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Abstract: In a multi-target complex network, the links (Lij) represent the interactions 

between the drug (di) and the target (tj), characterized by different experimental measures 

(Ki, Km, IC50, etc.) obtained in pharmacological assays under diverse boundary conditions 

(cj). In this work, we handle Shannon entropy measures for developing a model 

encompassing a multi-target network of neuroprotective/neurotoxic compounds reported in 

the CHEMBL database. The model predicts correctly >8300 experimental outcomes with 

Accuracy, Specificity, and Sensitivity above 80%–90% on training and external validation 

series. Indeed, the model can calculate different outcomes for >30 experimental measures 

in >400 different experimental protocolsin relation with >150 molecular and cellular 
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targets on 11 different organisms (including human). Hereafter, we reported by the first 

time the synthesis, characterization, and experimental assays of a new series of chiral  

1,2-rasagiline carbamate derivatives not reported in previous works. The experimental tests 

included: (1) assay in absence of neurotoxic agents; (2) in the presence of glutamate; and 

(3) in the presence of H2O2. Lastly, we used the new Assessing Links with Moving 

Averages (ALMA)-entropy model to predict possible outcomes for the new compounds in 

a high number of pharmacological tests not carried out experimentally. 

Keywords: CHEMBL; neuroprotective agents; rasagiline derivatives; asymmetric 

synthesis; multi-target drugs; molecular information measures; Shannon entropy;  

Markov chains; moving averages 

 

1. Introduction 

Entropy measures are universal parameters useful to codify biologically relevant information in 

many systems. In the 1970’s Bonchev and Trinajstic et al. published works about the use of Shannon’s 

entropy to calculate a structural information parameter [1–4]. Kier published another seminar works on 

the use of Shannon’s entropy to encoding molecular structure in Cheminformatics studies in 1980 [4]. 

Many other authors used Shannon’s entropy parameters for the same purpose on small molecule 

structure [5–10]. Graham et al. [11–16] used entropy measures to study the information properties  

of organic molecules. Entropy information measures were used to describe proteins [17,18],  

DNA sequences [19], protein networks [20], and magnetic resonance outcomes [21]. The software 

MARCH-INSIDE (MI) uses the theory of Markov chains to calculate the parameters θk(G). These 

values are the Shannon entropies of order kth of a graph G. The θk(G) values are useful quantify 

information about the structure of molecular systems [22]. The graph G represents a complex 

molecular system as a network of nodes interconnected by links (Lij = 1) or not connected (Lij = 0).  

MI algorithm associates a Markov matrix to the graph G in order to define the probabilities of 

interactions (ties or relationships) between nodes. These entropy parameters θk(G) can be calculated 

for many types of systems (molecular or otherwise). We have studied small molecules, RNA 

secondary structures, protein sequences, viral surfaces, cerebral cortex networks, metabolic networks, 

host-parasite networks, world trading networks, social networks, etc. In molecules, we know the 

information about links Lij (covalent bonds, hydrogen bonds, spatial contacts, etc.) beyond any 

reasonable doubt. However, we can use the information (θk(G) values)of the system to predict 

interactions with other systems in a network of a higher-structural level. For instance, we use the θk(G) 

values of drugs and targets structure to predict drug–target interactions (links) in drug–target network. 

In other cases, linking patterns change, are not known, or we find contradictory information. This is 

the case of the existence of different relationships between nodes in biological webs or social 

networks. In these cases, we can use the θk(G) values of known networks to find models useful to 

predict links in new networks [23–25]. 

On the other hand, the discovery of new drugs for the treatment of neurodegenerative diseases such 

as Alzheimer’s, Parkison’s, and Huntington’s disease, Friedreich ataxia and others, is an important 
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goal of medicinal chemistry [26–29]. The genes causing hereditary forms of some of these diseases 

have been identified but the molecular mechanisms of the neuronal degeneration have not been totally 

understood yet [30]. This picture, and some disappointing results in clinical trials, makes interesting 

the prediction of drug candidates with computational techniques [31,32]. In order to design  

these computational models we need to process chemical information from public databases.  

These databases have accumulated immense datasets of experimental results of pharmacological  

trials for many compounds. For instance, CHEMBL [33,34] is one of the biggest with more than 

11,420,000 activity data for >1,295,500 compounds, and 9844 targets. This huge amount of 

information offers a fertile field for the application of computational techniques [34,35]. 

The analysis of all this data is very complex due to the presence of multi-target, multi-output, and 

multi-scale information. Multi-target complication emerges due to the existence of compounds with 

multiple targets [36–38]. This led to the formation of complex networks of drug–target interactions. 

We can represent drug–target networks as a graph with two types of nodes drugs (di) and targets (tj) 

interconnected by links (Lij). Barabasi et al. [39], constructed a drug–target network based on  

Food and Drug Administration (FDA) drugs and proteins linked by drug–target binary associations. 

Csermely et al. [40], reviewed the use of networks, including drug–target networks, for drug discovery. 

Multi-output feature refers to the necessity of prediction of different experimental parameters (IC50, 

Ki, Km, etc.) to decided whether two nodes (drug and target) interact (Lij = 1) or not (Lij = 0). Multi-scaling 

refers to the different structural levels of the organization of matter. In this case, the input variables 

quantify molecular information (drugs structure) and macromolecular information (targets). They have 

to quantify also cellular (cellular targets) and organism information (specie that express the target).  

In these models we have a high number of assays carried out in very different conditions (cq) like time, 

concentrations, temperature, cellular targets, tissues, organisms, etc. In a recent work, we combined the 

θk(G) values calculated with MI and the idea of Moving Average (MA) operators with a similar 

purpose [41]. In time series analysis the MA operators are average values of characteristic of the 

system for different seasons. In fact, MA models became popular after the initial works of Box  

and Jenkins [42]. In time series analysis, MA models may combine other operators I = Integrated,  

AR = Autoregressive, N = Non-linear operators, or X = Exogenous effects. In this sense, others 

models have emerged combining different operators: ARMA, ARIMA, VARIMA, ARIMAX, 

NARMA, etc. In multi-output modeling, we calculate the MA operators as the average of the property 

of the system (molecular descriptors or others) for all drugs or targets with a specific response in one 

assay carry out under a sub-set of conditions (cj). Consequently, our MA operator is not acting over a 

time domain but over a sub-set of conditions of the pharmacological assays. The idea of application of 

MA operators to other domains different from time is gaining adepts due to its advantages.  

For instance, Botella-Rocamora et al. [43] developed a model for disease mapping using spatial  

Box–Jenkins operators with the form of MAs, to define dependence of the risk of a disease to occur.  

In our models, we use MA in relation with properties of nodes of networks (drugs, proteins, reactions, 

laws, neurons, etc.); which form links Lij(cq) in specific sub-set of conditions (cq). For this reason, we 

decided to call this strategy as ALMA (Assessing Links with Moving Averages) models. Speck-Planche 

and Cordeiro reported different multi-target or multi-output models using the same type of ALMA 

models [44–46]. 
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In the specific area of neurodegenerative diseases, almost all these datasets includes also large  

sub-sets of assays involving potential neuroprotective drugs, targets, as well as drug-target and/or 

target–target interactions. The database NeuroDNet has interactive tools to create interaction networks 

for twelve neurodegenerative diseases. According to Vasaikar et al. [47], it is the first of its kind, 

which enables the construction and analysis of neurodegenerative diseases through protein interaction 

networks, regulatory networks and Boolean networks. In the case of neuroprotective compounds, some 

authors have reported multi-target ALMA models. García et al. used topological descriptors for a large 

series of 3370 active/non-active compounds to fit a classification function that can predict links Lij 

(interactions) of heterogeneous series of GSK inhibitors compounds with different neurological targets 

relevant to Alzheimer’s disease and parasite species. Speck-Planche et al. [48], developed a multi-target 

model using a large and heterogeneous database of inhibitors against five proteins associated with 

Alzheimer’s disease. The model correctly classified more than 90% of active and inactive compounds 

in the treatment of Alzheimer’s disease on both, training and prediction series. Several guidelines are 

offered in other paper to show how the use of fragment-based descriptors can be determinant for the 

design of multi-target inhibitors of proteins associated with Alzheimer’s disease [49]. 

