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Abstract: Abnormalities in RNA metabolism and alternative splicing (AS) are emerging as 

important players in complex disease phenotypes. In particular, accumulating evidence 

suggests the existence of pathogenic links between multiple sclerosis (MS) and altered AS, 

including functional studies showing that an imbalance in alternatively-spliced isoforms may 

contribute to disease etiology. Here, we tested whether the altered expression of AS-related 

genes represents a MS-specific signature. A comprehensive comparative analysis of gene 

expression profiles of publicly-available microarray datasets (190 MS cases, 182 controls), 

followed by gene-ontology enrichment analysis, highlighted a significant enrichment for 

differentially-expressed genes involved in RNA metabolism/AS. In detail, a total of 17 genes 

were found to be differentially expressed in MS in multiple datasets, with CELF1 being 

OPEN ACCESS



Int. J. Mol. Sci. 2015, 16 23464 

 

 

dysregulated in five out of seven studies. We confirmed CELF1 downregulation in MS  

(p = 0.0015) by real-time RT-PCRs on RNA extracted from blood cells of 30 cases and  

30 controls. As a proof of concept, we experimentally verified the unbalance in  

alternatively-spliced isoforms in MS of the NFAT5 gene, a putative CELF1 target. In 

conclusion, for the first time we provide evidence of a consistent dysregulation of  

splicing-related genes in MS and we discuss its possible implications in modulating specific 

AS events in MS susceptibility genes. 

Keywords: alternative splicing; microarray; peripheral blood mononuclear cells; 

autoimmune neurodegenerative disorder; multiple sclerosis 

 

1. Introduction 

The role of RNA metabolism in controlling fundamental functions in the central nervous system 

(CNS) and in the pathogenesis of neurodegenerative disorders is being increasingly appreciated [1].  

The discovery of mutations in key RNA binding proteins in several human neuronal-based diseases has 

firmly placed RNA processing/metabolism as central to disease etiology [2]. Alternative splicing (AS) 

is a post-transcriptional mechanism that expands the RNA information content through the expression 

of multiple different transcripts from individual genes. It is estimated that the vast majority (up to 97%) 

of protein coding genes express multiple mRNAs through AS [3,4]: ~80% of the variability generated 

by AS involves the coding regions, whereas the remaining 20% might affect cis-acting elements that 

control mRNA stability, translation efficiency, and localization. Moreover, two thirds of AS events  

are predicted to introduce premature termination codons, which trigger mRNA degradation by the 

nonsense-mediated mRNA decay (NMD) pathway [5]. Considering the complexity and the finely-tuned 

regulation of AS, it is not surprising that splicing alterations can directly cause diseases, modify the 

severity of disease phenotypes, or be linked to susceptibility to complex disorders. The mechanisms 

causing altered splicing can involve the disruption of cis-acting elements within the affected gene, as well 

as the dysregulation of trans-acting splicing factors. The distinction between cis- and trans-acting effects 

has important mechanistic implications: cis elements have a direct impact on the expression of only one 

gene, whereas trans-acting factors affect the expression of multiple genes [3]. 

Multiple sclerosis (MS; OMIM#126200) is a clinically heterogeneous, inflammatory, demyelinating 

disease of the CNS, with an autoimmune pathogenesis and complex inheritance [6]. Despite longstanding 

and intensive efforts, genetic and environmental risk factors still remain largely unknown [7–9].  

Few studies have investigated the link between AS dysregulation, aberrant splice-regulatory protein 

expression, and MS. The first study monitoring differential expression and AS patterns in whole blood 

revealed no substantial changes in full-length transcript levels between MS patients and controls, but a 

highly significant differential expression of a large number of exons, with at least 340 genes predicted 

to undergo AS. Indeed, while unsupervised hierarchical clustering applied to full-length transcripts could 

not distinguish MS cases from controls, clustering of alternatively-spliced exons well discriminated 

between the two groups. This suggested that AS patterns could be used as biomarkers, particularly during 

quiescent times of the disease [10]. Besides these preliminary data, several pieces of evidence point to a 
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potential role of AS in MS [11]. Genetic susceptibility to MS has been mapped to many SNPs, but the 

description of the underlying functional mechanism is often missing. However, when the functional variant 

has been characterized, it invariantly affected the gene splicing process [11,12]. Even the strongest risk 

factor for MS (i.e., the HLA DRB1*1501-DQB1*0602 haplotype [7–9] seems to exert its predisposing 

role by determining an allele-specific splicing pattern at the DQB1 locus [13]. 

The potential role of AS in MS pathogenesis is also strengthened by the observation that AS can modulate 

immunogenicity by: (i) creating novel antigenic epitopes; (ii) altering antigen surface accessibility;  

and (iii) enabling the expression of autoantigens; and (iv) altering patterns of post-translational  

modifications [11,14]. Thus, AS may be responsible for the generation of untolerized epitopes, and,  

as a result, of autoimmunity. 

