitable for detecting known and 

unknown SNPs, but more options are available when screening known SNPs in individual genomes, 

especially for disease patients. Two classical methods are discussed below. 

The first SNPs found in a global approach were restriction fragment length polymorphisms  

(RFLP) [164]. As described in Figure 3A, high quality genomic DNA from multiple individuals are 

digested with selected restriction enzymes, then the resulting fragments are separated by gel 

electrophoresis and transferred to nylon filters. A random genomic probe is used for identification of 

variation in the restriction fragment lengths. Only SNPs in the restriction site or in the probe sequence 

can be detected. The introduction of Restriction Fragment Length Polymorphism Analysis of  

PCR-Amplified Fragments, in which the primer was designed with an additional mismatch base 

adjacent to the SNP site did not, unfortunately, improve detection [165]. However, RFLP is a  

simple and low-cost method to detect known SNPs. For example, a T to A transversion in the middle 

position of codon 6 of hemoglobin causes sickle-cell disease. This mutation generates the sequence  

5'-CTGAGG-3' that is recognized and is cut by DdeI [166], and a short fragment can be detected in the 

patient genome. 

Random amplified polymorphic DNA (RAPD) is the first PCR based molecular marker technique 

developed [167] and then applied to SNP detection for various organisms [168,169]. Random and 

variable sequences of genome PCR products are generated by random primer sets and produce a 

pattern of bands resulting from electrophoresis. Presence/absence of certain size product fragments 

indicates individual variety (Figure 3B). Mismatches between the primer and the template resulting in 

the absence, or decreased transcripts of specific bands, indicates the position of a SNP. By designing 

longer specific primers, the product DNA can be sequenced to identify the gene variants. 
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Figure 3. Principles of Restriction Fragment Length Polymorphisms (A) and Random 

amplified polymorphic DNA (B). The resulting fragments from target genome DNA are 

generated (left) and separated by gel electrophoresis followed by appropriate detection 

approach (right). To perform restriction fragment length polymorphisms (RFLP), genome 

DNA from variant individuals are subject to restriction digest (restriction sites are indicated 

by triangle) and random genomic probe (complement sequences are indicated by empty 

rectangle) is used for Southern Blot detection. Bands shown in Southern Blot represent  

(1) wild type; (2) loss of restriction site; (3) gain restriction site; (4) deletion of DNA 

fragment; (5) insertion of DNA fragment, from top to bottom. To perform RAPD, random 

primer sets are used to amplify genome DNA. Each matched primer set (full line arrow) 

generates a specific size product that appears in both wild type (top) and mutant (bottom) 

genome. Meanwhile mismatched primer (dashed line arrow) causes band absent in mutant. 
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Needless to say, these classical methods are laborious and time consuming. High-throughput and 

multiplex analysis is required for whole genome SNP mapping and individual SNP detection.  

SNP microarray technology using a high-density oligonucleotide probe array makes it possible to 

perform whole genome SNPs genotyping. The microarray platform enables microsphere-based 

microarray [170], fiber-optic microarray [171] and glass substrate microarray [172]. The marker density 

among the various technologies ranges from hundreds to millions. In the Lettuce Affymetrix SNP 

Array, for example, 6.4 million markers, spread evenly across whole genome can be simultaneously 

analyzed [173]. Thus, the bottleneck for high-throughput SNPs detection is no longer the microarray 

platform, but the methods and technology of DNA preparation. 

3.1.2. High-Throughput Method for SNP Genotyping 

Allele-Specific Primer Extension (ASPE) is a solution based, sequence specific enzymatic reaction 

technology allowing the analysis of multiple SNPs in a one-step single reaction [174]. To determine 

the target genotype, a pair of allele-specific primers for each mutant or polymorphic site that differ at 

their 3' end, complementing to either of the variant alleles, are immobilized at their 5' end onto the 

array. Extension of the detection primers with labeled dNTPs is then performed in a template-dependent 

manner. To evaluate the result, an appropriate array scan is performed to quantify and compare 

between each primer pair by labeled probe. The signal ratios fall into distinct categories defining the 

genotype at each site. However, the caveat for this method is that microarray is not reusable and the 

extension reaction is technically challenging to perform on the microarray. For these reasons, a variety 

of changes to the original method have been made, one of which, a modified two-phase procedure, is 

described here [175]. Instead of 5' end immobilized on microarray, a capture sequence is used to 

recognize and capture the target onto the solid microsphere-based microarray. The capture phase is 

followed by the genotype determination phase. Taking advantage of this modification allows sequence 

labeled microsphere arrays to be used for new template detection. Most recently, the major 

histocompatibility complex (MHC) class I chain-related gene A (MICA) genotyping was developed by 

ASPE on microarrays [176]. By using 20 control primers, strict and reliable cut-off values were 

applied to select high-quality specific extension primers. Fifty-five allele-specific primers were 

selected as optimal primers, in which forty-four primers could be initially used. On the basis of showing 

the same results as those by nucleotide sequencing, ASPE on microarrays provide high-throughput and 

also high accuracy genotyping for MICA alleles used in population studies, disease-gene associations 

and hematopoietic stem cell transplantation, although overmuch primer designation is still required for 

gene specific optimization. 

Based on the principle of ASPE, a commercialized product called GoldenGate™ [149] allows up to 

106 multiplex for custom SNP microarray by using only 250 ng genomic DNA. For each SNP locus,  

a pair of allele-specific oligonucleotides and one locus-specific oligonucleotide is designed. All three 

oligonucleotides contain sequence complementary to genomic DNA and also universal PCR primer 

sets. The locus-specific oligonucleotide is designed complementary to the downstream sequence  

10–20 bp from the SNP site, to prevent repeat sequence as well as palindromic sequences and increase 

the specificity of the reaction. DNA polymerase is used to fill the gap between the two kinds of 

oligonucleotides. The resulting product is used as a template for amplification by universal PCR 
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primers with various fluorescent labels followed by hybridization and detection as described for ASPE. 

GoldenGateTM provides high throughput genotyping at the multiplex levels that fulfills the requirement 

of custom genotyping, and also the accuracy can achieve 96.64% [177,178]. In a study [179], 

GoldenGate™ offers substantial increases in accuracy for pooling compared to other commercial 

microarray technology, and this advantage greatly extends the usefulness of pooling, making the 

limitation of whole genome studies the available sample size, rather than cost. 

Single Base Extension (SBE) technology is a robust technology that allows for identification of a 

known SNP site and is commonly used for low-density array development and DNA preparation.  

It was invented by Philip Goelet, Michael R. Knapp and Stephen Anderson in 1999 to measure DNA 

methylation levels in the human genome [180]. The method is to design a dual functional DNA 

oligomeric primer in which the 3' end complements to the locus that is to be genotyped and the 5' end 

complements to a sequence tag. In the presence of DNA polymerase and labeled ddNTPs, the 3' end of 

the primer appends a single DNA base and undergoes amplification exponentially. The identity of this 

appended base indicates the genotype of the original template. Since each locus has a distinct tag,  

the genotyping reactions can be performed as highly multiplexed and separated by hybridization to the 

reverse complement sequence tags on the microarray. This method allows researchers to indicate SNPs 

by using universal DNA arrays such as all k-mer arrays, and provides a flexible, high-throughput and 

cost-effective alternative to genotyping assays [181]. Previously, over 100 SNPs were genotyped and 

over 5000 genotypes were obtained by using SBE microarray technology with only an approximate 

1% error rate [182]. Based on a similar principle, SNPstream ultra-high throughput technology was 

developed by using multiplexed PCR (up to 12-plex PCR sets) in conjunction with SBE genotyping 

technology. Single nucleotide appending is manufactured in a 384-well format on a glass-bottomed 

plate [183]. Because two different fluoresceins are labeled for each one PCR primer set, only one 

genotype can be detected in a single reaction, which limits the application of SNP stream in clinical 

practice, and this technology is not readily multiplexed for high-throughput applications. 