In a recent work, we used the method TOPS-MODE (TM) [50] to calculate the structural parameters 

of drugs. The model correctly classified 4393 out of 4915 total cases with Specificity (Sp), Accuracy 

(Ac), and Sensitivity (Sn), of 80%–98%. We also used the method TM to develop one ALMA [51] 

model useful for the prediction of neuroprotective drugs. This dataset includes Multi-output assay 

endpoints of 2217 compounds for at least one out of 338 assays, with 148 molecular or cellular targets, 

and 35 types of activity measures in 11 model organisms (including human). In a third work [52], we 

introduced another ALMA model for neurotoxicity/neuroprotective effects of drugs based on the 

method MI. First, we used MI to calculate molecular descriptors of the type of stochastic spectral 

moments of all compounds. Next, we found a model that classified correctly 2955/3548 total cases on 

training and validation series with Ac, Sn, and Sp > 80%. Each data point (>8000) contains the values 

of 37 possible measures of activity, 493 assays, 169 molecular or cellular targets, and 11 different 

organisms (including human) for a given compound. The model has shown excellent results also in 

computational simulations of high-throughput screening experiments, with Ac = 90.6% for 4671 

positive cases. Both models are able to predict the links Lij(cq) between ith drugs and jth targets 

according to the assay aq. However, we do not carried out a formal construction and a comparison of 

the drug-target networks for the CHEMBL data in previous papers. In any case, despite the high 

versatility of entropy measures to codify structural information, there is no report of a multi-target 

model for drug–target interactions for compounds with neuroprotective/neurotoxic effect. In this work, 

we report the first multi-target, multi-output, and multi-scale ALMA model for CHEMBL data of 

neuroprotective/neurotoxic effect of drugs. Then, we construct and compare for the first time three 

Multi-output assay complex networks for these CHEMBL dataset using the two previous models  

and the model reported in this work. From there, we reported by the first time the synthesis, 

characterization, and experimental assays of a new series of rasagiline carbamate derivatives not 

reported in previous works. We carried out three different experimental tests: assay (1) in absence of 

neurotoxic agents; (2) in the presence of glutamate; and (3) in the presence of H2O2. Finally, we used 

the new entropy model to predict possible outcomes for these compounds in a high number of 

pharmacological tests not carried out experimentally. The results presented here show the high 
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potential of entropy parameters of chemical information for the design of neuroprotective drugs, the 

construction of complex bio-molecular networks, and the potential of ALMA models for multi-target, 

multi-output, and multi-scale modeling. 

2. Results and Discussion 

2.1. Development of New Model for Prediction of Drug–Target Networks 

2.1.1. Model Training and Validation 

We report a model to predicting when the ith compound may present a high (Lij(cq) = 1) or not 

(Lij(cq) = 0) value of the experimental parameter used to characterize interaction with a molecular or 

cellular target involved in a neuroprotective/neurodegenerative process. The output Sij(cq) of our  

multi-output model depend on both chemical structure of the ith drug di and the set of conditions 

selected to perform the biological assay (cq) including the jth target, of course. In consonance, the 

ALMA model should predict different probabilities if we change the organisms (c1), the biological 

assays (c2), the molecular/cellular target (c3), or the standard experimental parameter measured (c4), for 

the same compound [53].The best ALMA-entropy model found in this work was: 
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The statistical parameters for the above equation in training are: Number of cases used to train the 

model (N), Canonical Regression Coefficient (Rc), Chi-square (χ2), and p-level [54]. The probability 

cut-off for this Linear Discriminant Analysis (LDA) model is ip1(cq) > 0.5 ≥ Lij(cq) = 1. It means that 

the drug di predicted by the model, with probability p > 0.5, is expected to give a positive outcome in 

the qth assays carry out under the given set of conditions cq. This ALMA-entropy model presents 

excellent performance in both training and external validation series with Sn, Sp, and Ac > 80%  

(see Table 1). Values higher than 75% are acceptable for LDA-QSAR models, according to  

previous reports [55–59]. 

The first term in the equation, quantify both the quality of the input data p(cl) and the  

information θi
5 about the structure of the drug (see material and methods and previous works [51]). We 

can expand the Box–Jenkins MA terms in the ALMA equation in order to clearly depict all the 

parameters involved: 
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After inspection of this equation, we can see that the ALMA model can predict for the same 

compound different scores for different experimental parameters, targets, assays, or even different 

organisms. In Table 2 we illustrate the values of probability of drug–target interaction pij(cq) predicted 

with the previous model, for several examples of known drugs or new promising compounds. These are 

the probabilities with which the ith compound interact with the jth drug under the assay conditions cq. 

This is equivalent to pij(cq) > 0.5 ≥ Lij(cq)pred = 1. However, online supplementary material files contain 

a complete list with many examples of positive and control cases. 

Table 1. Results of Assessing Links with Moving Averages (ALMA) models for entropy 

measures vs. different spectral moments. 

Descriptor Sub-Set Stat. a % Groups Ci(mj)pred = 1 Ci(mj)pred = 0 Reference 

MI-Entropy 

Train 
Sp 79.0 Lij(Cq)obs = 1 1092 290 

This work 

Sn 91.5 Lij(Cq)obs = 0 412 4438 
Ac 88.7 Total 

CV 
Sp 81.3 Lij(Cq)obs = 1 379 87 
Sn 92.6 Lij(Cq)obs = 0 119 1492 
Ac 90.1 Total 

MI spectral 
moments 

Train 
Sp 84.6 Lij(Cq)obs = 1 1172 214 

[52] 

Sn 82.4 Lij(Cq)obs = 0 224 1051 
Ac 83.5 Total 

CV 
Sp 83.3 Lij(Cq)obs = 1 385 77 
Sn 81.6 Lij(Cq)obs = 0 78 347 
Ac 82.5 Total 

TM spectral 
moments 

Train 
Sp 81.3 Lij(Cq)obs = 1 1533 352 

[51] 

Sn 98.0 Lij(Cq)obs = 0 36 1762 
Ac 89.5 Total 

CV 
Sp 81.0 Lij(Cq)obs = 1 513 120 
Sn 97.7 Lij(Cq)obs = 0 14 585 
Ac 89.1 Total 

MI, MARCH-INSIDE; a Sensitivity = Sn = Positive Correct/Positive Total; Specificity = Sp = Negative 

Correct/Negative Total; Accuracy = Ac = Total Correct/Total; TM, TOPS-MODE. 

Table 2. Examples predicted with the model. 

Compound (i) pij(cq) Assay ID Measure (Units) Organism Target Protein 

Arecoline 0.94 796814 Efficiency (%) rno 
Muscarinic  

acetylcholine receptor 

Bipinnatin-A 1.00 751272 Inhibition (%) mmu 
Acetylcholine receptor  

protein β chain 

Carachol 0.99 796814 Efficiency (%) rno 
Muscarinic  

acetylcholine receptor 

Caulophylline 0.96 838016 EC50 (nM) hsa 
Neuronal acetylcholine 

receptor; α4/β2 
Citalopram 0.99 740208 Ki (nM) mmu Dopamine transporter 

Condelphine 1.00 748943 −Log(IC50) (nM) rno 
Neuronal acetylcholine 

receptor protein α-7 subunit 
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Table 2. Cont. 

Compound (i) pij(cq) Assay ID Measure (Units) Organism Target Protein 

Delcorine 1.00 748943 −Log(IC50) (nM) rno 
Neuronal acetylcholine 

receptor protein α-7 subunit 

Delsoline 1.00 748943 −Log(IC50) (nM) rno 
Neuronal acetylcholine 

receptor protein α-7 subunit 
Desipramine 0.99 797692 −Log(IC50) (nM) rno Norepinephrine transporter 

Elatine 1.00 748943 −Log(IC50) (nM) rno 
Neuronal acetylcholine 

receptor protein α-7 subunit 

Emopamil 1.00 817225 −Log(IC50) (nM) rno 
Voltage-gated R-type calcium 

channel α-1E subunit 

Epibatidine 0.94 838016 EC50 (nM) hsa 
Neuronal acetylcholine 

receptor; α4/β2 

Epibatidine 0.19 825420 Efficacy (%) hsa 
Neuronal acetylcholine 

receptor; α4/β2 
Femoxetine 0.99 740206 Ki (nM) mmu Dopamine transporter 
Femoxetine 0.99 740207 Ki (nM) mmu Norepinephrine transporter 
Femoxetine 0.99 740208 Ki (nM) mmu Dopamine transporter 

Fisetin 0.05 1027709 %max (%) mmu HT22 cells 
Fluoxetine 0.99 740207 Ki (nM) mmu Norepinephrine transporter 
Fluoxetine 0.99 740208 Ki (nM) mmu Dopamine transporter 
Imipramine 0.99 740206 Ki (nM) mmu Dopamine transporter 
Imipramine 0.99 740207 Ki (nM) mmu Norepinephrine transporter 
Imipramine 0.99 740208 Ki (nM) mmu Dopamine transporter 

Inuline 1.00 748943 −Log(IC50) (nM) rno 
Neuronal acetylcholine 

receptor protein α-7 subunit 

Karacoline 1.00 748943 −Log(IC50) (nM) rno 
Neuronal acetylcholine 

receptor protein α-7 subunit 
L-Arginine 0.99 755144 Activity (nM) hsa Nitric-oxide synthase, brain 

L-NIL 0.59 752266 −Log(IC50) (nM) hsa Nitric-oxide synthase, brain 
L-NMMA 0.99 876477 −Log(IC50) (nM) hsa Nitric-oxide synthase, brain 

L-NNA 0.98 752385 −Log(IC50) (nM) hsa Nitric-oxide synthase, brain 
L-NNA 0.86 752276 Ki (nM) hsa Nitric-oxide synthase, brain 

LY-379268 0.99 714803 Activity (nM) hsa 
Metabotropic  

glutamate receptor 4 

LY-379268 0.99 877752 Activity (nM) hsa 
Metabotropic  

glutamate receptor 2 

LY-379268 0.99 718128 Activity (nM) hsa 
Metabotropic  

glutamate receptor 6 

LY-389795 0.99 718128 Activity (nM) hsa 
Metabotropic  

glutamate receptor 6 

LY-389795 0.98 715721 Activity (nM) hsa 
Metabotropic  

glutamate receptor 5 

LY-389795 0.97 714446 Activity (nM) hsa 
Metabotropic  

glutamate receptor 3 
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Table 2. Cont. 