Finally, the potent immunogenicity of heterogeneous nuclear ribonucleoproteins (hnRNPs), which 

act as activators and/or repressors of splicing, was demonstrated to play a pathogenic role in autoimmune 

disorders [15,16] and neurodegenerative diseases, including MS, where anti-hnRNP-A1/A2/B1 

antibodies have been identified [17,18]. Importantly, the autoimmune reaction against hnRNPs might 

contribute to neurodegeneration: transfection of anti-hnRNP-A1 antibodies into neurons resulted in both 

severe neuronal injury and in changes in the levels of transcripts potentially regulated by hnRNP-A1 [19]. 

With these premises, we aimed at exploring a possible generalized alteration of AS control in 

relapsing-remitting (RR) MS (the most common form, representing ~80% of all diagnosed patients) by 

determining whether the disease status is associated with changes in splice-regulatory protein gene 

expression. In doing this, we applied a combined approach based on in-silico analyses of microarray 

datasets, publicly available through the Gene Expression Omnibus (GEO) repository, as well as on  

in-vivo measurements on RNA extracted from peripheral blood mononuclear cells (PBMCs) of RR-MS 

cases and controls. 

2. Results and Discussion 

2.1. Dataset Selection 

We selected seven microarray datasets from MS case/control cohorts publicly available at the NCBI 

GEO database (Table 1). In all cases, gene expression experiments were performed on RNA extracted 

from blood-derived samples (either PBMCs, whole blood, peripheral blood T-cells, or naïve CD4+ T cells). 

These datasets account for a total of 372 subjects (190 RR-MS patients and 182 controls). Three studies 

used the Affymetrix Human Genome U133 Plus 2.0 microarray platform, three were conducted with the 

Affymetrix Human Exon 1.0 ST Array, and one was based on the Illumina HumanHT-12 V3.0 chip. 

2.2. The “Nuclear mRNA Splicing” Pathway Is Consistently Dysregulated in MS 

To search for pathways specifically dysregulated in MS, we performed a gene ontology (GO) 

enrichment analysis with DAVID (Database for Annotation, Visualization and Integrated Discovery) 

using, for each dataset, the top 3000 up/downregulated genes, as retrieved from GEO2R. The main 

results are summarized in Table 2, Tables S1 and S2. We found a total of 141 significantly-enriched 

clusters (about 20 for each dataset). Two pathways consistently emerged from the majority of datasets: 

(i) the group of “Nuclear mRNA splicing” functionally-related genes (five out of seven datasets; two 
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groups surviving the correction for multiple testing); and (ii) the “NADH dehydrogenase complex” 

group (four out of seven datasets; two groups surviving the correction for multiple testing). Interestingly, 

in two out of seven datasets we also observed the recurrence of another GO functional category related 

to mRNA metabolism, i.e., the “RNA localization” cluster, reinforcing the concept that altered mRNA 

processing could be a specific signature of MS (Table S2H). 

Table 1. Characteristics of multiple sclerosis (MS)-related datasets included in the study. 

Dataset 

(accession 

number) 

Array Type 
MS Cases/ 

Controls 
Origin 

% Females 

(Cases/ 

Controls) 

Age (Years) 

Notes on MS 

Patients 

Included 

Tissue Ref. 

GSE21942 

Affymetrix 

Human Genome 

U133 Plus 2.0 

Array 

10/15 Finland 100/100 
Mean age cases: 54.2 

Mean age controls: 71.6 

4 patients 

under 

treatment 

Peripheral 

blood 

mononuclear 

cells 

[20] 

GSE41848 

Affymetrix 

Human Exon 

1.0 ST Array 

54/38 

(discovery 

dataset) 

n.a. 

71/74 

Median age cases:  

43 (range: 22–66)  

Median age controls: 46 

(range 26–66) 

Only RR-MS 

untreated cases 

included in 

the analyses 

Whole blood [21] 

GSE41849 

Affymetrix 

Human Exon 

1.0 ST Array 

21/22 

(replication 

dataset) 

66/59 

Median age cases:  

45 (range 23–61)  

Median age controls: 42 

(range 27–61) 

GSE41890 

Affymetrix 

Human Gene 

1.0 ST Array 

22/24 n.a. 56/52 

Mean age cases:  

40 (range 23–66)  

Mean age controls:  

38 (range 23–57) 

RR-MS 

patients in 

remitting 

phase 

Peripheral 

blood 

leukocytes 

[22] 

GSE17048 

Illumina 

HumanHT-12 

V3.0 

Expression 

BeadChip 

36/45 Australia 80/64 

Mean age cases:  

48.5 (range 29–65)  