TagMan probe arrays are designed based on fluorescence resonance energy transfer (FRET) to 

quantify nucleic acids. It combines the advantages of real-time quantitative PCR and gene expression 

microarray methods, and reduces their limitations. A conventional TagMan probe is designed as a 

double-labeled fluorogenic probe, the donor fluorescent dye is attached to the 5' end and the acceptor 

fluorescent dye is attached to the 3' end. With 5' nuclease activity of DNA polymerase, the donor  

will be cleaved during the extension step of the PCR, which reflects single nucleotide un-pairing by 

evaluation of FRET efficiency. The modified TagMan probe consists of an amino group at the 3' end 

for immobilization, poly(T)20 as a linker arm with a reporter (donor) fluorescent dye, and a dabcyl 

group at 5' end as the quencher (acceptor). The modified TagMan probe is immobilized onto a glass-based 

microarray so that a real-time reporter signal restoration can be detected by cleavage of 5' end 

quencher during the PCR to represent the feasibility of real-time nucleic acid analysis in parallelism 

directly from genomic DNA [184]. Although TagMan probe arrays have advantages in specificity, 

sensitivity and dynamic changes of fluorescence intensity at various PCR cycle numbers for SNP 

analysis, the specificity is significantly impacted as multiplexing increases, because PCR amplification 

and TagMan probe cleavage are performed in a single reaction [185]. 

The Ligation-rolling Circle Amplification (L-RAC) is a flexible, non-gel-based SNP detection 

method. Circularization of padlock probes with T4 ligase or thermostable ligase is used to discriminate 
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point mutations in target DNA sequences specifically and sensitively. A short padlock probe includes 

the sequences at both 3' and 5' ends, which are complementary to downstream and upstream sequences 

of target SNP in a single copy gene. The probe will be circularized by a high fidelity thermostable 

ligase, or else fail in ligation causing by a single base mismatch at the 3' end. The other element of the 

short padlock probe contains a tag sequence and restriction enzyme site. By rolling circle amplification 

and enzyme digestion, the resulting products can be used for hybridization analysis [186]. A scalable 

method [187] based on L-RCA was reported to analyze numerous target sequences in multiplexed 

assays. All 13 sets of padlock probes tested were co-amplified and identified by hybridization to 

standard tag oligonucleotide array for analysis SNP among patients with Wilson’s disease [187]. The 

key feature of L-RCA, unimolecular dual recognition probes, allows lower probe concentrations that 

reduce the risks of amplification artifacts. On the other hand, the design requirements of the probes also 

limit the applications in high-throughput genotyping analysis. 

Molecular Inversion Probe (MIP) is derived from L-RCA, in which the linear oligonucleotides were 

used as padlock probe sets providing sufficient specificity. An additional exonuclease treatment 

removes non-reacted linear probes, and thus avoids cross-talk at the detection step. The MIP is 

designed with seven functional components: two restriction endonuclease enzyme recognition sites 

(e.g., HindIII, BamHI, EcoRI, EcoRV and XbaI); two regions complementary to the target genomic 

DNA, downstream and upstream to the SNP site respectively, at each termini of the probe; two general 

PCR primers common to all probes and one universal tag sequence for each locus. To start the 

procedure, linear probe is circularized after matching to target genomic DNA via an appending base at 

the 3' end, which matches the SNP site. Successfully reacted probes are linearized, released from the 

genomic DNA and amplified using the primer set. The resulting product containing inversed sequence 

is captured with the tag sequence. The multiplexing level ranges from 102 to 106, based on the capture 

platform [188]. However, four parallel reactions are usually required for each SNP variant, and longer 

probes are required for large gaps, which increases the cost required to achieve the expected sensitivity 

and uniformity. 

Affymetrix SNP array technique became popular and is widely used for whole-genome scans of 

polymorphic genetic markers. An algorithm was designed and developed by Affymetrix for 

genotyping SNPs based on the intensities, and the derived genotypes are available for further analysis. 

Prior to the bioinformatics analysis, the whole genome is fractionated with selected restriction enzymes 

and the resulting fragment lengths range from 200 to 2000 bp, followed by ligation of adapters to 

fragments, and a subset of the genome is amplified by single primer amplification reaction and is ready 

for hybridization. Various arrangements and combinations of the restriction endonuclease enzymes 

allows for multiplexing ranging from 104 to 106. A modification on this method, based on using 

multiple arrays at the same time and a model that relates intensities of individual SNPs to each other, 

allows for annotating SNPs that have poor performance, thus extending the application of the 

Affymetrix SNP array [189]. Obviously, by the limiting restriction enzymes and sites, this method is 

incapable of custom application, as SNPs cannot be specified. On the other hand, the high-throughput 

whole-genome coverage compensates for the limitation. 

In summary, microarray technological advances help identify whole genome SNP data from 

multiple sources efficiently, especially for prokaryotes and other genomic sequences of low 

complexity. However, the efficiency and design of the amplification reaction are still limiting the 
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appliance of microarray, when faced with genomes as complex as human genomes. The SNP database 

offers a solution for the overwhelming multiplex of human genomic DNA. By accessing a current SNP 

database, like dbSNP (http://www.ncbi.nlm.nih.gov/SNP/) and JSNP (http://snp.ims.u-tokyo.ac.jp/), 

researchers are able to perform physical mapping, population genetics, investigations into evolutionary 

relationships, not to mention being able to quickly and easily search for variation in the gene of 

interest. These data now allow researchers to investigate the functional SNP involved in human diseases. 

3.2. Functional SNP Screening 

As the studies based on SNPs advanced, researchers began to notice the increasing probability of 

false-positive results generated by traditional statistical methods. To solve this problem, a fusion of 

traditional and newly developed in vitro methods and techniques were introduced to identify functional 

SNPs from overwhelming candidate loci. Here, we will go over the most important methods and 

technological development as listed in Table 1. Then, we follow the historic timeline of an X-linked 

gene and explain methods that contribute to each research milestone (Table 2) and also provide an 

outlook for future directions. 

Table 1. Important methods and technological developments for understanding various 

single nucleotide polymorphism (SNP) loci. 

SNP Loci Subject of Investigation Methods 

Non-coding 
region 

Gene transcription Chromatin immunoprecipitation;  
Electrophoretic Mobility Shift Assay;  
Dual-luciferase assay; Real Time PCR 

mRNA degradation 

Gene translation 

Gene expression 
Immunoblotting; Enzyme-Linked Immunosorbent Assay; 

Immunofluorescence 

Coding region 

Protein structure Crystallization; Nuclear Magnetic Resonance 

Conformation Stability Circular Dichroism Spectroscopy; Intrinsic Fluorescence 

Kinetics Binding assays; Enzyme assays 

Most commonly, SNPs are found in the non-coding regions, or as synonymous SNPs in coding 

regions that do not alter the amino acid sequence of the expressed protein. In both cases, SNPs are 

invisible to the resulting phenotype and play a role only as a genetic marker. SNPs can have effects 

based on their distribution within the elements of the gene, which includes regulatory regions, five prime 

untranslated regions (5' UTRs), introns and exons and three prime untranslated regions (3' UTRs).  