Compound (i) pij(cq) Assay ID Measure (Units) Organism Target Protein 

Lycoctonine 1.00 748943 −Log(IC50) (nM) rno 
Neuronal acetylcholine 

receptor protein α-7 subunit 
M826 1.00 841780 Ki (nM) hsa Caspase-3 
M827 1.00 841780 Ki (nM) hsa Caspase-3 

Methyllycaconitine 1.00 750084 Ki (nM) rno 
Neuronal acetylcholine 

receptor protein α-10 subunit 

NBQX 0.99 641893 −Log(IC50) (nM) rno 
Glutamate receptor  

ionotropic, AMPA 2 

NBQX 0.99 641893 −Log(IC50) (nM) rno 
Glutamate receptor  

ionotropic, AMPA 4 

NBQX 0.99 641893 −Log(IC50) (nM) rno 
Glutamate receptor  

ionotropic, AMPA 3 

NBQX 0.99 641893 −Log(IC50) (nM) mmu 
Glutamate receptor  

ionotropic, AMPA 1 
Nipecotic acid 0.28 785010 −Log(IC50) (nM) rno GABA transporter 1 
Nipecotic acid 0.28 785010 −Log(IC50) (nM) rno GABA transporter 2 
Nipecotic acid 0.28 785010 −Log(IC50) (nM) rno GABA transporter 3 
Nipecotic acid 0.28 785010 −Log(IC50) (nM) rno Betaine transporter 

NOHA 0.04 755137 
NO  

formation (%) 
rno Nitric-oxide synthase, brain 

Norepinephrine 0.98 780755 
Concentration  
(% dose·g−1) 

rno 
 

Nudicauline 1.00 748943 −Log(IC50) (nM) rno 
Neuronal acetylcholine 

receptor protein α-7 subunit 
Omega  

nitro-arginine 
0.99 752258 Ki (nM) hsa Nitric-oxide synthase, brain 

Oxotremorine 0.84 798083 pD2 rno 
Muscarinic acetylcholine 

receptor M1 
Paroxetine 1.00 740206 Ki (nM) mmu Dopamine transporter 

RedAm-Ethyl 0.33 840782 Selectivity hsa 
Nitric-oxide  

synthase, endothelial 
RedAm-Ethyl 0.28 840782 Selectivity hsa Nitric-oxide synthase, brain 

Resveratrol 0.99 1613870 EC50 (nM) hsa 
Nuclear factor NF-κB  

p105 subunit 

Resveratrol 0.99 1613870 EC50 (nM) hsa 
Nuclear factor NF-κB  

p65 subunit 

Stemofoline 1.00 936299 EC50 (nM) hvi 
Nicotinic acetylcholine 

receptor α1 subunit 

Thiocytisine 0.51 857972 Log Ki rno 
Neuronal acetylcholine 

receptor; α4/β2 
rno, Rattus norvegicus (Rat); mmu, Mus musculus (Mouse); hsa, Homo sapiens (Human); and hvi, Heliothis virescens. 

The Table 2 shows predictions of the same drug in different sets of conditions of assay cq, including 

different targets, organisms, or assays. Therefore, we only have to substitute in the equation the value 
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of θi
5 of the compound and the respective values p1(cq)·<θi

5(cq)> for the MA operators of each 

condition. In the Table 3 we depict many examples of values of MA operators p1(cq)·<θi
5(cq)> for 

different conditions. 

2.1.2. Comparison with Other ALMA Models 

An interesting exercise is the comparison of the present model and the network predicted with 

outcomes obtained with other methods. Until the best of our knowledge, there are only two similar 

models. Both models make use of the spectral moments of a molecular matrix as input variables (Di) to 

quantify the molecular structure of drugs. The first model [51] applies spectral moments µk of order kth 

of the bond adjacency matrix (1B) calculated with the TM approach. The equation of this model is  

the following: 
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The second model [52] employs as input the πi
k values of the Markov matrix (1Π) of atom–atom 

electron delocalization calculated with the software MI. In the TM method, we weighted the edges of 

the molecular graph with standard distances of chemical bonds whereas the MI algorithm employs 

atom standard electronegativities to weighting the nodes of molecular graph. The equation of the 

second model is: 
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In both cases, as well as in the present ALMA-entropy model, we used MA terms to quantify the 

deviations of the structure of one compound from sub-sets of compounds with a positive outcome in 

different conditions cq. The three methods showed excellent values of Ac, Sp, and Sn on both training 

and validation series (see Table 1). Apparently, the TM model shows better values of these parameters 

but we have to take into consideration the differences in the complexity of the data sets used to train 

and validate these models. The TM-spectral moment model is able to classify correctly 83%–82% of 

4915 cases in total (on training and validation series respectively). The MI-spectral moment model is 

able to classify correctly 89%–92% of 3598 cases. Notably, the MI-entropy model is able to classify 

correctly 89%–92% of 8309 cases. Consequently, the statistics for the present model refer to a dataset 

with more than twice the number of data points present in previous models. 
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Table 3. Examples of multi-scale, multi-target, or multi-output MA values for different targets, measures, and organisms. 

Experimental 

Measure (units) 

Statistics p1(cj)·<θk(cq)> Experimental 

Measure (units) 

Statistics p1(cj)·<θk(cq)> 

n(sx) n1(sx) p1(sx) 1 2 3 4 5 n(sx) n1(sx) p1(sx) 1 2 3 4 5 

−Log(IC50) (nM) 2438 2148 0.88 2.03 2.08 2.04 2.04 2.03 ED50 (μg·kg−1) 19 14 0.74 1.58 1.6 1.59 1.59 1.59 

EC50 (nM) 2149 1975 0.92 1.87 1.91 1.89 1.89 1.88 ED50 (nM) 18 14 0.78 2.14 2.17 2.14 2.14 2.13 

Ki (nM) 1501 1418 0.94 2.01 2.06 2.03 2.02 2.01 NO formation (%) 18 6 0.33 0.63 0.64 0.63 0.63 0.63 

Selectivity 486 102 0.21 0.5 0.51 0.51 0.51 0.51 Efficiency (%) 14 11 0.79 1.58 1.61 1.6 1.6 1.59 

Dopamine release (%) 299 130 0.43 0.89 0.91 0.89 0.89 0.88 Kup (mL·min−1·g−1) 13 5 0.38 0.75 0.76 0.76 0.76 0.76 

Activity (%) 222 105 0.47 1.22 1.24 1.23 1.23 1.22 Conc. (%·dose·g−1) 12 7 0.58 1.14 1.15 1.14 1.14 1.14 

Inhibition (%) 193 93 0.48 0.99 1 0.99 0.99 0.98 Efficacy (%) 12 6 0.5 0.58 0.58 0.58 0.59 0.59 

Selectivity ratio 166 61 0.37 0.94 0.95 0.93 0.93 0.92 Ratio Ki 12 2 0.17 0.38 0.39 0.39 0.39 0.39 

Log Ki 124 72 0.58 0.96 0.97 0.96 0.96 0.96 MTT reduction (%) 11 4 0.36 0.58 0.57 0.57 0.56 0.56 

Ratio 108 31 0.29 0.66 0.67 0.66 0.66 0.65 Relative potency 11 4 0.36 0.93 0.94 0.92 0.92 0.91 

Activity (nM) 98 93 0.95 1.74 1.77 1.75 1.75 1.74 ED50 (μg·mL−1) 10 4 0.4 0.99 1.02 0.99 0.99 0.98 

PCMA antagonism 84 26 0.31 0.51 0.51 0.51 0.52 0.52 Activity 8 5 0.63 1.98 2.01 1.99 1.99 1.99 

−Log(IC50) 56 17 0.3 0.56 0.58 0.57 0.57 0.57 Damage score 8 2 0.25 0.5 0.51 0.5 0.49 0.49 

Ratio (nM) 56 32 0.57 1.1 1.12 1.11 1.1 1.1 Mean response 8 5 0.63 1.44 1.48 1.46 1.46 1.46 

nNOS activity (%) 36 25 0.69 1.69 1.73 1.7 1.69 1.68 Survived (%) 8 5 0.63 1.04 1.04 1.04 1.04 1.04 

%max (%) 20 4 0.2 0.55 0.56 0.55 0.55 0.54 
Rescued  

neurons (%) 
5 2 0.4 0.59 0.6 0.61 0.62 0.63 

Organism n(oj) n1(oj) p1(oj) 1 2 3 4 5 Organism n(oj) n1(oj) p1(oj) 1 2 3 4 5 

R. norvegicus 2852 1998 0.7 1.51 1.54 1.52 1.52 1.51 B. taurus 77 21 0.27 0.63 0.63 0.63 0.63 0.63 

H. sapiens 4854 4090 0.84 1.82 1.86 1.83 1.83 1.82 C. porcellus 20 16 0.8 1.35 1.36 1.35 1.35 1.35 

F. catus 10 7 0.7 1.66 1.7 1.68 1.67 1.66 H. virescens 5 5 1 2.78 2.83 2.78 2.78 2.76 

M. musculus 241 173 0.72 1.5 1.53 1.51 1.51 1.51 M. domestica 15 15 1 1.62 1.66 1.67 1.68 1.68 

T. californica 19 11 0.58 1.34 1.37 1.35 1.35 1.34 C. elegans 2 1 0.5 1.28 1.31 1.28 1.27 1.26 

Gerbillinae 8 2 0.25 0.5 0.51 0.5 0.49 0.49 D. melanogaster 2 1 0.5 1.28 1.31 1.28 1.27 1.26 
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Table 3. Cont. 