Mean age controls:  

48.5 (range 23–77) 

Only RR-MS 

untreated cases 

included in 

the analyses 

Whole blood [23,24] 

GSE43592 

Affymetrix 

Human Genome 

U133 Plus 2.0 

Array 

10/10 Sweden 40/40 
Mean age cases: 38 

Mean age controls: 40 
RR-MS 

Peripheral 

blood T-cells 
[25] 

GSE13732 

Affymetrix 

Human Genome 

U133 Plus 2.0 

Array 

37 */28 
92% 

Caucasian 
74/64 

Mean age cases: 37 

Mean age controls: 35 
- 

Naïve CD4+ 

T cells 
[26] 

* Clinically isolated syndrome (CIS), the earliest clinical manifestation of MS. Abbreviations: n.a., not available; 

RR, relapsing remitting MS. 

As a control, the same analysis was performed on a similar group of datasets (seven studies, 390 cases 

and 348 controls, blood-derived RNA samples) involving a disease with a completely different etiology, 

i.e., coronary artery disease and its major complication, myocardial infarction. This analysis did not 

show a pattern of enriched functionally-related genes similar to that observed for MS (Table S3). 
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Finally, to confirm the observed pathway enrichment, we performed an alternative analysis based on 

a different approach: in this case, we first conducted a meta-analysis by using the INMEX (Integrative 

Meta-analysis of Expression Data) software, and the identified consistently differentially-expressed 

genes were subsequently subjected to a GO enrichment analysis. We found 107 significantly enriched 

GO clusters (p < 0.0005), with the “RNA binding” category being among the top five (p = 7.7 × 10−23) 

(Table S4), once again underlying the possible role of RNA processing in the pathogenesis of MS. 

Table 2. Summary of the DAVID results. 

Dataset 

(Accession 

Number) 

No. of 

Identified 

Cluster * 

No. of 

Significantly 

Enriched 

Clusters ** 

Enrichment  

Score Range 

(max–min) *** 

“Nuclear mRNA 

Splicing” Category 

“NADH Dehydrogenase 

Complex” Category 

Cluster 

Rank 

Enrichment 

Score 

Cluster 

Rank 

Enrichment 

Score 

GSE21942 218 27 12–1.34 1 12 **** 8 3 **** 

GSE41848 246 37 4.2–1.32 7 2.67 6 2.97 

GSE41849 214 9 5.52–1.35 - - 1 and 2 5.52 and 5.1 **** 

GSE41890 185 10 5.1–1.47 - - - - 

GSE17048 174 10 2.41–1.34 4 2.16 10 1.34 

GSE43592 222 23 5.24–1.32 10 1.82 - - 

GSE13732 199 25 9.06–1.33 3 4.34 **** - - 

* Total number of groups of functionally-related genes identified by DAVID through the integration of data 

from dozens of databases (or details see [27]); listed numbers include both significantly and not-significantly 

enriched groups; ** Clusters significantly enriched are those showing a DAVID enrichment score >1.3 

(corresponding to p < 0.05 calculated through a modified Fisher exact test, one tailed [27]); *** It is provided 

the score range for the significantly enriched groups; and **** Cluster surviving the correction for multiple 

testing (Benjamini correction). DAVID, Database for Annotation, Visualization and Integrated Discovery 

(http://david.abcc.ncifcrf.gov/). 

2.3. The CELF1 Gene Emerges as a Major Splicing-Regulator Altered in MS 

The “Nuclear mRNA splicing” GO category comprises a total of 126 genes (source: the KEGG 

catalogue). To identify shared dysregulated transcripts belonging to this category among the five 

datasets, we intersected the corresponding gene lists, which were composed of 54, 39, 26, 30, and  

39 genes, respectively (Table S2). We found one gene present in all five clusters (CELF1/CUGBP1, 

CUG triplet repeat, RNA binding protein 1), one present in four out of five clusters (MBNL1,  

muscleblind-like splicing regulator 1), and 15 genes present in three out of five clusters (Table 3). A 

meta-analysis, performed with the INMEX tool, allowed us to verify the direction (up/downregulation) 

of the observed altered expression of the most interesting genes (i.e., those shared by at least three 

datasets) (Table 3). 

To confirm—at least in part—these in-silico results, we measured by semi-quantitative real-time  

RT-PCR assays the expression level of CELF1, the only transcript dysregulated in five out of five datasets. 