To identify functional SNPs, various methods are applied to specific coding regions. In general,  

the regulatory region is made up of a promoter, an enhancer and other structural domains. The main 

functions of these regions are to control the transcription rate by binding of transcription factors, or 

bringing in a loop-like structure to enhance the transcription factor binding efficiency or repress the 

transcription as needed. SNPs located in this region may change binding affinity between the 

transcription factors and the DNA of the gene. Either strengthening or weakening binding affinity, or 

upregulating or downregulating mRNA transcription can regulate the level of protein expression.  

The 5' UTR, also known as the leader sequence, is directly upstream of the start codon in the mRNA 

and plays an important regulatory role in the translation of a transcript in different ways [190]. The SNPs 
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in this region will in many cases impair the translation process. It is reported [191–193] that microRNAs 

(miRNA) interacting with the 3' UTR of mRNAs also play a role in regulating gene expression. For 

example, a SNP localized in the pri-miRNA or 3' UTR can regulate degradation of mRNA, so it can 

regulate the expression of the gene [193]. Although differing in mechanisms, SNPs localized in 

regulatory region, 5' UTR and 3' UTR, have same effect on the level of the gene expression. Therefore 

similar research methods are used to understand the SNP in that region for a specific gene. 

Table 2. Methods used in MECP2 studies along with the historic timeline of research milestones. 

Year Results Methods Reference 

1992 
MECP2 was firstly identified in human  
X chromosome. MeCP2 belongs to MBD protein 
family, and binds to methylated DNA 

Immunofluorescence;  
Southwestern Assay 

[194] 

1997 MeCP2 acts as a global transcriptional repressor 
In vitro Transcription Assay; 
Western Blot 

[195] 

1999 
Four mutations of MECP2 gene causing Rett 
syndrome were identified 

Conformation-sensitive gel 
electrophoresis; DNA sequencing 

[196] 

2000 
Missense mutations in MBD domain lost 5mC 
binding specific. Interruption of TRD domain lost 
repression to various genes 

Southwestern assay;  
In vitro Transcription Assay 

[197] 

2003 
MeCP2 regulate BDNF gene by binding to  
promoter IV 

EMSA; ChIP; Real-time reverse 
transcription PCR 

[198] 

2003 
MeCP2 compact chromatin via its three  
AT-hook domain 

EMSA; Sedimentation Velocity; 
Electron Microscopy 

[199] 

2005 
MeCP2 bind to four-way junction DNA in a  
structure-specific methyl-CpG-independent manner 

Gel-retardation assays [200] 

2008 Mutational hotspots have effects on MeCP2 stability 
Fluorescence Spectroscopy; 
Circular Dichroism 

[201] 

2012 
MeCP2 bind specifically to 5-hydroxymethylytosine, 
enriched in the target gene promoter 

Substrate Affinity pull-Down; 
Methyl-DNA-IP Sequencing 

[202] 

2013 
Mutational hotspot R306C, proximal to the T308 
Phosphorylation site, abolishes the binding to the 
NCoR complex 

Phosphotryptic-mapping;  
Peptide binding assay; 
Immunofluorescence 

[203] 

2013 
MeCP2 compact chromatin via its three  
AT-hook domain 

Real-time reverse transcription 
PCR; Immunofluorescence 

[204] 

Binding affinity between regulatory factors and gene elements is usually investigated to understand 

regulation of the gene expression. Electrophoretic mobility shift assay (EMSA) is a common affinity 

electrophoresis technique to investigate DNA–protein or RNA–protein interactions. The rate of 

immigration reduction in the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 

represents a protein or protein complex that is capable of binding a given DNA or RNA sequence, and 

stoichiometry between binding protein and DNA or RNA. It is widely used in determination and 

quantification of interaction between ribosomal transcription factors and promoter sequences with 

SNPs or in some cases between translation factors and 5' UTR. 
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To take into account epigenetic factors, chromatin immunoprecipitation (ChIP) was developed to 

reveal the binding protein within a specific genomic region or the associated genomic regions to a 

specific protein in the cell. After shearing the DNA or RNA into fragments, the protein-DNA or 

protein-RNA complexes are isolated and concentrated by using appropriate antibodies or complementary 

nucleotide sequences from cellular lysates. In vivo, gene activation or inactivation is regulated by 

epigenetic mechanisms, such as genomic DNA methylation, histone modification and post-translational 

modification of transcription factors. As a cell-base assay, ChIP retains the epigenetic status of the 

native state within a cell. Sequencing or mass spectrometry is used to analyze purified products. 

Complementing the more specific EMSA, ChIP is applied to whole genome analysis by  

combination with microarray technology or NGS, and provides an option to perform high-throughput 

or de novo analysis. 

The Dual-luciferase Reporter Assay System (DLR) [205] is used to measure two luciferase 

activities, Renilla and firefly luciferase, in a single protein extract. It is a robust, simple, reproducible 

and highly sensitive method for examining gene expression in bacterial, yeast [206] and mammalian 

cells [205]. The gene encoding firefly luciferase is fused to the test promoter and integrated into the 

genome to be examined. Meanwhile the Renilla luciferase is used as a control for normalizing the 

assay by fusing to a constitutive promoter and also integrated into genome. The ratio of the luciferase 

activities represents the level of gene expression. Since both luciferase activities have a linear range 

covering at least five orders of magnitude, the use of DLR for rapid examination and quantification of 

gene expression has gained increased popularity. The only limitation for DLR is the appropriate 

vectors containing the luciferase reporters for different systems. However, with more organisms being 

adapted for the DLR assay, researchers have recently constructed a 3' UTR and specific miRNA 

fragment downstream of the luciferase gene to study functional SNPs located in 3' UTR [207]. 

Humans are a sexually dimorphic species. To ensure equivalent gene expression levels from the  

X-chromosome, dosage is compensated by X-chromosome inactivation [208]. For autosomes,  

the epigenetic phenomenon such as the expression of a certain gene is inherited in a parent-of-origin 

specific manner is called gene imprinting [209]. Based on allele variant expression in heterozygotes, 

researchers are able to examine the effect of a single SNP on gene expression [210]. The commonly 

used methods have been discussed in traditional SNP detection methods above.  

In vitro functional studies of the genes having nsSNPs are important to gain better understanding of 

the molecular mechanism involved in normal and mutant gene function. Most in vitro protein studies 

are started from isolated proteins from a number of sources, for example expression abundant tissue,  

in vitro expression or recombinant expression, followed by an examination of the protein carrying out 

its functions in a controlled environment. Here we focus on specific applications for the study of 

nsSNPs. Three major profiles of certain proteins are considered and investigated by in vitro methods; 

they are gene expression, protein structure and enzyme kinetics. 

Protein immunization is the most commonly used technology to detect the loci, expression level, 

truncation and post-translational modification of proteins of interest. Immune responses can be elicited 

against full-length proteins or synthesized peptides with either the wild-type sequence or containing  

a nsSNP. The specific binding between an antigen and antibody give an exclusive antibody-antigen 

complex. By conjugating fluorescent, luminescent, radioactive or enzymatic labels, researchers are 

able to evaluate immune reaction in different ways. For example, immunofluorescence, immunoblotting 
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and enzyme-linked immunosorbent assays are generally used. Since a monoclonal antibody is made 

from identical immune cells derived from one unique parent cell, in contrast to polyclonal antibodies, 

it has the monovalent affinity to recognize even a single amino acid mutation [211]. Compared to the 

other methods mentioned above, immunoassays provide a visualization method able to specify the 

size, locus and expression level of target proteins. 