Experimental 

Measure (units) 

Statistics p1(cj)·<θk(cq)> Experimental 

Measure (units) 

Statistics p1(cj)·<θk(cq)> 

n(sx) n1(sx) p1(sx) 1 2 3 4 5 n(sx) n1(sx) p1(sx) 1 2 3 4 5 

Protein ACC. n(tj) n1(tj) p1(tj) 1 2 3 4 5 Name 

Q9UGM1 403 254 0.63 1.34 1.36 1.34 1.34 1.34 Neuronal acetylcholine receptor protein α-9 subunit 

Q62645 77 21 0.27 0.63 0.63 0.63 0.63 0.63 Glutamate (NMDA) receptor subunit ε 4 

P35228 128 32 0.25 0.53 0.54 0.53 0.53 0.53 Nitric oxide synthase, inducible 

P29476 859 562 0.65 1.30 1.32 1.30 1.30 1.30 NOS, brain 

P29474 88 18 0.20 0.50 0.51 0.50 0.50 0.50 NOS, endothelial 

P19838 1000 923 0.92 1.88 1.91 1.89 1.89 1.88 Nuclear factor NF-κB p105 subunit 

P12392 104 90 0.87 1.82 1.87 1.84 1.84 1.82 Neuronal acetylcholine receptor protein β-4 subunit 

P12390 79 66 0.84 1.78 1.83 1.80 1.80 1.79 Neuronal acetylcholine receptor protein β-2 subunit 

P12389 37 31 0.84 1.97 2.04 2.01 2.01 2.00 Neuronal acetylcholine receptor protein α-2 subunit 

P09483 29 28 0.97 1.98 2.02 2.00 1.99 1.98 Neuronal acetylcholine receptor protein α-4 subunit 

Assay ID n(cj) n1(cj) p1(cj)j 1 2 3 4 5 Details 

1613870 2000 1846 0.92 1.88 1.91 1.89 1.89 1.88 Expression of NF-κB in human neuronal cells 

832611 646 646 1.00 2.31 2.37 2.32 2.30 2.28 Inhibition of [3H]EBOB binding to γ-aminobutyric acid GABA–AR 

842916 390 390 1.00 2.12 2.16 2.13 2.12 2.11 [Ca2+] influx in neonatal rat spinal sensory neuronal culture 

792863 299 130 0.43 0.89 0.91 0.89 0.89 0.88 Binding of norditerpenoid alkaloids at neuronal α7 nicotinic AChR 

899883 114 99 0.87 1.46 1.48 1.46 1.46 1.45 Membrane potential in K-177 cells with ACh central neuronal receptor 

1041434 74 17 0.22 0.56 0.57 0.56 0.56 0.56 mGluR-6 influence in c-AMP formation in rat nonneuronal cells 

829510 50 50 1.00 2.93 2.97 2.93 2.91 2.89 Inhibition of glutamate induced neuronal death 

829508 50 50 1.00 2.93 2.97 2.93 2.91 2.89 Inhibition human caspase-1 in neuronal precursor (NT2) cells 

829511 50 50 1.00 2.93 2.97 2.93 2.91 2.89 Inhibition human caspase-8 in neuronal precursor (NT2) cells 

1814959 11 11 1.00 2.95 3.00 2.96 2.94 2.92 Blocking permeability of the neuronal Na+ in rat striatum slices 
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2.1.3. Construction of Drug–Target Networks with ALMA Models 

ALMA models may be useful both (1) for computational or virtual High-Throughput Screening 

(HTS) screening of large databases like CHEMBL and/or (2) for construction of drug–target networks. 

All the results, discussed in previous section, indicate that many compounds may act as multi-target 

drugs with non-linear or indirect effect (orthosteric and/or allosteric) over different targets in different 

pathways. In a recent special issue edited by Csermely, Nussinov, and Szilágyi [60], different research 

groups discussed about this topic and related concepts such as allo-networks. In one of these papers, 

Mueller et al. [61] have developed a computational model for the HTS of drugs with action over 

mGluR5; which represent a promising strategy for the treatment of schizophrenia. Considering the 

relevance of allotropy for these and other receptors for our study, and all previous comments about 

allo-network drugs, we decided to use our model to construct a drug-target network. The interest in 

doing so is that this type of network-based tools may be applied for the discovery of new drugs, 

including perhaps allo-network drugs [40,60,62]. 

Considering these points, we constructed here by the first time a drug–target network with 

CHEMBL experimental outcomes of multiplex assays of neuroprotective effects of drugs with the 

same dataset used in the previous section. This is probably the first drug–target network representation 

of the interaction of neuroprotective compounds with cellular or protein targets; many of them 

susceptible to allosteric modulators. In this directed network, we used three classes of nodes, drugs 

(di), targets (tj), and pharmacological assays (aq). They are connected by only three classes of arcs 

(directed links) drug ≥ (di ≥ tj), drug ≥ assay (di ≥ aq), and target-assay (tj ≥ aq). Other types of 

relationships were not considered. The observed drug–target network was constructed with the input 

dependent variable Lij(cq). In consequence, if CHEMBL reports the case of drug di that causes an 

strong biological response (Lij(cq) = 1) in one biological experiment carry out under the conditions  

cq = (tj, aq), we have to draw in the network the path di ≥ tj ≥ aq. We omitted here the representation of 

nodes for the type of experimental measure and the organism that express the target. This avoids very 

highly connected nodes that may cause a strong distortion in network topology and mask or hidden the 

relevance of important drugs or targets. 

The observed network constructed with the dataset published in the previous work has 968 nodes = 

721 drugs + 72 targets + 175 pharmacological assays for neuroprotective effects. We apply, also, the 

software MI to quantify the structural information of the drug–target networks. In so doing, we 

calculated the Shannon entropy (Sh), as well as δ = node degrees for the nodes (drugs, targets, and 

assays) in the network, see Table 4. Please note that the Sh entropy values for the nodes in the  

drug–target network (supra-molecular structural level) are different from the θk entropy values use to 

quantify the information about the structure of the drug (molecular structural level). Actually, we do 

not use a classic Shannon entropy (H) but a first-order Markov–Shannon entropy [25]. 

After a first inspection, we can observe that the degree of a node (δ) in the network has average 

values of δ = 4.8 ≈ 5 for all nodes, δ = 4.8 ≈ 5 for drugs, and δ = 4.3 ≈ 4 for assays. It means that, on 

average, each drug interacts with five targets and we can measure this interaction with approximately  

four assays. It is easy to realize that the higher δ for targets may be determined in part by their position 

in the network. For each link of drug or assay node, we have two interactions for the target di ≥ tj and  

tj ≥ aq). As a result, we can decompose the δ into δ = δin + δout = node degree = in-degree + out-degree [63]. 
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For this reason, we carried out all calculations eliminating the direction of arcs. In so doing, we 

considered them as symmetric links to avoid this “over-booking” of target nodes. Consequently, the 

average is δ = 6.1 ≈ 6 for targets, a value still higher, but closer to 5 than to 8–10, the  

double is expected. 

Table 4. Topological properties of CHEMBL complex networks predicted with  

ALMA-entropy models. 

Network Node Type n Sh1 a δ δin δout 

Observed 

Total 2450 0.00428 7 3 3 
Compounds 2103 0.00413 6 3 3 

Assays 211 0.00575 6 3 3 
Rat proteins 54 0.00291 7 4 3 

Human proteins 70 0.00568 21 18 3 

1 

Total 2508 0.00438 7 3 3 
Compounds 2208 0.00446 6 3 3 

Assays 183 0.00468 15 11 4 
Rat proteins 40 0.00279 6 3 3 

Human proteins 67 0.00210 5 1 3 

2 

Total 2511 0.00428 7 3 3 
Compounds 2209 0.00445 6 3 3 

Assays 184 0.00464 15 11 4 
Rat proteins 40 0.00266 6 3 3 

Human proteins 68 0.00209 4 1 3 

3 

Total 2511 0.0044 7 3 3 
Compounds 2209 0.00445 6 3 3 

Assays 184 0.00464 15 11 4 
Rat proteins 40 0.00266 6 3 3 

Human proteins 68 0.00209 4 1 3 

4 

Total 2491 0.0046 7 3 3 
Compounds 2209 0.00471 6 3 3 

Assays 184 0.00449 14 11 4 
Rat proteins 40 0.00251 6 2 3 

Human proteins 68 0.00209 4 1 3 

5 

Total 2491 0.0046 7 3 3 
Compounds 2209 0.00471 6 3 3 

Assays 184 0.00449 14 11 4 
Rat proteins 40 0.00251 6 2 3 

Human proteins 68 0.00209 4 1 3 
a δ = δin + δout = node degree = in-degree + out-degree, Sh1 = Shannon entropy of Markov chain (measure  

of information). 