Real-time experiments were performed on RNA extracted from PBMCs of 30 RR-MS patients (free from 

treatments) and 30 healthy controls. CELF1 was significantly overexpressed (on average 1.5-fold) in 

healthy individuals respect to RR-MS patients (p = 0.0015) (Figure 1), confirming the upregulation 

observed in controls in the microarray data (Table 3). 
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2.4. Effect of Splicing Alteration on Genotype-Dependent AS Events 

Due to the observed generalized dysregulation of genes directly involved in splicing control, we 

expect that this could potentially reflect on the AS of a number of genes, altering their pattern of 

alternative isoforms. The presence of a polymorphism located directly at splice sites or in cis-acting 

splicing regulatory elements (i.e., possibly modifying the splicing pattern per se) could in theory 

exacerbate and make detectable the effect of the splicing dysregulation, with the polymorphism acting 

as genotype-dependent “AS sensor”. 

Table 3. The 17 splice-regulatory genes found dysregulated in at least three MS datasets 

enriched for the gene-ontology category “nuclear mRNA splicing”. 

Gene Symbol Gene Name 
No. of Datasets in Which 

the Gene Is DE 
Combined T Stat * Combined p Value 

CELF1/ 

CUGBP1 

CUG triplet repeat, RNA binding 

protein 1 
5 out of 5 −38.352 4.0144 × 10−5 

MBNL1 muscleblind-like splicing regulator 1 4 out of 5 36.567 7.6664 × 10−5 

CSTF3 
cleavage stimulation factor,  

3ʹ pre-RNA, subunit 3 

3 out of 5 

41.24 1.4073 × 10−5 

SRSF10 
FUS interacting protein 

(serine/arginine-rich) 1 
n.c. n.c. 

GEMIN6 
gem (nuclear organelle) associated 

protein 6 
−34.092 0.00018533 

HNRNPA2B1 
heterogeneous nuclear 

ribonucleoprotein A2/B1 
43.464 6.2483 × 10−6 

HNRNPH1 
heterogeneous nuclear 

ribonucleoprotein H1 (H) 
39.348 2.7932 × 10−5 

HNRNPH3 
heterogeneous nuclear 

ribonucleoprotein H3 (2H9) 
32.941 0.00027984 

DDX39B HLA-B associated transcript 1 n.c. n.c. 

PCBP1 poly(rC) binding protein 1 −35.428 0.0001146 

POLR2E 
polymerase (RNA) II (DNA directed) 

polypeptide E, 25 kDa 
n.c. n.c. 

POLR2J 
polymerase (RNA) II (DNA directed) 

polypeptide J, 13.3 kDa 
−27.037 0.0021827 

RPL36AP51 ribosomal protein L36a pseudogene 51 n.c. n.c. 

SRSF1 splicing factor, arginine/serine-rich 1 46.327 2.1799 × 10−6 

SCAF11 
splicing factor, arginine/serine-rich 2, 

interacting protein 
26.307 0.0028008 

SRSF3 splicing factor, arginine/serine-rich 3 −42.054 1.0493 × 10−5 

YTHDC1 YTH domain containing 1 n.c. n.c. 

Combined T stats and p values were calculated using the INMEX software. Datasets included in this analysis 

were: GSE21942, GSE17048, GSE43592, and GSE13732. * The minus sign indicates decreased expression 

levels in cases with respect to controls. DE: differentially expressed; n.c.: not calculated (not surviving the 

threshold of significance of 0.05). 
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Figure 1. CUGBP Elav-like family member 1 (CELF1) expression levels in peripheral blood 

mononuclear cells (PBMCs) of MS patients and controls. Expression levels were measured 

by semi-quantitative real-time RT-PCRs in 30 MS patients and 30 controls, using primers 

located in exons 10 and 11, as depicted in the scheme above boxplots. Boxplots show CELF1 

expression levels according to disease status. Boxes define the interquartile range; the thick 

line refers to the median. Results are presented as normalized rescaled values. Significance 

level for differences between groups was calculated by a t-test. **: p < 0.005. 

As a proof of concept, we hence selected a functional polymorphism (the C to T transition at position 

chr16:69,605,099; rs12599391) mapping within an intronic splicing enhancer (ISE) and known to 

influence the inclusion/skipping of an exon of its host gene, NFAT5 (nuclear factor of activated T-cells 5). 

In particular, the presence of the C nucleotide was previously demonstrated to disrupt the ISE motif, 

thus leading to exon-2 skipping [28]. NFAT5 is an interesting candidate because: (i) it shows a significant 

exon-specific dysregulation in MS patients compared to controls, as evidenced by Tian and colleagues [10]; 

and (ii) it might represent a CELF1/MBNL1 target according to crosslinking-immunoprecipation 

protocol (CLIP)-seq analysis of mouse cells and tissues [29,30]. 