Protein structure and conformational studies are used for determining the secondary to quaternary 

protein structures and even protein-substrate complexes. X-ray crystallography can obtain the mean 

positions of atoms in a crystal from electron density, which gives the most abundant information for 

protein structure followed by computational analysis. However, a protein placed in a non-physiological 

environment can occasionally lead to aberrant conformational changes. Also, nsSNPs may change the 

structure of the protein and the mutant may fail to crystallize. To circumvent these problems, researchers 

have used nuclear magnetic resonance spectroscopy (NMR) [212] or circular dichroism (CD)  

spectrum [211,213]. These methods measure unstained or fixed samples in their native environment in 

real time. The signal from the CD spectrum reflects the protein conformation, particularly secondary 

protein structure. The principle is based on three hypotheses: (1) protein structure can be divided into 

homogeneous units with defined bond rotations parameters; (2) the contributions of different types of 

secondary structures are additive; (3) the contribution of bond rotations is limited to rotatory dispersion 

of the protein. A site-direct mutation caused by an nsSNP can alter both the secondary structural 

element and the bond rotations and can be evaluated by CD spectrum, by comparison with fully 

functional wild-type protein. 

Exon sequences typically have lower frequency of nsSNPs as compared with introns, because any 

changes of function in the resulting protein that lead to decreased fecundity or sterility are heavily 

selected against. However, a number of X-linked diseases are not caused by hereditary, but rather, 

spontaneous rare mutations in exon region, leading to disease [214]. These mutations can cause 

missense, nonsense or frame-shift mutations. In most cases, frame-shift mutations generate truncated 

proteins just like nonsense mutations. As mentioned, high frequency of partially translated proteins in 

patients usually indicates a functional depletion of the absent domain [197]. It is indeed a good starter 

to understand the pathology of a specific gene to a disease, however, additional information is needed to 

link a specific effect to a domain if more than one structural domain is deleted. 

For in vitro studies nsSNPs are selected based on several criteria. First, nsSNPs appearing in high 

frequencies in patients; second, an nsSNP site which is conserved and located in a homologous region;  

third, the resulting mutant is potentially important to the biochemical functions or structural fold. 

Generally, a nsSNP may not affect the structural the entire domain, instead, it is more likely to cause 

local structural changes. 

A CD spectrum can provide information of secondary structural changes. It is usually used in 

combination with temperature jump techniques for monitoring protein denaturation dynamics [201]. 

The intrinsic protein fluorescence measurement reflects conformational changes associated with aromatic 

amino acids, which is an effective tool for steady-state kinetics or binding kinetics analysis [215]. 

These profiles are represented by thermodynamic or chemical parameters to characterize protein 

stabilization and protein-substrate interactions. Data generated from these analyses also provide the 

basis for in silico modeling and dynamic simulation as described in Section 1. To evaluate the effects 

of nsSNPs in vitro, results from these analyses are determined by plotting the data or fitting the data 
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according to chemical and kinetic equations. For example, the Michaelis–Menten equation or the Hill 

equation is used to determine the equilibrium dissociation constant [216] and compare pathologic 

mutations with wild-type protein. A dysfunctional mutation in most cases leads to local structural 

instability [201] or decreased binding affinity [197], and in other cases some mutations result in 

increased binding affinity to substrate [217] or alternative substrate binding [218], which cause 

decreased enzyme turnover rate or competitive inhibition, respectively. 

Not all the nsSNPs alter the structural stability or binding affinity. For example, arginine finger is  

a conserved motif in helicases, and has postulated to play a role in adenosine triphosphate (ATP) 

hydrolysis and energy coupling. The defect in ATP hydrolysis activity can be measured either by 

chemical staining method or P32 radiation technique. Thus, most of mutations of conserved arginine 

affect ATP hydrolysis and some of them appear to be crucial for energy coupling, but none of them 

affect ATP and DNA-binding abilities [219]. Another exception is that the nsSNPs influence functional 

post-translational modification of wild-type protein by changing target sites or key flanking residues. 

For example, phosphorylation is one of the most common post-translational modifications, and turns 

many protein enzymes on and off. Phosphotryptic mapping is usually used to identify inducible 

phosphorylation sites that may regulate protein function by comparing phosphotryptic maps of protein 

phosphorylated in vitro by specific kinase with phosphotryptic maps obtained from original tissue. 

Once a kinase is identified, the wild-type protein, the wild-type protein treated with kinase and 

phosphorylation sites of mutant protein can be examined to reveal the role of post-translational 

regulation [220,221]. 

Overall, a protein-substrate binding assay or protein kinetics assay is also frequently used depending 

on the nature of the proteins. Various detection methods are available to visualize protein reactions,  

such as intrinsic protein fluorescence, immunolabeling, dye staining, and radiation. By obtaining 

enough evidence to understand the molecular pathogenesis, an in vitro functional rescue is supposed  

to be considered, since such disease caused by functional exon SNP is most likely to be targeted 

compared to SNP located in another region. Testing of potential pharmacological agents can lend 

insight into the malfunctioning protein and will determine if the protein can regain its wild-type 

activity in vitro leading to rescue of cell function [222]. 

4. In Vivo Analysis of Pathogenic Mutations 

4.1. Zebrafish as a Model for Studying the Downstream Effects of Non-Synonymous Single Nucleotide 

Polymorphism (nsSNPs) 

The canonical human disease model in fish is the zebrafish (Danio rerio). Practically all zebrafish 

genes have human equivalents with conserved molecular functions [223]. The many advantages of the 

zebrafish embryo and adult fish have been well documented [223–226]. SNPs have been employed in 

identifying the causative mutation of multiple diseases, through forward genetic screens, involving 

exposure of a male founder fish to a mutagenic compound, ENU (N-ethyl-N-nitrosourea), followed by 

screening for offspring with distinctive phenotypes; morphological, behavioral and molecular. Known 

SNPs that are found to associate with the phenotype using linkage studies have enabled positional 

mapping and genome wide association studies to identify the causative mutations [227]. Conversely, 
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reverse genetics has mostly involved knockdown or knockout of genes of interest, followed by studies 

of the mechanism and resulting phenotype. The next step in this evolution is to systematically 

mutagenize single nsSNPs within a gene, and study the molecular mechanism and resulting phenotype. 

The benefits of using zebrafish are several fold; multiple lines of fish can be created simultaneously, 

fish take up little room and are easy to house, there is a relatively short three month generation time for 

zebrafish—complemented by the number of embryos that can be produced by the founder fish—the 

large amounts of material available will expedite simultaneous morphological, behavioral, and 

molecular genetic analysis. 

The zebrafish provides a uniquely accessible organism with regard to genetic manipulation, as gene 

editing tools have sufficiently progressed to efficiently and reliably mutate single base pairs in vivo 

(discussed below). The heritably of such a mutagenesis strategy allows for the creation of lines of fish, 

each carrying a target nsSNP, which can be crossbred to fish carrying markers that will assist in 

analysis. However, this approach has some caveats. The goal is to mutagenize a single base pair  

in vivo, rather than produce a knockout or knockin of an entire gene. This means that the numerous 

conditional transgenic techniques that are available in zebrafish to spatially and temporally control 

expression [228], may not be relevant. 