In a second stage, we use our model to reconstructing/predicting the same network, based on the 

probability p(mj) outputs of the model. Two nodes are connected when the probability predicted by the 

model is p(cq) > 0.5, it means that p(di, tj), or p(di, aq), or p(tj, aq) are >0.5, for different pairs of links. 

We can perceive that the values of the drug–target network predicted by the model are very similar to 
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those of the observed network. Consequently, we can conclude that the model is efficient not only  

in the overall prediction of links in the network (high Ac, Sp, and Sn, see Table 1) but in the  

reconstruction of topological patterns. For instance, from information theory we can deduce that the  

uncertainty of links is similar in both networks because Shannon entropy calculated for all links is 

Shobs = 0.005 − 0.007 ≈ Shpred = 0.004 − 0.006. In Figure 1, we represented the Observed (A) vs. 

Predicted (B) complex networks. 

Figure 1. Multitarget, Multiscale, and Multi-output networks, of CHEMBL sub-set of 

neuroprotection related drugs (yellow), targets (red), and pharmacological assays (green) 

Observed (A) vs. Predicted (B). 

 

2.2. Experimental and Theoretical Study of New Compounds 

2.2.1. Synthesis and Experimental Assay of New 1,2-Rasagiline Derivatives 

The compounds 2, 3, 4, 5, 6, 7, 8, and 9 were synthesized according to the strategy given in Figure 2. 

As shown in this scheme, they were synthesized from the aminoalcohol 1 [(1R,2S)-(+)-1-amino-2-
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indanol], a commercial product. The alkylation of 1 with propargyl bromide and potassium carbonate 

in hot acetonitrile provided, in a global yield of 92%, a mixture of the corresponding mono- and 

dipropargylated derivatives (2 and 3), which were separated by flash column chromatography using 

hexane/EtOAc (3:1) as eluent. Compound 3 was converted to the corresponding acetate (4) and 

benzoate (5) by treatment with acetic anhydride or benzoyl chloride, Et3N and catalytic amounts of  

4-dimethylaminopyridine (DMAP) in MeCN. The carbamate derivatives (6, 7, 8, and 9) were 

synthesized, from the hidroxy mono- or dipropargylaminoindans (2 and 3), by reaction with the 

corresponding dialkylcarbamyl chloride in NaH and acetonitrile following the procedure described in 

the literature [64]. 

Figure 2. Synthesis of compounds 2–9. 

 

The new compounds synthesized in this work (2, 3, 4, 5, 6, 7, 8, and 9) were subjected to an initial 

study to determinate its neuroprotective ability in both the presence and the absence of neurotoxic 

agents (ANA). The method of reduction of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide (MTT) was used to ascertain the cell viability, given by the number of cells present in the 

culture. The ability of cells to reduce MTT is an indicator of the integrity of mitochondria, and its 

functional activity is interpreted as a measure of cell viability [65]. Three assays were conducted in a 

culture of motor cortex neurons of 19-day-old Sprague–Dawley rat embryos. All results are expressed 

as the mean ± S.E.M. [51,52] of at least three independent experiments (Table 5). 
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Table 5. Neuroprotective ability of the new 1,2-rasagiline derivatives. 

Compound Formula 
% Neuro-Protection 

% ANA a e.s.m. Glutamate b e.s.m. H2O2 c e.s.m. 

2 

 

0.0 2.8 0.0 6.5 −2.8 1.2 

3 

 

4.7 6.0 −0.2 1.6 −12.3 2.1 

4 

 

4.2 6.5 −8.1 4.9 −14.2 2.1 

5 

 

1.2 5.0 3.8 5.0 2.9 1.0 

6 

 

11.5 8.8 −4.0 5.5 −9.1 2.4 

7 

 

4.0 4.5 2.6 3.9 -6.1 1.1 

8 

 

−1.7 6.9 −5.2 5.9 −8.9 1.9 

9 

 

8.4 10.7 −5.2 2.3 −14.0 2.0 

a % protection (comp 5 µM), in the Absence of Neurotoxic Agents (ANA); b % protection (comp 5 µM) 

against Glutamate 100 µM; c % protection (comp 5 µM) against H2O2 100 µM. 

Firstly, we studied the ability to induce a neuroprotective effect in the absence of any neurotoxic 

stimulation. Secondly, we studied the neuroprotective effect in the presence of glutamate, a compound 

that causes a pathological process, in which neurons are damaged leading to apoptosis when its 

receptors, such as the NMDA and AMPA, are over-activated. Lastly, the ability of the compounds 

synthesized to protect from damage by H2O2, that causes neuronal death by oxidative stress, was 

analyzed. The results obtained allow to deduce the existence of a moderate neuroprotective effect in 

the absence of any toxic stimulus, presenting the best results type 6 and 9 carbamate derivatives, with 

values of 11.5% and 8.4%, respectively, followed by the compound 3, 4, and 7 with values slightly 

above 4% (see Figure 3). 
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Figure 3. Results of the experimental assay of neuroprotective effect of the new compounds. 

 

2.2.2. Using ALMA-Entropy Model to Predicting New Drugs in Other Assays 

We used the ALMA-entropy model to predicting the more probable results for all the new rasagiline 

derivatives synthesized in this work, in >500 assays not carried out experimentally. When the 

molecular descriptors (entropy indices) of the new rasagiline derivatives were introduced in our model, 

we obtained the probable interaction with different targets. The model predicts that most of them could 

interact with the subunits A and B of the 5-hidroxy-tryptamine type 3 receptors (5-HT3Rs), see Table 6. 

These results seem to be consistent with the literature, since the antagonists of 5-HT3Rs have been 

related to neuroprotective properties in vitro and in vivo [66]. In fact, this could be a potential 

mechanism of neuroprotection added to several described mechanisms for rasagiline derivatives [67,68]. 

Rasagiline is also known for promoting serotoninergic activity by other ways, which is a clinically 

relevant fact in certain circumstances [69]. All in one highlights the intricate relationships of these 

drugs with the 5-hidroxy-tryptamine (serotonine) system. 

Table 6. Some predictive results for interaction between compound 6 with 5HT3Rs and 

other targets. 

Si(cj) Meassure Assay ID Target ID Target a Neurotoxic Agent 
2.097 pA2 617971 1899 5HT3aR ANA 
2.097 pA2 617969 1899 5HT3aR ANA 
2.097 pA2 617971 3895 5HT3bR ANA 
2.097 pA2 617969 3895 5HT3bR ANA 
1.78 Selectivity 848737 3568 bNOS H2O2 
1.78 Selectivity 840777 3568 bNOS H2O2 
1.78 Selectivity 755901 3568 bNOS H2O2 
1.17 Activity (%) 866501 2586 nAChRβ-3 H2O2 
0.42 pIC50 (nM) 710048 3772 mGluR1 Glu 

a nAChRβ-3 = neuronal acethyl-choline receptor β3, mGluR1 = metabotropic glutamate receptor type 1. 
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In any case, we need to analyze these results with caution. In our previous works [51,52], we 

predicted with new models and confirmed experimentally that some rasagiline derivatives (similar to 

the derivatives studied in this work) presented activity over glutamate receptors (GluRs) pathway.  

In the first of these works [51], we study experimental measures of neuroprotective capacity of new  

1,3-rasagiline derivatives. All the compounds, except one of them, had a high protective activity 

against damage mediated by H2O2. The best one of all, a monopropargyl trans derivative, showed also 

a high neuroprotective action in all three type of assays. Our first model predicted for this compound 

high probability of activity in relationship with acetylcholine and GABA, in addition to GluRs.  

In coincidence, acetylcholine receptors (AChRs) have been associated with neuroprotective proprieties 

in several recent experimental works, and there are also reports of association of GABA and GluRs 

with neuroprotective ability [70,71]. Nuritova et al. [72], discussed a neuroprotective strategy 

involving retrograde release of glutamate. 

In our second work [52], we studied two types of substituent groups (propargyl groups attached to 

the nitrogen and a carbamate or esther group instead of hydroxyl). The compounds also presented two 

different chirality patterns but with 1,3 substitutions pattern. The compounds of this second series were 

active experimentally in the absence and presence of neurotoxic agents. The best compound of this 

second series, a dipropargyl derivative, was predicted to have brain nitric oxide synthase (bNOS) as 

the most probable target and certain probability of multi-target ligand. Again, bNOS was associated 

experimentally with neuroprotective action in several works [73,74]. 

The compounds studied this third work present similar substituent groups and stereochemistry but 

one 1,2 substitution pattern. Based on the previous results, we should expect a similar experimental 

activity and predictions. However, in the previous section we shown experimentally that the present set 

of compounds seems not to be very active over GluRs and the model predicts the higher scores of 

activity over 5-HT3Rs instead of the expected receptors. As we stated in the previous paragraph,  

5-HT3Rs have been related to neuroprotective properties in vitro and in vivo [66]. A plausible 

hypothesis (pendent of further experimental confirmation) is the variation in receptor affinity (from 

GluRs to 5-HT3Rs pathway) due to the change from 1,3 to 1,2 substitution pattern. From our point of 

view, these correspondences between targets that our equations predict, and the references cited from 

the literature could indicate biological plausibility of our models. 