To specifically detect alternative NFAT5 isoforms, we developed a fluorescent competitive RT-PCR 

assay, with primers mapping within exons 1 and 5. RT-PCR assays performed on RNA extracted from 

PBMCs of five healthy individuals evidenced the existence of at least three different NFAT5 alternative 

transcripts, deriving from the skipping of exon 2, 4, or both (Figure 2A,B). 
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Figure 2. Splicing pattern analysis of the NFAT5 gene. (A) Schematic representation of the 

NFAT5 gene between exons 1 and 5. Exons and introns are represented by boxes and lines, 

and are approximately drawn to scale. Exons indicated in black are those undergoing 

alternatively skipping (alone or in combination). The positions of the primer couple used for 

competitive fluorescent RT-PCR experiments are shown by arrows (the forward primer  

was labeled with the FAM fluorophore). The C > T transition (rs12599391) abolishing the 

intron-2 ISE element is also indicated; (B) Fluorescent RT-PCR products, obtained from the 

RNA extracted from PBMCs of a control individual (heterozygous CT for the rs12599391 

polymorphism), were separated by using capillary electrophoresis. The panel on the left is  

a close-up view of the GeneMapper window encompassing all peaks corresponding to 

different isoforms. A schematic representation of the obtained RT-PCR products is also 

depicted on the right; (C) Boxplot diagram showing the percentage of the exon-2-including 

transcripts among all NFAT5 mRNAs, according to disease status and by stratifying 

individuals on the basis of their rs12599391 genotype. Expression levels were measured by 

fluorescent competitive RT-PCRs. Significance levels of t-tests and of the one-way ANOVA 

analyses, are shown above and below the boxplots, respectively. * p < 0.05; ns: not significant. 
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Subsequently, we measured the level of transcripts lacking exon 2 in PBMC RNA samples of our 

cohort of 30 RR-MS cases and 30 controls, all genotyped for the rs12599391 polymorphism. In general, 

the level of the exon-2-skipped isoform resulted significantly, though slightly, increased in RR-MS cases 

vs. controls (p = 0.02), with the mean percentage of skipping of 16.7% and 14.6% in cases and controls, 

respectively (data not shown). A remarkable difference was instead evidenced when we compared cases 

and controls grouped on the basis of their rs12599391 genotype: a clear dependence of exon-2 skipping level 

upon the C/T genotype was seen in healthy subjects (difference among groups p = 0.0026), whereas the 

distribution observed in RR-MS cases resulted flattened (p = 0.94) (Figure 2C). In particular, RR-MS 

patients showed mean percentages of the exon-2-skipped isoform of 16.62%, 16.56%, and 17.05% for  

the CC, TC, and TT genotypes, respectively. In controls, the mean percentages resulted 19.73% for CC 

homozygous individuals and of 15.07% and 12.54% for heterozygotes and TT homozygotes, respectively 

(Figure 2C). 

2.5. Discussion 

Here, we used publicly available microarray datasets and bioinformatics tools to perform a 

comprehensive comparative analysis of gene expression profiles in blood-derived cells of a total of 190 

RR-MS cases and 182 healthy controls. RR is the principal subtype of MS, representing ~80% of all 

diagnosed patients, and it is characterized by phases of sudden intensification of symptoms followed  

by phases of almost complete recovery [31]. In this subtype of MS, inflammatory events play a major 

role, whereas in the progressive forms of the disease (primary and secondary, ~20% of cases) 

neurodegeneration is likely prominent. Thus, RR and progressive forms possibly represent different 

clinical entities [32,33]. 

Genome-wide microarray analysis of gene expression is actually one of the most powerful tools for 

the understanding of global changes between normal and pathologic conditions [34]. In this respect, our aim 

was to verify, in an unsupervised manner, whether the altered expression of genes functionally-related 

with AS represents a specific signature of MS. In fact, dysregulation of pre-mRNA splicing might act  

as the convergence point underlying aberrant gene expression changes in MS, thus possibly driving 

pathogenic mechanisms involved in disease development. In doing this analysis, we considered only 

datasets including at least 10 RR-MS cases and an equal number of controls. This criterion was adopted 

to take into account the statistical power issue. Indeed, it is difficult to provide an accurate power estimate 

for a microarray study. Among others, Wei and colleagues [35] suggested that a sample size of 20 is 

necessary, at a p value of 0.01 and 90% power, to detect a two-fold change in the 75% least variable 

genes in a microarray study. For this reason, a cut-off value of 10 cases vs. 10 controls was considered 

reasonable. We decided to include for each dataset the top 3000 up/downregulated genes (based on p values), 

independently from the magnitude of the fold change. This approach was chosen to evaluate whether 

even subtle changes in gene expression levels can have a role “en mass”. Indeed, in a complex disorder 

like MS, besides few highly dysregulated genes, there could still be potentially thousands of slightly 

up/downregulated genes, whose effect collectively account for a proportion of the phenotype [36]. 