Additionally, in case of X-linked genes, the effect is gender specific and it is not known how long 

males will survive. Moreover, the phenotype in heterozygous females is determined in part by  

X-inactivation, an apparently random process. It is likely that nsSNPs in zebrafish embryos may exhibit 

the same phenotypic outcomes. It remains to be determined if hemizygous females are sufficiently 

healthy to breed. Thus, one may have to resort to repeated mutagenesis for each batch of embryos, to 

produce sufficient material required for analysis. In this case, rather than breed mutagenized lines to 

zebrafish carrying reporter genes, one may need to perform the mutagenesis in embryos originating 

from several reporter gene lines. One of the great strengths of the zebrafish model is its adaptability in 

meeting new challenges. Developing a successful strategy for gene editing will allow to determine the 

downstream effects of nsSNPs, within the whole organism, individual tissues and down to the single 

cell level. 

4.2. Gene Editing to Introduce Individual nsSNPs within the Genome 

Several gene editing tools are now readily available; zinc-finger nucleases (ZFNs) [227], transcription 

activator-like effector nucleases (TALENs) [229–232] and the RNA guided CRISPR (clustered, 

regularly interspaced, short palindromic repeats)-Cas9 nuclease (CRISPR-associated enzyme)  

system [183,232,233]. These tools have become invaluable in manipulation of DNA in cell lines  

and in vivo, for example, in transiently transfected zebrafish embryos, or to establish heritable 

zebrafish lines. 

Recently, two research groups independently capitalized on the CRISPR-Cas9 system to perform 

genome scale knockouts of almost every gene in human cells [184,234]. Thus, a lentiviral expression 

vector with sgRNA (single-guide RNA), Cas9 and a puromycin selection marker, called lentiCRISPR [234] 

were developed. With 3–4 sgRNA’s per gene, a library with over 18,000 genes was developed, 

targeting 5' constitutive exons. It is, therefore, easy to appreciate why the CRISPR-Cas9 system has 

quickly become the method of choice, when such high throughput screens are possible. Moreover, the 
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system requires on just two components. Firstly, CRISPR normally functions as a type of acquired 

immune defense system that protects eubacteria and archaea cells from viruses, plasmids and  

phages [235,236]. CRISPR is an RNA molecule that acts as a guide RNA (gRNA), and when directly 

introduced into cells together with the second component, the Cas9 enzyme, which can induce double 

stranded cuts in DNA, effectively edits the DNA. Cas9 is a nuclease derived from a species of 

streptococcal bacteria and is recruited to the target DNA by the gRNA, where it cuts the DNA inside 

the gene of interest [237]. 

Several design elements should be incorporated into the system: the gRNA should be  

~80 nucleotides long, consisting of two regions: 20 nucleotides at the 5' end of the gRNA that are 

complementary to and bind the target DNA, the remaining nucleotides are designed to form a hairpin 

structure with variable length, depending on the plasmid selected to expresses the gRNA. The role of 

the hairpin is unclear, but may help to orient the gRNA for DNA binding and aid in forming a complex 

with Cas9. Additionally, the 5' end of the gRNA must bind to DNA with the sequence –NCC, i.e., any base 

pair, indicated by N, immediately adjacent to two cytosine residues. The gRNAs appear to bind  

most readily to DNA where the opposite strand contains a –NGG sequence, also known as PAM 

(protospacer adjacent motif). 

Multiple versions of Cas9 containing plasmids are available from the plasmid repository at Addgene 

(http://www.addgene.org/CRISPR) and several software programs are available to identify 20-base-pair 

regions in a DNA region of interest, including Massachusetts Institude of Tecnology’s CRISPR Design 

(http://www.crispr.mit.edu), the German Cancer Research Center E-CRISP (http://www.e-crisp.org/ 

E-CRISP/designcrispr.html) and the ZiFiT targeter (zifit.partners.org/ZiFiT). The first two also scan 

the whole genome to identify sequence regions of gRNA which might bind to similar, off-target sequences. 

Once the gRNA and Cas9 enzyme are expressed in cells, the complex does the rest and cuts both 

strands of the target DNA. The efficiency of gene editing needs to be tested, in addition to sequencing 

the DNA, to directly assess if the intended DNA was correctly targeted. Strategies for reducing off-target 

effects include transfecting the lowest amounts of Cas9 and gRNA expression plasmids that are 

necessary for on-target activity, or using a mutant version of Cas9, called Cas9 nickase, which cuts 

only the strand of DNA that binds the gRNA. Expressing Cas9 nickase in cells with a pair of gRNAs 

that bind different strands of the same DNA target results in double stranded nicks whose repair then 

leads to mutations. 

For certain applications ZFNs, which recognize longer stretches of target DNA and TALENs, 

which are fusions of a nuclease enzyme and DNA-binding domain protein, may provide alternative 

approaches [238,239]. If using the ZFN and TALEN systems, generally about a dozen different 

TALENs and many more ZFNs have to be tested, with DNA-binding domains that recognize different 

target sites, to find ones that work [240]. Moreover, the TALEN complex is less reliable at avoiding 

off-target sites. A much older method called site-directed mutagenesis, available as a PCR kit has 

several other considerations [241]. The PCR reaction does not maintain the original methylation of the 

DNA of interest, mixed template and reaction products have to be separated, the edited DNA requires 

the use of a retroviral vector for insertion into the genome and the insertion sites are difficult to 

control. Moreover, in very large genes the PCR method may be unsuitable due to the necessity for 

targeted primers, which work best at the 5' and 3' ends of the DNA. Manipulating sites outside of the  
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5' and 3' ends might mean having to perform PCR on a fragment of the DNA and then undertaking the 

extra step of DNA splicing in order to achieve the correct construct. 

5. Case Study: KDM5C and MECP2 Genes 

Since the first discovery of MECP2 [194] and KDM5C [242] as X-linked genes that contribute to 

Rett Syndrome and Mental Retardation, X-linked, Syndromic, Claes-Jensen type (MRXSCJ) [196,243,244], 

further disease-causing mutations have been identified [245,246]. However, the progress of functional 

studies on both gene products is quite different, because of different availability of corresponding 

protein. For KDM5C, only limited functional studies on domains from homologue genes are available, 

and most studies are still confined to genetics. On the other hand, even before the Zoghbi group found 

the mutations in MECP2 causing Rett syndrome [196], the ability to bind specifically to methylated 

DNA and the transcription repression capabilities of MECP2 were well understood [172,195,247,248], 

which provided a good basis for further investigating the effects of nsSNPs. Zoghbi’s group reported 

three missense mutations in the region encoding the highly conserved methyl-binding domain (MBD),  

and a frame-shift as well as a nonsense mutation that interrupts the transcription repression domain 

(TRD), by directly sequencing PCR product containing the coding exons and portions of the 3' UTR 

from patients. To date, IRSF, the MECP2 Gene Variation Database (http://mecp2.chw.edu.au/) has 

3271 mutations listed, which have been identified from Rett syndrome patients. The mutations are 

categorized into two main types, missense in the MBD and interrupted in the TRD shown in Figure 4A, 

with 43% being other mutations and 1% silent. The frequency for mutations encoded by the exon are 

shown in Figure 4B. Based on these data, biochemists are able to perform functional studies to reveal 

the effect of nsSNPs resulting in Rett syndrome. 