3. Materials and Methods 

3.1. Computational Methods 

3.1.1. ALMA-Entropy Models 

ALMA models may be classified as a general type of model to assessing the links in different 

systems. They are adaptable to all molecular descriptors and/or graphs invariants or descriptors for 

complex networks. In general, we refer to a descriptor Di
k of type kth of the ith system (compound or 

drug di in this case) represented by a matrix M. In fact, in this work we are going to compare the 

model based on entropy values θi
k of a Markov matrix 1Π with other ALMA models based on other 

invariants of the same matrix 1Π, or invariants of the bond adjacency matrix 1B. Consequently, we 

describe first the general equations of the model using a generic descriptor, or graph theoretical 
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invariant Di
k, and later we give the specific equation for the entropy model based on θi

k values. The 

aim of this model is to link the scores Sij(cq) with the molecular descriptors Di
k of a  

given compound di and the Box–Jenkins MA operators written in the form of deviation terms  

ΔDi
k(cq) = Di

k – <Di
k(cq)>. The model has the following general form: 
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 (5)

The output dependent variable is Sij(cq) = Sij(cl, c2, c3, c4, c5) = Sij(cl, aq, ot, tj, sx). The variable Sij(cq) 

is a numerical score of the biological activity of the ith drug (di) vs. the jth target measured in one assay 

carried out under the set of qth conditions cq. Our hypothesis is H0: we can calculate the output Si(cq) as 

a linear combination of scores. We have two types of scores. The first type are the scores  

'Si
k = 'ak·p(cl)·iDk that account for the quality of data p(cl) and for contributions of the kth molecular 

descriptors to the final activity score Sij(cq). In fact, we used the probability p(c1) = 1.0; 0.75; or 0.5  

for data curated in CHEMBL database at levels of expert, intermediate, or auto-curation level, 

respectively. The second type are scores ''Sij
k(cq>1) = ''ak·ΔDi

k(cj) for the contributions of deviations 

ΔDi
k(cq) = (Di

k − <Di
k(cq)>) of the descriptors of di from the average of those of active molecules 

Lij(cq) = 1 for different cq. In general, cj refers to different Multi-output assay conditions, e.g., targets, 

assays, cellular lines, organisms, organs, etc. In this sense, c0 = is the accuracy of the data for this 

assay, c1 = au is the assay per se, c2 = ot is the organism that express the target, c3 = tj is the jth cellular 

or molecular target, and c5 = sx is standard experimental measure of activity. Then, the parameter Di
k 

and ΔDi
k(cq) are the input independent variables and Lij(cq) = 1 is the input dependent variable. Here, 

<Di
k(cq)> is the average of the kth descriptors Di

k of all ith compounds considered as active (Lij(cq) = 1) 

in an assay carry out under the set of conditions cq. The parameters ΔDi
k(cq) are similar to the MA used 

in time series analysis for Bob–Jenkins ARIMA models and others [42]. This type of MA model has 

been used before to solve different problems in Cheminformatics before. It means that, firstly, we sum 

the values of Di
k for all the nj drugs with Lij(cq) = 1 in the assay carry out in the conditions cj. Next, we 

divide this sum by the number of compounds nj with this condition. 
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In this model, we used only one molecular descriptor θi
5. This is the Shannon entropy of order k = 5 

calculated with MI. We do not use low-order entropies k = 0, 1, 2, 3, and 4. Accordingly, the general 

equation is: 
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This type of moving average or deviation-like models was coined by us as the ALMA models, and 

has been used before to solve different problems [54,75–77]. In order to seek the model we used the 

technique Linear Discriminant Analysis (LDA) implemented in the software package STASTICA 6.0 [78]. 

The statistical parameters used to corroborate the model were: Number of cases in training (N), and 

overall values of Sp, Sn, and Ac [54]. 

3.1.2. CHEMBL Dataset 

We downloaded from the public database CHEMBL a general data set composed of >8000  

Multi-output assay endpoints (results of multiple assays) [33,34]. We assigned a value of the observed 

(obs) class variable Lij(cq)obs = 1 (active compound) or Lij(cq)obs = 0 (non-active compounds) to every 

ith drug biologically assayed in different conditions cj. The dataset used to train and validate the model 

includes N = 3548 statistical cases, formed by Nd = 3091 unique drugs which have been assayed each 

one in at least one out of 37 possible standard type measures determined in, at least, one out of  

493 assays. Each assay involves, in turn, at least one out of 169 molecular or cellular targets expressed 

in the tissues of at least one out of 11 different organisms (including human). 

3.2. Experimental Methods: Chemistry 

3.2.1. Synthesis of 1,2-Rasagiline Derivatives 

Melting points are uncorrected and were determined in Reichert Kofler Thermopan (Reichert, 

Vienna, Austria) or in capillary tubes on a Büchi 510 apparatus (BÜCHI Labortechnik AG, Flawil, 

Switzerland). Infrared spectra were recorded on a JASCO FT/IR-4100 spectrophotometer (JASCO 

Analytical Instruments, Easton, PA, USA). The 1H-NMR spectra (300 MHz) and 13C-NMR spectra  

(75 MHz) were recorded in a Bruker AMX spectrometer (Bruker BioSpin Corporation, Fremont, CA, 

USA), using TMS as internal reference (chemical shifts in δ values, J. in Hz). EI Mass spectra were 

recorded on a HEWLETT-PACKARD 5988A spectrometer (Hewlett-Packard Company, Palo Alto, 

CA, USA). FABMS were obtained using MICROMASS AUTOSPEC mass spectrometer (WATERS, 

Milford, MA, USA) and ESIMS were determined on a BRUKER AMAZON ETD spectrometer (Bruker 

BioSpin Corporation). We performed microanalyses in a Perkin-Elmer 240B elemental analyzer 

(PerkinElmer, Waltham, MA, USA) by the Microanalysis Service of the University of Santiago  

de Compostela. The specific rotation was measured with a PERKIN-ELMER 241 polarimeter 
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(PerkinElmer), and it is expressed in (°) (dm−1) (g−1) (mL). Most of the reactions were monitored by 

TLC on pre-coated silica gel plates (Merck 60 F254, 0.25 mm, Merck KGaA, Darmstadt, Germany). 

Synthesized products were purified by flash column chromatography on silica gel (Merck 60,  

230–240 mesh, Merck KGaA) and crystallized if necessary. Solvents were dried by distillation prior use. 

Compound (3): (1S,2R)-(+)-cis-1-(N-Propargylamino)-2-indanol (2) and (1S,2R)-(+)-cis-1-(N,N-

dipropargylamino)-2-indanol. A mixture of 1 (0.20 g, 1.34 mmol), K2CO3 (0.18 g, 1.34 mmol) and 

MeCN (7 mL) was stirred at room temperature under argon for 5 min. A solution of propargyl bromide 

(0.3 mL, 2.7 mmol) dissolved in MeCN (2 mL) was added dropwise with stirring. After being stirred 

for 24 h, the solvent was evaporated and the residue was dissolved in EtOAc (10 mL). The organic 

layer was washed with NaOH 2N (3 × 10 mL) and dried (Na2SO4). The removal of excess of solvent 

to give a white solid, that was purified by flash column chromatography using hexane/EtOAc (3:1) as 

eluent to give, in first place 3 (170 mg, yield 56%) as a white solid and in second place 2 (90 mg, yield 

36%) as a white solid. 

(+)-cis-2. M.p. 106–108 °C.[∝]۲૛૞º۱ = +38° (25 °C, 0.25, CHCl3). IR ν = 3277, 2906, 1421, 1339, 

1140, 1051, 731 cm−1. 1H NMR (300 MHz, CDCl3) δ = 7.32–7.22 (m, 4H, Harom), 4.51–4.47 (m, 1H, 

2-H), 4.31–4.29 (m, 1H, 1-H), 3.69–3.52 (AB system , 1H, J = 17.2 Hz, CH2), 3.68–3.51 (AB system, 

1H, J. = 17.2 Hz, CH2), 3.11–2.96 (m, 2H, 3α-H, 3β-H), 2.67 (br. s., 1H, D2O exch., OH), 2.31 (t, 1H, 

J. = 2.2 Hz, CH). 13C RMN (75 MHz, CDCl3) δ = 141.85 (C-3a), 141.05 (C-7a), 128.17, 126.79, 

125.58 and 123.94 (CHarom), 82.27 (C≡CH), 71.90 (C-2), 70.87 (C≡CH), 64.78 (C-1), 39.59 (CH2), 

37.16 (C-3). MS (EI): m/z (%): 186 (2) [M−1]+, 168 (5) [M+–H2O], 148 (100) [M+–propargyl], 130 

(21), 115 (10), 103 (31), 77 (11). Anal. calcd. for C12H13NO (187.24): C 76.98, H 7.00, N 7.48; found 

C 76.63, H 7.12, N 7.36. 