Our analysis disclosed two recurrently enriched pathways, belonging to the GO categories of “NADH 

dehydrogenase complex” and “nuclear mRNA splicing”. Concerning the first category, it is known that 

mitochondrial dysfunction can mediate neurodegeneration contributing to MS [37,38]. In particular, the 
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NADH dehydrogenase complex (also referred to as Complex I or NADH:ubiquinone oxidoreductase), which 

is the first enzyme of the mitochondrial respiratory chain [39], was initially demonstrated to have reduced 

activity in autopsied MS brains [37]. Further sustaining the role of complex I in the pathogenesis of MS, 

Campbell and colleagues [40] observed large deletions in the mitochondrial genome of neurons 

microdissected from autopsied MS brains. Moreover, Talla and coworkers [41] successfully tried to 

suppress neurodegeneration in EAE (experimental autoimmune encephalomyelitis, an established 

murine model of MS) by overexpressing NDI1, i.e., a subunit of complex I that is able to perform the 

electron transfer without proton pumping [42]. Hence, our analyses on microarrays studies well support 

the above-mentioned works in highlighting the involvement of the NADH dehydrogenase complex in  

MS. However, a confirmation of the dysregulation in expression levels of the transcripts coding for the 

44 different polypeptides of this complex is still lacking. 

As for the “nuclear mRNA splicing” category, our in-silico analyses well sustain the hypothesis that 

initially drove our work, i.e., to verify the contribution of the dysregulation of splicing regulatory 

proteins to the pathogenesis of MS. The two transcripts that appear to be dysregulated in most datasets 

are CELF1 and MBNL1: the first was downregulated in RR-MS cases (as also confirmed by our  

RT-PCR experiments), whereas the second was upregulated (Table 3). Interestingly, the CELF1 and 

MBNL1 proteins, both binding to CUG repeats, have long been demonstrated to antagonistically control 

AS during development: MBNL1 promotes adult, whereas CELF1 increases fetal AS patterns for specific 

exons [43]. An initial genome-wide analysis using CLIP-seq on RNA extracted from the mouse myoblast 

cell line C2C12, followed by RT-PCR, confirmed that Celf1 and Mbnl1 are able to regulate AS of dozens 

of transcripts [44]. This same analysis, performed on RNA from various mouse tissues, subsequently 

revealed that splicing events regulated by Mbnl1 are indeed several hundreds [29]. Even more 

interestingly for MS pathogenesis, the specific role of CELF1 during human T cell activation was 

investigated by Beisang and colleagues [45]. In particular, they evidenced a dramatic decrease in the 

number of CELF1 target transcripts upon T cell activation. Strikingly, among CELF1 targets in resting 

T cells, we found seven (including CELF1 itself) out of the 17 splicing regulatory genes altered in MS 

(listed in Table 3). This finding might suggest a functional connection among these 17 genes, as also 

supported by a pathway analysis that highlighted a single network including most of these splice 

regulatory genes (Figure 3). Overall these data point to a role for CELF1 and MBNL1 as “master regulators” 

of splicing in mammals, and their dysregulation in MS could hence be regarded as a signal of a 

generalized, though subtle, dysfunction/impairment of the splicing process in the diseased condition. Of 

course, our data are too preliminary to draw definite conclusions, and an open question remains whether 

the observed changes in expression of splicing regulatory proteins (besides CELF1 and MBNL1) are 

primary effects of the MS pathogenic mechanism or secondary to the disease. 

We then decided to verify if the observed generalized splicing alteration might result in the 

dysregulation of genotype-dependent AS events, as observed for known MS-associated functional 

polymorphisms [11,12]. We selected the rs12599391 variant, mapping deep in intron 2 of the NFAT5 

gene (3148 nt downstream of exon-2 donor splice site). This variant was shown to influence the inclusion 

of NFAT5 exon 2 in the mature transcript in a genotype-dependent manner [28]. We confirmed the 

expected dependence of exon-2 inclusion on the genotype in healthy individuals, whereas we 

demonstrated that this sequence-specific control is lost in MS cases (Figure 2C), perhaps as an 

epiphenomenon of the dysregulation of the splicing process. On the other hand, our results demonstrated 
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that the level of exon-2 inclusion in RR-MS cases is significantly higher than in controls (p = 0.02), thus 

leaving open to discussion whether this could be relevant for MS pathogenesis. The NFAT5 gene codes 

for a transcription factor that activates the expression of osmoprotective genes, and is in turn activated 

by the Th-17-specific PKC-α kinase [46]. In this respect, it is worth noting that the PRKCA gene, coding 

for PKC-α, has repeatedly been associated with MS [12,47]. More interestingly, it has been demonstrated 

that increased NaCl concentrations significantly boost the induction of human Th-17 cells: High-salt 

conditions activate the p38/MAPK pathway involving both NFAT5 and serum/glucocorticoid-regulated 

kinase 1 (SGK1) during cytokine-induced Th-17 polarization, whereas gene silencing/chemical 

inhibition of p38/MAPK, NFAT5, or SGK1 abolishes the high-salt-induced Th-17 development [48].  