The first study on the functional consequences of human MECP2 mutations causing Rett syndrome 

was reported only one year after the SNP screening results [197]. Eight of the most frequent mutations 

found in patients are termed mutational “hotspots” (Figure 4B). Eleven mutations, including four missense 

mutations R106W, R133C, F155S, T158M and seven nonsense mutations L138X, R168X,  

E235X, R255X, R270X, V288X, R294X, were investigated for their effects on protein stability,  

methyl-CpG-binding and transcriptional repression capabilities [172,195,247,248]. Mutations found 

within the MBD abolished methylation specific binding to the DNA substrate and target genes lost the 

repression imposed by MeCP2 protein. The mutations causing the interruption of the TRD domain led 

to a failure to recruit the transcriptional repressors Sin3A and HDAC1 [249]. Further studies of the 

Rett syndrome mutants indicated that the MeCP2 protein can 1) bind tightly to biochemically defined  

12-mer nucleosome arrays [199]; (2) bind to four-way junction DNA in a structure-specific  

methyl-CpG-independent manner [200]; (3) compact chromatin via its three AT-hook domain [204]; 

and (4) bind specifically to 5-hydroxymethylytosine, enriched in the target gene promoter [202]. 

Biophysicists have performed structural studies using CD spectrum, inner fluorescence [201] and 

crystallography [144] and these data indicate that the Rett syndrome mutants have a unique role in 

DNA binding causing reduced thermal stability and an increased binding to methyl-CpG DNA. Through 

different methodologies used in these studies, one has a better understanding of the molecular 

mechanisms leading to Rett syndrome. However, the relationship between the nsSNPs in MeCP2 

protein and pathogenesis are still unknown. 
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Figure 4. (A) Percentage distribution of different Rett syndrome mutants. Three major types 

of sequence changes in specific domain are shown in the pie chart. Missense mutants in the 

Methyl-CpG-binding domain (MBD) and nonsense mutations that interrupt the transcription 

repression domain (TRD) are the major types. Synonymous mutations in exons and all 

mutants in the 5' UTR, the 3' UTR and introns are termed Silent; (B) The location and 

frequency of MECP2 Rett syndrome mutants. The most frequent 10 mutants are labeled. 

R106W, arginine to tryptophan point mutation at residue 106; R133C, arginine to cysteine 

point mutation at residue 133; T158M, threonine to methionine point mutation at residue 

158; R168X, arginine to stop codon at residue 168; R255X, arginine to stop codon at 

residue 255; R294X, arginine to stop codon at residue 294; R306C, arginine to cysteine 

point mutation at residue 306; R9fs, frame-shift from arginine at residue 9; frame-shift 

from lysine at residue 386. The first eight mutants are termed mutational “hotspots”. Data from 

the IRSF MECP2 Gene Variation Database. 

 



Int. J. Mol. Sci. 2014, 15 9696 

 

A breakthrough was made by Greenberg’s group in 2003 [198], where they used an EMSA to show 

that the MeCP2 protein bound to the BDNF gene promoter III (later corrected to promoter IV) is a 

potent modulator in many aspects of neuronal development, and regulates the transcription of the 

BNDF gene. This process is further regulated by KCl induced membrane depolarization that triggers 

calcium-dependent phosphorylation of MeCP2 protein. Recent studies performed by Chromatin 

Immunoprecipitation followed by ChIP-Seq have identified even more downstream targets with altered 

gene expression in MECP2 mutant mice [250,251]. These results demonstrate that MECP2 has 

multiple roles in brain development and point the way for further pathogenesis studies [130]. 

Recently, four new activity-dependent phosphorylation sites (S86, S274, T308 and S421) were 

revealed, that might regulate the MECP2 function using phosphotryptic-mapping techniques [221]. 

This study identified phosphorylation of T308 as an activity sensor that controls the interaction of 

MeCP2 protein with nuclear receptor co-repressor (NCoR/SMRT) complex. At the same time, it was 

also found that the mutational hotspot R306C, proximal to the T308 phosphorylation site, abolishes the 

binding to the NCoR complex [203]. These two studies implied that the two mutations have similar 

contributions to the neurological deficits in Rett Syndrome. Methods used in MECP2 studies along 

with the historic timeline of research milestone are listed below (Table 2). 

Using the above methodology, an in silico analysis of the nsSNP of interest was performed as a 

proof of principle. Several web servers were utilized to predict in silico the stability changes upon 

mutations; D87G, and D402Y in the KDM5C protein, and the mutations; D97Y, L100R, R106W, 

R111G, Y120P, Q128P, E137G, P152R and F155S in the MeCP2 protein (Table 3). The structure of 

human KDM5C, which is a large protein with 1560 residues, is not available, thus, the structure was 

built through homology modeling using JACKAL [252,253]. First, sequence alignments were done 

using Psi Basic Local Alignment Search Tool (PSI-BLAST) in National Center for Biotechnology 

Information (NCBI) to identify conserved regions and identical structures. The D87G mutation in 

KDM5C is in an AT-rich interaction domain (ARID) and the sequence of this domain and the protein 

with PDB ID 2JRZ were found to have a 98% identity with no gaps in sequences. Therefore, this 

structure was used as a template in homology modeling. The region containing the D402Y mutation 

was modeled using two different structures. One of them is the protein with PDB ID 3DXT, which is 

38% identical with 11% gaps, and the other one is the protein with PDB ID 4IGO, which is 54% 

identical with 6% gaps. Since there are no experimental results to compare to, both of these structures 

were independently utilized as a measure of consistency in results. 

Table 3. Webservers used in the case study along with short description of their functionality. 

Webservers Input Method Summary 

MuStab Sequence Support vector machine (SVM), trained on various amino acid features 

dFIRE/DFIRE2 Structure Statistical potentials with orientation-dependent interactions 

FoldX Structure Potential with weighted sum of empirical contributions to free energy 

Eris Structure 
Molecular mechanics type potential with weighted sum of 
contributions to free energy 

Two structures were used for MeCP2 protein modeling, Protein Data Bank (PBD) ID 1QK9  

(the human MECP2 structure) and PBD ID 3C2I, which has 94% identity with no gaps in the 
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sequence. After building the structures using JACKAL, the termini were patched and hydrogen atoms 

were added using Visual Molecular Dynamics (VMD) [254]. The wild-type structures were (1) relaxed 

for 500 steps with backbone atoms restrained with 5 kcal/mol-Å force constant; (2) the proteins were 

energy minimized for another 35,000 steps with no restrains ensuring full convergence; (3) the mutant 

proteins were built using these structures in JACKAL; and (4) the mutants were minimized for  

500 steps using Nanoscale Moleclar Dynamics (NAMD) [255,256]. 

After that, the MuStab [21,22] server was utilized, which uses a sequence-feature based prediction 

with support vector machines. The parts of the sequences used to prepare the wild-type structures were 

fed into the server together with the pH and temperature information from experimental structures.  

The server identified the mutants as stabilizing or destabilizing with corresponding confidence values 

of the predictions. Then, the wild-type and mutant structures described above were used in the  

(dipolar DFIRE (dDFIRE) and DFIRE2 [35,36] server, which uses a structure-based statistical 

potential, and subsequently the dDFIRE and DFIRE2 energies were obtained for each structure. The 

stability changes upon mutations were calculated by subtracting the wild-type energies from mutant 

energies. Finally, the Eris [124] and FoldX [33,34] servers were utilized, which make structure-based 

predictions of stability changes upon mutation based on first-principles. The same wild-type structures 

were used in these servers and the servers perform the mutations and use their mutant structures to 

calculate the ∆∆G upon the mutations. In summary, except for the MuStab servers, the other three 

servers produced positive or negative ∆∆G values indicating destabilizing or stabilizing mutations. 