(+)-cis-3. M.p. 106–109 °C. [∝]۲૛૞º۱ = +72° (25 °C, 0.25, CHCl3). IR ν = 3279, 2894, 1339, 1244, 

1137 cm−1. 1H NMR (300 MHz, CDCl3) δ = 7.52–7.50 (m, 1H, 7-H), 7.29–7.18 (m, 3H, 4-H, 5-H,  

6-H), 4.52 (dd, 1H, J. = 13.2, 6.9 Hz, 2-H), 4.42–4.40 (m, 1H, 1-H), 3.74 (br. s., 1H, D2O exch., OH), 

3.65–3.39 (AB system, 2H, J. = 17.1 Hz, CH2), 3.64–3.38 (AB system, 2H, J. = 17.1 Hz, CH2),  

3.24–2.79 (part AB of an ABM system, 2H, JAB = 16.4 Hz, JAM =7.2 Hz, JBM = 6.1 Hz, 3α-H, 3β-H), 

2.29 (t, 2H, J. = 2.3 Hz, 2 × CH). 13C RMN (75 MHz, CDCl3) δ = 141.47 (C-3a), 138.15 (C-7a), 

128.68, 127.04, 126.65 and 125.46 (CHarom), 80.37 (2 × C≡CH), 72.87 (C-2), 71.39 (2 × C≡CH), 68.37 

(C-1), 41.04 (2 × CH2), 40.31 (C-3). MS (EI): m/z (%): 226 (2) [M+1]+, 225 (5) [M+], 224 (4) [M−1]+, 

208 (2) [M+–H2O], 186 (100) [(M−1)+–propargyl], 133 (32), 116 (35), 77 (29). Anal. calcd. for 

C15H15NO (225.29): C 79.97, H 6.71, N 6.22; found C 79.81, H 6.92, N 6.29. 

Compound (4): (1S,2R)-(−)-cis-1-(N,N-Dipropargylamino)-2-indanyl acetate. A mixture of 3 (0.08 g, 

0.36 mmol), acetic anhydride (66 μL, 0.72 mmol), Et3N (100 μL, 0.72 mmol), DMAP (a catalytic 

amount) in MeCN (5 mL), under argon, was stirred at room temperature for 3 h. The solvent was 

removed and the residue was partitioned between EtOAc (10 mL) and H2O (10 mL), and the organic 

layer was washed with a saturated solution of NaCl (3 × 10 mL), dried (Na2SO4) and evaporated, to 

give 4 (as a white solid (76 mg, yield 80%). M.p. 52–53 °C. [∝]ࡰ૛૞º70.6− = ࡯° (25 °C, 0.25, CHCl3).  

IR ν = 3239, 2890, 1729, 1210, 1035 cm−1. 1H NMR (300 MHz, CDCl3) δ = 7.49–7.46 (m, 1H, 7-H), 

7.31–7.21 (m, 3H, 4-H, 5-H, 6-H), 5.68 (dt, 1H, J. = 5.4, 2.4 Hz, 2-H), 4.61 (d, 1H, J. = 5.4 Hz, 1-H), 

3.77–3.63 (AB system, 2H, J. = 17.5 Hz, CH2), 3.76–3.62 (AB system, 2H, J. = 17.3 Hz, CH2),  
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3.17–2.93 (part AB of an ABM system, 2H, JAB = 17.2 Hz, JAM = 5.7 Hz, JBM = 2.5 Hz, 3α-H, 3β-H), 

2.21 (t, 2H, J. = 2.4 Hz, 2 × CH), 2.02 (s, 3H, CH3). 13C NMR (75 MHz, CDCl3) δ = 170.40 (COCH3), 

140.01 (C-3a), 139.48 (C-7a), 128.07, 126.97, 125.24 and 125.13 (CHarom), 81.21 (2 × C≡CH), 77.04 

(C-2), 71.74 (2 × C≡CH), 68.94 (C-1), 39.99 (2 × CH2), 37.68 (C-3), 21.70 (CH3). MS (FAB):  

m/z (%): 269 (6) [M+2]+, 268 (26) [M+1]+, 225 (2) [M+–acetyl], 197 (18), 169 (12), 154 (88), 137 

(100). Anal. calcd. for C17H17NO2 (267.32): C 76.38, H 6.41, N 5.24; found C 76.12, H 6.68, N 5.36. 

Compound (5): (1S,2R)-(−)-cis-1-(N,N-Dipropargylamino)-2-indanyl benzoate. To a solution of of 

3 (0.08 g, 0.36 mmol), DMAP (a catalytic amount) in MeCN (5 mL), at 0 °C and under argon, was 

added dropwise a solution of benzoyl chloride (82 μL, 0.72 mmol) and Et3N (100 μL, 0.72 mmol).  

The mixture was stirred at room temperature for 2 h. the solvent was evaporated and the residue  

was dissolved in CH2Cl2 (10 mL). The layer organic was washed with a saturated solution of NaCl  

(3 × 10 mL), dried (Na2SO4) and evaporated, to give a yellow oil that was purified by flash column 

chromatography using hexane–EtOAc (6:1) as eluent to give 5 (73 mg, yield 73%) as a yellow oil. [∝]ࡰ૛૞º85.6− = ࡯° (25 °C, 0.25, CHCl3). IR ν = 3289, 2842, 1714, 1267, 1108, 1069 cm−1. 1H NMR 

(300 MHz, CDCl3) δ = 7.95–7.92 (m, 2H, 2'-H, 6'-H), 7.56–7.50 (m, 7H, 3'-H, 4'-H, 5'-H, 4 × Harom), 

6.00 (dt, 1H, J. = 5.6, 2.6 Hz, 2-H), 4.74 (d, 1H, J. = 5.3 Hz, 1-H), 3.75 (d, 4H, J. = 2.3 Hz, 2 × CH2), 

3.29–3.06 (part AB of an ABM system, 2H, JAB = 17.0 Hz, JAM = 5.7 Hz, JBM = 2.7 Hz, 3α-H, 3β-H), 

2.15 (t, 2H, J. = 2.1 Hz, 2 × CH). 13C NMR (75 MHz, CDCl3) δ = 166.36 (CO), 140.30 (C-3a), 139.81 

(C-7a), 133.16 (C'-4), 130.72 (C'-1), 129.83, 128.61, 128.39, 127.28, 125.49 and 125.43 (4 × CHarom,  

4 × C'-H), 81.30 (2 × C≡CH), 77.75 (C-2), 72.20 (2 × C≡CH), 69.17 (C-1), 40.40 (2 × CH2), 38.13  

(C-3). MS (FAB): m/z (%): 331 (11) [M+2]+, 330 (40) [M+1]+, 231 (68), 186 (3), 154 (95), 137 (100), 

105 (25). Anal. calcd. for C22H19NO2 (329.39): C 80.22, H 5.81, N 4.25; found C 80.05, H 6.01, N 4.34. 

3.2.2. Reaction of Carbamylation 

To a stirred and ice-cooled solution of 2 or 3 (0.43 mmol) in acetonitrile (5 mL) was added the  

N,N-dialkylcarbamyl chloride (0.73 mmol), followed by a dropwise addition of NaH (60% in oil,  

0.56 mmol). The reaction mixture was stirred for 24 h at room temperature under argon. After 

evaporation of the solvent in vacuo, water (10 mL) was added and extracted with ether (3 × 10 mL). 

The organic phase was washed with dilute KOH (pH 10–11), dried and evaporated to dryness  

in vacuo. Purification by column chromatography (Hexane:EtOAc 4:1) afforded: 

Compound (6): (1S,2R)-(−)-cis-1-(N-Propargylamino)-2-indanyl dimethylcarbamate. This compound 

was obtained as a yellow solid (100 mg, yield 73%). M.p. 119–122 °C. [∝]ୈଶଷºେ = −50.4° (23 °C, 0.25, 

CHCl3). IR ν = 3264, 2923, 1693, 1388, 1184, 1047 cm−1. 1H NMR (300 MHz, CDCl3) δ = 7.40–7.39 

(m, 1H, 7-H), 7.28–7.13 (m, 3H, 4-H, 5-H, 6-H), 5.52–5.48 (m, 1H, 2-H), 4.38 (d, 1H, J = 5.0 Hz,  

1-H), 3.61–3.46 (AB system, 1H, J. = 16.8 Hz, CH2), 3.60–3.45 (AB system, 1H, J. = 16.8 Hz, CH2), 

3.19–3.04 (AB system, 1H, J = 16.5 Hz, 3α-H), 3.17–3.03 (AB system, 1H, J. = 16.5 Hz, 3β-H),  

2.90–2.80 (m, 6H, 2 × CH3), 2.62 (t, 1H, J. = 2.5 Hz, CH), 2.25 (br. s., 1H, D2O exch., NH). 13C NMR 

(75 MHz, CDCl3) δ = 155.97 (CO), 142.09 (C-3a), 139.75 (C-7a), 127.97, 126.69, 124.93 and 124.66 

(CHarom), 82.17 (C≡CH), 76.00 (C-2), 71.64 (C≡CH), 63.28 (C-1), 37.46 (CH2), 36.35 (C-3), 29.94 
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and 29.67 (2 × CH3). MS (FAB): m/z (%): 258 (1) [M]+, 257 (6) [M−1]+, 168 (100), 116 (80), 72 (80). 