Th-17 lymphocytes produced in high-salt conditions show a highly-pathogenic phenotype, characterized 

by the upregulation of pro-inflammatory cytokines such as GM-CSF, TNF-α, and IL-2. Finally, mice 

raised with a high-salt diet develop a more severe form of EAE, according with an increased  

CNS-infiltrating and peripherally-induced antigen-specific Th-17 cells [48]. 

 

Figure 3. A single network includes most splice regulatory genes dysregulated in MS.  

The network was generated through the Ingenuity Pathway Analysis software, using as input 

the list of genes in Table 3. The genes in the original list are represented by hexagonal nodes, 

whereas those integrated into the computationally-generated network on the basis of the 

evidence stored in the IPA knowledge memory are indicated as circles. Node color indicates 

differential expression levels: Yellow: for genes upregulated in MS cases, blue: downregulated 

in MS cases, and grey: not differentially expressed (Table 3 data). Edges represent gene 

relationships, with red arrows: indicating CELF1 targets in resting T cells [45]. 
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3. Experimental Section 

3.1. Dataset Retrieving and Analyses 

The microarray datasets were obtained from the National Center for Biotechnology Information 

(NCBI) GEO database. The database was searched using “multiple sclerosis”, “blood”, and “Homo sapiens” 

as keywords. A total of 1727 entries were retrieved; their manual inspection allowed the identification 

of seven datasets (GSE21942, GSE41848, GSE41849, GSE41890, GSE17048, GSE43592, and 

GSE13732), respecting the following inclusion criteria: (i) expression data obtained from blood-derived 

samples; (ii) case-control design; and (iii) data available for at least 10 cases and 10 healthy controls. 

Characteristics of selected datasets and their cohort demographics are listed in Table 1. 

The GEO2R web application [49,50], available at GEO repository, was used for identifying 

differentially expressed genes in the selected datasets. GEO2R implements established Bioconductor R 

packages [51,52] and provides results as a table of genes ordered by significance (p value). The seven 

datasets were analyzed separately by comparing cases vs. controls. For each study, the resulting top  

3000 up/downregulated genes were considered for further analyses, independently from the magnitude 

of the fold change and of the corresponding significance level. To search for enriched functionally-related 

gene groups, the seven lists of 3000 dysregulated genes were submitted to DAVID v6.7, using the 

Functional annotation clustering tool with default annotation categories and highest stringency [27].  

This procedure allows the identification of functionally-related genes ranked on the basis of their 

enrichment score (defined in DAVID as the geometric mean of all the enrichment p-values for each 

annotation term associated with the gene members in the group) [27]. Only groups of functionally-related 

genes showing an enrichment score above 1.3 (corresponding to p values below 0.05) were hence 

considered. Annotation clusters enriched in “RNA splicing” terms were used to retrieve the list of 

recurrently altered genes. 

To corroborate GEO2R results, a meta-analysis using the Integrative Meta-analysis of Expression 

Data (INMEX) program [53] was also carried out on four eligible datasets (GSE21942, GSE17048, 

GSE43592, and GSE13732). The remaining three datasets were not included since they were  

collected using the Affymetrix Human Exon 1.0 ST Array, a platform/data format not allowed by 

INMEX. Datasets were uploaded to INMEX, processed, annotated, and checked for their integrity.  

The meta-analysis was performed using the “Combining p-values” option, based on the Fisher’s method 

[−2*∑Log(p)] [53], setting the threshold for significance at 0.05. Functional gene ontology analysis of  

the differentially expressed genes was hence performed using the “Molecular function” option with a  

p value threshold of 0.0005. 

Finally, a list of genes, belonging to the GO “RNA splicing” category and resulting differentially 

dysregulated in at least three datasets, was analyzed by using the QIAGEN’s Ingenuity Pathway Analysis 

(IPA) software (QIAGEN, Redwood City, CA, USA). 

3.2. MS Cases and Healthy Controls 

This study was approved by local Ethical Committees and was conducted according to the Declaration 

of Helsinki and to the Italian legislation on sensible data recording. All the recruited subjects signed an 

informed consent. 
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We enrolled 30 unrelated RR MS patients and 30 healthy subjects. To avoid possible confounding 

effects, we decided to specifically focus on RR-MS cases in remitting phase, i.e., patients who had not 

received any immunomodulatory therapy within the month prior to blood withdrawal. To avoid possible 

confounder effects due to diurnal variation in immune function, all samples were collected between 

08:00 and 11:00. Among patients (mean age 43 ± 7 years), 22 were females. 

Controls were matched with cases in terms of gender and age. All individuals were Caucasians and 

coming from Northern Italy. 