In summary, all four servers produced consistent results in general for nine mutants out of 11 as 

summarized in Table 4. The consistency of the results was assured in three aspects. First, the results 

were collected from several servers, which utilize different methodologies; Second, different structures 

were used for the same regions of the proteins where applicable and the results from those were 

collected independently and compared; Third, the Eris and FoldX results were collected from a reverse 

path. For example for the D87G mutant of KDM5C protein, the mutant structure was utilized and the 

servers were used to mutate it back to the wild-type to determine whether an opposite effect was 

obtained or not. An opposite effect was seen for this mutant from both Eris and FoldX. This was 

specifically done to improve the initially inconsistent results of the two MECP2 mutants (D97Y and 

L100R) shown in Table 2. In summary, two KDM5C mutations, D87G and D402Y, were successfully 

identified as destabilizing and stabilizing, respectively. Also, eight MECP2 mutants, namely L100R, 

R106W, R111G, Y120P, Q128P, E137G, P152R and F155S were successfully identified as destabilizing. 

However, in-depth studies are being performed to assess the accuracy of different web servers. 

MECP2 and KDM5C have multiple roles in embryonic development and proper organism function. 

GO annotation indicates that MECP2 is involved in 42 biological processes (UniProtKB/Swiss-Prot: 

P51608), whereas five have been identified for KDM5C (UniProtKB/Swiss-Prot: P41229). This is an 

indication that the role of KDM5C is more restricted than for MECP2. Large numbers of zebrafish 

embryos can simultaneously undergo gene editing and then they can be non-invasively screened for 

morphology and behavior during early development. Analyzing the gross morphology and behavioral 

phenotype of mutagenized embryos goes hand in hand and changes in behavior are likely reflected in 

morphological abnormalities. In addition to standard gross morphological observations, hundreds of strains 

of zebrafish are now available with fluorescent markers driven by promoters for practically every cell type, 

allowing for direct, real time analysis of fluorescence in living embryos (http://www.zfin.org) [257]. 
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Performing gene editing in transgenic reporter lines selected for neuronal and other cell types, can be 

scaled as needed. 

Table 4. Stability changes upon mutations. Stabilizing mutations are highlighted in blue, 

and the rest are identified as destabilizing. 

MECP2  

Mutants 

∆∆G (kcal/mol) Effect, Confidence 

dDFIRE  

(1qk9) 

DFIRE2  

(1qk9) 

dDFIRE 

(3c2i) 

DFIRE 

(3c2i) 

Eris  

(1qk9) 

Eris 

(3c2i) 

FoldX 

(1qk9) 

FoldX  

(3c2i) 
MuStab 

D97Y −1.76 −2.36 −0.73 −1.36 >10 −2.08 5.28 1.28 Stabilizing, 26% 

L100R 5.95 3.89 3.66 2.10 2.68 3.93 2.3 2.13 Destabilizing, 90% 

R106W −1.47 −2.24 −0.63 −2.13 >10 9.71 10.9 4.12 Stabilizing, 27% 

R111G 1.73 1.01 2.15 1.51 3.22 8.57 1.56 1.71 Destabilizing, 94% 

Y120P 2.69 2.30 3.66 2.45 −8.67 7.48 0.53 1.95 Destabilizing, 90% 

Q128P 1.59 0.52 0.65 0.57 >10 8 1.34 0.12 Destabilizing, 92% 

E137G 2.68 1.19 3.13 1.63 3.86 5.41 2.22 2.29 Destabilizing, 88% 

P152R 7.54 3.74 2.05 1.13 >10 0.44 2.28 1.95 Destabilizing, 81% 

F155S 5.16 4.38 6.62 5.17 6.8 5.04 5.73 4.03 Destabilizing, 93% 

KDM5C  

Mutant 
dDFIRE (2jrz) DFIRE2 (2jrz) Eris (2jrz) FoldX (2jrz) MuStab 

D87G 0.34 0.994 4.48 0.53 Destabilizing, 94% 

KDM5C  

Mutant 

dDFIRE  

(3dxt) 

DFIRE2  

(3dxt) 

dDFIRE 

(4igo) 

DFIRE2 

(4igo) 

Eris  

(3dxt) 

Eris 

(4igo) 

FoldX 

(3dxt) 

FoldX  

(4igo) 
MuStab 

D402Y −0.27 −1.379 0.19 −0.741 −4.14 −1.49 −1.64 −0.6 Stabilizing, 27% 

As one study indicated that a point mutant of MECP2 affects swimming behavior in zebrafish [258], 

assessing the highly stereotyped motor behaviors of developing embryos is targeted [259]. Within the 

first 24 h, embryos coil rhythmically within the chorion, as slow-muscle begins to function—this behavior 

can be captured using video surveillance of embryos for rapid review. Following escape, or removal 

from the chorion at two days post fertilization (2 dpf), embryos will display an escape response to light 

tactile stimulation. Thereafter, by 3 dpf the fish can swim using voluntary muscles. Velocity and turn 

frequency are two measurements that can be assessed using Noldus DanioVision or ViewPoint 

Zebrafish, two software programs commercially available. Indeed, there is a plethora of imaging 

strategies, including high throughput automated systems driven by numerous available software 

applications that can be employed to analyze behavioral phenotypes [259]. 

As MECP2, for example, results in several separate phenotypes we expect that these analyses will 

identify characteristic spatial and temporal differences for each phenotype. Additionally, by using 

video tracking of development and fluorescent reporter lines, subtle differences for individual nsSNPs 

within a phenotype can be identified. Rett syndrome has at least three subtypes, but the spatial and 

temporal molecular mechanisms are virtually unknown. The subtle, or possibly not so subtle, differences 

in downstream effects leading to the clinically observed phenotypes are essentially a mystery. The data 

from these preliminary, non-invasive observations can provide insight into the mechanism and 

progression of disease phenotypes caused by individual nsSNPs. Additionally, critical developmental 
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time points, such as the onset of fluorescent reporter gene changes can be identified and inform 

molecular genetic analysis that can be performed simultaneously. 

One of the major objectives in the field is to understand the disease mechanism. To achieve this, the 

spatial and temporal gene expression changes, which are expected in embryos when pathogenic 

nsSNPs are present, need characterizing. Indeed, even the normal downstream interactions of MECP2 

and KDM5C are not yet fully established. Molecular genetic analysis can include genomics, 

transcriptomics (gene expression arrays), and proteomics. The purpose is to determine the omic 

signature for every nsSNP within a region of interest, whole gene, or through high throughput 

methods, the whole genome. Using genomics the core and differential-omic signatures of each nsSNP 

within genes such as MECP2 and KDM5C can be determined. As already discussed, several diseases 

arise from multiple nsSNPs within the multiple binding domain (MBD) of MeCP2 protein. The MBD 

encompasses a 222 bp/74 amino acid region and within this a DNA binding domain a 90 bp/30 amino acid 

region is identified. A key question is if there is a core -omic signature that can be identified linking 

multiple nsSNPs to a single disease state and if there are distinct differential signatures between groups 

of nsSNPs. 