Anal. calcd. for C15H18N2O2 (258.32): C 69.74, H 7.02, N 10.84; found C 69.65, H 7.13, N 10.93. 

Compound (7): (1S,2R)-(−)-cis-1-(N-Propargylamino)-2-indanyl diethylcarbamate. Isa yellow solid 

(98 mg, yield 66%). M.p. 68–69 °C. [∝]ୈଶଷºେ = −37.6° (23 °C, 0.25, CHCl3). IR ν = 3242, 2972, 1677, 

1425, 1270, 1173, 1066 cm−1. 1H NMR (300 MHz, CDCl3) δ = 7.42–7.39 (m, 1H, 7-H),  

7.29–7.21 (m, 3H, 4-H, 5-H, 6-H), 5.54 (dt, 1H, J. = 5.3, 3.6 Hz, 2-H), 4.41–4.39 (m, 1H, 1-H),  

3.63–3.49 (AB system, 1H, J. = 16.8 Hz, CH2), 3.62–3.48 (AB system, 1H, J. = 16.8 Hz, CH2),  

3.29–3.09 (m, 6H, 3α-H, 3β-H, 2 × CH2CH3), 2.25 (t, 1H, J. = 2.4 Hz, CH), 1.93 (br. s., 1H, D2O 

exch., NH), 1.28–1.01 (m, 6H, 2 × CH2CH3). 13C NMR (75 MHz, CDCl3) δ = 155.18 (CO), 142.24  

(C-3a), 139.80 (C-7a), 127.91, 126.65, 124.88 and 124.61 (CHarom), 82.19 (C≡CH), 75.64 (C-2), 71.54 

(C≡CH), 63.52 (C-1), 41.92 and 41.30 (2 × CH2CH3), 37.45 (CH2), 36.50 (C-3), 13.99 and 13.51  

(2 × CH2CH3). MS (FAB): m/z (%): 288 (18) [M+2]+, 287 (100) [M+1]+, 286 (8) [M]+, 285 (6) 

[M−1]+, 231 (21), 154 (27), 137 (26). Anal. calcd. for C17H22N2O2 (286.37): C 71.30, H 7.74, N 9.78; 

found 71.12, H 7.99, N 9.92. 

Compound (8): (1S,2R)-(−)-cis-1-(N,N-Dipropargylamino)-2-indanyl dimethylcarbamate. Was 

obtained as a white solid (76 mg, yield 58%). M.p. 109–112 °C. [∝]ୈଶହºେ = −38° (25 °C, 0.25, CHCl3). 

IR ν = 3292, 2922, 1685, 1397, 1272, 1186, 1050 cm−1. 1H NMR (300 MHz, CDCl3) δ = 7.48 (t, 1H,  

J = 3.9 Hz, 7-H), 7.27–7.22 (m, 3H, 4-H, 5-H, 6-H), 5.61 (dt, 1H, J. = 5.6, 3.3 Hz, 2-H), 4.63–4.61 (m, 

1H, 1-H), 3.67–3.66 (m, 4H, 2 × CH2), 3.16–2.97 (AB system, 1H, J. = 16.8 Hz, 3α-H), 3.14–2.96  

(AB system, 1H, J. = 16.8 Hz, 3β-H), 2.91–2.81 (m. 6H, 2 × CH3), 2.21 (t, 1H, J. = 2.2 Hz, 2 × CH) 
13C NMR (75 MHz, CDCl3) δ = 155.98 (CO), 140.05 (C-3a), 139.82 (C-7a), 127.96, 126.76, 125.39 

and 125.10 (CHarom), 81.10 (2 × C≡CH), 77.36 (C-2), 71.91 (2 × C≡CH), 68.31 (C-1), 40.24 (2 × CH2), 

37.94 (C-3), 36.49 and 36.14 (2 × CH3). MS (FAB): m/z (%): 298 (19) [M+2]+, 297 (100) [M+1]+, 296 

(4) [M]+, 295 (9) [M−1]+, 231 (30), 204 (21), 154 (31), 137 (39). Anal. calcd. for C18H20N2O2 

(296.36): C 72.95, H 6.80, N 9.45; found 72.78, H 7.01, N 9.53. 

Compound (9): (1S,2R)-(−)-cis-1-(N,N-Dipropargylamino)-2-indanyl diethylcarbamate. This 

compound was obtained as an oil (70 mg, yield 49%). [∝]ୈଶହºେ  = −18.6° (25 °C, 0.25, CHCl3).  

IR ν = 3292, 2928, 1688, 1425, 1270, 1167, 1062 cm−1. 1H NMR (300 MHz, CDCl3) δ = 7.49 (t, 1H,  

J = 4.2 Hz, 7-H), 7.28–7.23 (m, 3H, 4-H, 5-H, 6-H), 5.59 (dt, 1H, J. = 5.8, 3.9 Hz, 2-H), 4.62 (d, 1H,  

J. = 5.8 Hz, 1-H), 3.71–3.57 (m, 4H, 2 × CH2), 3.35–3.23 (m, 4H, 2 × CH2CH3), 3.17–2.98 (AB 

system, 1H, J. = 16.8 Hz, 3α-H), 3.15–2.97 (AB system, 1H, J = 16.8 Hz, 3β-H), 2.21 (t, 2H, J. = 2.2 Hz, 

2 × CH), 1.12–1.01 (m, 6H, 2 × CH2CH3). 13C NMR (75 MHz, CDCl3) δ = 155.21 (CO), 139.98  

(C-3a), 139.86 (C-7a), 128.00, 126.74, 125.55 and 125.01 (CHarom), 81.06 (2 × C≡CH), 76.58 (C-2), 

71.97 (2 × C≡CH), 67.99 (C-1), 41.65 and 41.12 (2 × CH2CH3), 40.14 (2 × CH2), 37.81 (C-3), 13.97 

and 13.47 (2 × CH2CH3). MS (FAB): m/z (%): 326 (20) [M+2]+, 325 (92) [M+1]+, 324 (2) [M]+,  

323 (8) [M−1]+, 288 (89), 230 (51), 154 (71), 137 (100). Anal. calcd. for C20H24N2O2 (324.42): C 74.04,  

H 7.46, N 8.64; found 73.89, H 7.61, N 8.75. 
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3.3. Experimental Methods: Biology 

3.3.1. Culture of Rat Cortical Neurons 

Embryos were selected from 19 to 20 days pregnant rats by caesarean section. Meninges were 

removed and cortex was isolated after the dissection of the brain. The fragments obtained from several 

embryos were subjected to mechanic digestion. We re-suspended the cells in a Neurobasal medium 

with 2% B-27. We seeded in 48-well plates at a density of 100,000 cells/mL. Neuronal cultures were 

allowed to grow for 8–10 days. Incubations with different CSF were done when the microscope 

showed the existence of a dense neuronal network. Embryos were selected from 19 to 20 days 

pregnant rats, which were decapitated and embryos were extracted from the womb by caesarean 

section. Meninges were removed and a portion of motor cortex was isolated after the dissection of the 

brain. Fragments obtained from several embryos were subjected to mechanic digestion and cells were 

re-suspended in Neurobasal medium with 2% B-27 and seeded in 48-well plates at a density of 

100,000 cells/mL. Neuronal cultures were allowed to grow for 8–10 days and when the microscope 

showed the existence of a dense neuronal network, incubations with different CSF were done [79]. 

3.3.2. Measurement of Neuronal Viability 

We used the MTT reduction assay following the procedure previously described [65]. After the 

appropriate incubations with the compounds alone, or co-incubated with 100 µM H2O2 or glutamate, 

0.5 mg/mL MTT were added to each well and incubation was performed at 37 °C for 2 h. Formazan  

salt formed was dissolved in DMSO, and colorimetric determination were performed at 540 nm. Control 

cells without compounds or toxic stimulus were considered 100% viability. Neuronal viability  

after exposure to compounds or different treatments was expressed as% of control within each  

individual experiment. Graph Pad Prism Software (GraphPad Software, San Diego, CA, USA) was 

used to perform statistical analyses and graphical presentation. Experiments were reproduced at least 

three times. Data were expressed as mean ± S.E.M. values. Groups were compared by ANOVA/Dunnett’s 

test. A p-value ≤0.05 was accepted as the limit of statistical significance. 

4. Conclusions 

We can use Shannon entropy measures to developing predictive models for multi-target networks 

of neuroprotective/neurotoxic compounds. In doing so, we can use Box–Jenkins operators of 

molecular descriptors to obtain multi-target, multi-scale, and multi-output models able to predict 

different outcomes for multiple combinations of output experimental measures, experimental 

protocols, organisms, and molecular and cellular targets. One of these models has been demonstrated 

here to be useful as a complementary tool in the organic synthesis and evaluation of the multi-target 

biological activity of new compounds with potential neuroprotective activity. The model is also a very 

useful tool to predict complex networks of drug-target interactions with possible applications to the 

study of non-linear effects in the biological activity of neuroprotective drugs. 
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