3.3. RNA and DNA Samples 

PBMCs were isolated from blood by centrifugation on a Lympholyte Cell separation medium 

(Cederlane Laboratories Limited: Ontario, Canada) gradient. All blood samples were processed immediately 

after withdrawal. Total RNA was isolated using the Eurozol kit (EuroClone: Wetherby, UK). RNA 

concentration was determined using the NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies: 

Wilmington, DE, USA). RNA quality was assessed on an Agilent Bioanalyzer 2100 using the Agilent 

RNA 6000 Nano Assay kit (Agilent Technologies: Santa Clara, CA, USA). 

Genomic DNA extraction was performed from peripheral blood of the same patients/controls by using 

the Microlab STAR Liquid Handler (Hamilton: Bonaduz, Switzerland) integrated with Chemagen 

automated DNA extraction system (Chemagen AG: Baesweiler, Germany). DNA samples were 

quantified by using a PicoGreen assay (Thermo Fisher Scientific: Waltham, MA, USA) and the 

microplate reader Wallac 1420 VICTOR3 V (Perkin Elmer: Waltham, MA, USA). 

3.4. Semi-Quantitative Real-Time RT-PCR and Competitive Fluorescent RT-PCR 

Random nonamers and the Superscript-III Reverse Transcriptase (Thermo Fisher Scientific) were 

used to perform first-strand cDNA synthesis starting from 1 µg of total RNA, according to the 

manufacturer’s instructions. Of a total of 20 µL of the reverse-transcription (RT) reaction, 1 µL was used 

as template for subsequent amplifications. 

Semi-quantitative real-time RT-PCRs for the quantitation of the CUGBP Elav-like family member 1 

(CELF1) transcript were carried out using the FastStart SYBR Green Master mix (Roche Applied Science: 

Basel, Switzerland). Reactions were performed at least in triplicate on a LightCycler 480 (Roche Applied 

Science), following a touchdown thermal protocol. Expression levels were normalized using two 

housekeeping genes (hydroxymethylbilane synthase [HMBS]; β-actin [ACTB]). Data were analyzed 

using the GeNorm software [54]. 

To specifically quantify the relative amount of alternatively-spliced isoforms of the NFAT5 gene, we 

took advantage of their length differences, and performed competitive RT-PCRs under standard 

conditions by using a 6-FAM-labeled primer (Sigma: St. Louis, MO, USA). Amplified fragments were 

separated by capillary electrophoresis on an ABI-3130XL Genetic Analyzer (Thermo Fisher Scientific) 

and quantitated by the GeneMapper v4.0 software (Thermo Fisher Scientific). The sum of all 

fluorescence peak areas in a single run was set equal to 100%, and the relative quantity of each  

transcript expressed as a fraction of the total. In all cases, a preliminary assessment of amplification 

efficiency was performed by real-time PCR (amplicons showed identical amplification efficiencies)  

(Roche Applied Science). 
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Primer couples used in these assays are listed in Table S5. 

3.5. Genotyping of the rs12599391 Polymorphism in the NFAT5 Gene 

Genotyping of the rs12599391 polymorphism was performed by direct DNA sequencing. A PCR 

primer couple was designed in order to amplify the genomic region containing the polymorphic variant 

(Table S5). Standard PCRs were performed on 20 ng of genomic DNA in a 25-μL final volume using 

the FastStart Taq DNA Polymerase (Roche Applied Science). Direct sequencing of PCR products  

was performed by the fluorescent dideoxy terminator method (BigDye Terminator Cycle Sequencing 

Ready Reaction Kit v1.1; Thermo Fisher Scientific), and analyzed by using an ABI-3130XL Genetic 

Analyzer (Thermo Fisher Scientific). The Variant Reporter software was used for variant calling 

(Thermo Fisher Scientific). 

3.6. Web Resources 

The URLs for data mining and analyses presented herein detailed in the “References and Notes” 

section [52,55–60] 

4. Conclusions 

In conclusion, our study provides for the first time a robust evidence that dysregulation in the AS 

process can be relevant for MS pathogenesis, pointing to RNA processing as a possible pathway to be 

targeted for MS treatment. In addition, our data suggest caution in interpreting conflicting results 

obtained so far on the use of small molecules in the treatment of the disease [61–63]. For instance, 

resveratrol (a modulator of RNA-processing factor levels) showed a neuroprotective effect in an EAE 

mouse model [62], whereas it exacerbated demyelination and inflammation in the absence of 

neuroprotection in the CNS of two models of experimentally-induced encephalomyelitis [63].  

This may be due, at least in part, to differences in antigens and animal strains [63]. A better knowledge 

of the actual molecular targets of resveratrol will be needed to predict its global effect on splicing and 

subsequent phenotypic outcomes. 
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