Evaluating the transcriptome of mutagenized embryos utilizing NGS is an important step in 

understanding the molecular basis for each phenotype. To facilitate a comprehensive or more focused 

analysis, such as in neuronal tissue in X-linked mental retardations, analysis of the transcriptome at 

critical developmental stages, identified during morphological and behavioral analysis, can be 

performed using a variety of samples, including whole embryos, selected tissues, multiple pooled 

embryos, single specimens and single cells. The objective of this approach is to establish the core 

genetic markers, both unregulated and downregulated genes, for each nsSNP. Depending on the 

desired information the analysis can focus on the earliest effects of a nsSNP prior to the overt 

appearance of the disease, the core changes in gene information at the point of onset of morphological 

anomalies, the appearance of behavioral symptoms, or even when the disease is established and 

clinical symptoms are present. These data can facilitate comparative genomics between each mutation, 

for example, the two KDM5C mutations, D87G and D402Y, one destabilizing and the latter 

stabilizing. In MECP2 mutants, nsSNPs that are all destabilizing, are namely L100R, R106W, R111G, 

Y120P, Q128P, E137G, P152R and F155S. In the case of both MECP2 and KDM5C genes, which 

both display polyphenotypic outcomes, identifying the core and differential genetic changes for and 

between each nsSNP tested can facilitate development of a genetic fingerprint database. 

Using the transcriptome screening method, all pathogenic nsSNPs in a gene can be evaluated, 

lending insight into the molecular mechanism governing each phenotype. Comparative genomics will 

confirm: (1) the nsSNPs within a single gene that display equivalent transcriptomes; (2) separate out 

nsSNPs with differential RNA signatures, even though they are classified as causing the same disease; 

and thus (3) establish grouping of nsSNPs based on their molecular signature, which will lend itself to 

analysis of the underlying mechanism. Based on clinical studies, it can be predicted that all nsSNPs 

causing Rett syndrome, for instance, will share a core RNA signature, and that the pleiotropic effect of 

nsSNPs within a single gene, will have a transcriptome correlated to the disease outcome. It is 

tempting to speculate that all nsSNPs in the DNA binding domain of MECP2 would result in Rett 

syndrome. Clinical data, however, refute this notion, with individual DNA binding domain nsSNPs not 

only causing phenotypic variations within Rett syndrome itself, but also entirely different disease 
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phenotypes such as Encephalopathy (neonatal severe). As an illustration, this methodology has the 

potential to reveal the causative differences between the transcriptome of three Rett syndrome 

subtypes, including classical Rett syndrome [196], Rett syndrome with preserved speech variant [260] 

and Rett syndrome with the Zappella variant [261,262], and also identify the causative differences 

between each of the several disease specific phenotypes. 

To accelerate analysis, and develop a readout for potential therapeutics, establishing an RNA 

signature for each nsSNP or group of SNPs, if they prove to have a collective RNA signature, is 

needed. Using a digital, molecular barcoding chemistry (Nanostring Technologies, Seattle, WA, USA), 

up to 800 genes can be profiled simultaneously. Over and above that, it is now possible to develop 

nCounter Elements assays in lab. Moreover, the readout is quantitative, indicating transcript number 

for each gene tested. Once a set of unique RNA signatures is established for groups of nsSNPs 

exhibiting the same phenotype, it will no longer be necessary to perform whole genome transcriptomics, 

rather, nCounter assays can synchronously analyze multiple samples, providing a direct readout of each 

signature. Given the speed, reproducibility and sheer number of genes/set of signature that can be analyzed 

simultaneously it seems likely that this technology is set to overtake Reverse Transcription-PCR  

(RT-PCR) as a screening method.  

The use of an RNA signature can be expanded as a comparative tool between species, in testing the 

effects of morpholino knockdowns, for example, or comparing zebrafish lines carrying various genetic 

manipulations. A few mutant lines are currently available from Zfin. MECP2, (RefSeq: XM_005166687) 

has a mutant line available, mecp2fh232/fh232(AB) and KDM5C (RefSeq: NM_001123234), has four 

known mutants; la026535Tg, la026536Tg, sa15146 and sa17413. These can be used as proof of 

principle for the RNA signatures. Indeed this need not to be limited to zebrafish, but can be extended 

to mouse lines and even human samples, either lab generated or patient samples.  

To further evaluate the effect of key candidate downstream effectors whole mount zebrafish are amenable 

to high throughput, high resolution in situ hybridization screening using robotic processors [263,264]. 

This data is essential to provide a tissue and cell level analysis when investigating disease mechanisms. 

Finally, zebrafish reporter lines can be established, based on the above analyses, with fluorescent 

marker gene expression, driven by the regulatory element of sentinel markers. This will provide 

transgenic zebrafish embryos to screen bioactive small molecule, biologics and other potential 

therapeutic interventions. 

6. Conclusions 

In the age of rapid advances of genome sequencing techniques, the development of methods  

for predicting disease-causing missense mutations or nsSNPs has gained increased significance.  

The straightforward approach is to build a library of DNA defects associated with particular diseases, 

i.e., database of genotypes causing a particular disease. The increasing number and size of such 

databases is essential for fast and precise diagnostics, since the only information required is the 

individual’s genome. Once the individual genome is mapped onto the database of the diseases’ 

genotypes, the prediction of the disease predisposal can be done instantly. However, recent completion 

of the 1000 genomes pilot project [265] revealed that most individuals carry 250–300 loss-of-function 

variants in annotated genes and 50–100 variants previously implicated in inherited disorders [266].  
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In addition to this observation, it is known that the severity of a disease depends on many factors,  

and, for individuals carrying the same disease-causing mutation(s), the manifestation can be quite different. 

These observations indicate the necessity of further development of approaches to predict the 

disease-causing effect without the help of databases and comparison. As outlined in this review, the 

best approach, perhaps, is to rely on collective efforts that utilize wider perspectives from both 

computational and experimental approaches. It is unlikely that in vitro and in vivo approaches will be 

applicable for investigating each gene variation, so in silico methods can be applied first to deliver 

testable hypotheses and to reduce the number of candidate genes/variations to a number appropriate for 

experimental testing. In vitro experiments provide a direct measure of the effect of mutation(s) on the 

biochemical reactions associated with a particular gene and can also be very insightful in revealing the 

effect of mutation(s) on various biophysical characteristics as stability and interactions. Also, results 

from those experiments such as thermostability play a key role in the development and validation of  

in silico methods. However, such experiments are time and labor intensive and require careful 

selection of target genes and mutations. At the same time, the in vitro experiments are the ultimate 

proof of the biophysical effects caused by the mutations. With that being said, however, to understand 

the overall effect of a gene variant requires in vivo studies, which are more directly relevant to human 

disease than in vitro studies. For example, the neuropathology (phenotype, behavior, brain morphology 

and function) of variants involved in X-linked mental retardation can only be discerned in a whole 

organism. For initial studies, zebrafish are highly suited to this task as they are genetically tractable, 

available in large numbers, develop quickly and external to the mother. Importantly, they have similar 

organ systems to mammals, share significant genetic sequence identity to humans and in many cases, 

within five days of the onset of development, begin to manifest disease phenotypes. These phenotypic 

and genetic similarities to humans make zebrafish superior to flies, worms and yeast screens. The large 

number of fluorescent reporter lines available, driven by cell specific enhancers in this optically clear 

organism allow for live imaging directly in the whole organism. This provides a real-time readout of 

affected cells, tissue and organs, which is not possible in mammalian models. The zebrafish is  

thus extremely useful and cost efficient when screening large numbers of variants for behavioral, 

morphological, physiological and molecular pathway analysis, including downstream genetic and 

epigenetic outcomes [267,268]. Further studies can then be transferred to mice and other mammalian 

models as appropriate. These studies are lengthy, time consuming and expensive, but vital in the next 

stage of disease modeling. By narrowing down variants of interest highly focused mammalian studies 

are more efficient and productive. In combination, in silico, in vitro and in vivo methods all have 

particular roles in identifying and understanding the mechanism of disease variants. 
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