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Abstract: Cerebral ischemia-reperfusion injury involves multiple independently fatal 

terminal pathways in the mitochondria. These pathways include the reactive oxygen species 

(ROS) generation caused by changes in mitochondrial membrane potential and calcium 

overload, resulting in apoptosis via cytochrome c (Cyt c) release. In addition, numerous 

microRNAs are associated with the overall process. In this review, we first briefly 

summarize the mitochondrial changes in cerebral ischemia-reperfusion and then describe  

the possible molecular mechanism of miRNA-regulated mitochondrial function, which  

likely includes oxidative stress and energy metabolism, as well as apoptosis. On the  

basis of the preceding analysis, we conclude that studies of microRNAs that regulate  

mitochondrial function will expedite the development of treatments for cerebral  

ischemia-reperfusion injury. 
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1. Introduction 

With substantial incidence, prevalence, and mortality [1], stroke is the second leading cause of death 

worldwide [2]. Ischemic strokes are caused by cerebral thrombosis or embolism within a blood vessel. 

As a result, local brain tissue become necrotic and apoptotic often leading to corresponding neurological 

deficits. One of the most effective strategies to treat this disease is immediate restoration of blood flow 

to the brain, although it imposes risks of further cellular necrosis and neural damage [3,4]. This damage 

mainly involves free radical generation, intracellular calcium overload, energy metabolism dysfunction, 

and apoptosis [5–11]. 

Mitochondria maintain homeostasis through energy production, synthesis of many compounds,  

and participation in cell signaling networks [12]. Detailed observations of the mechanisms of  

ischemia-reperfusion injury are difficult to conduct in the intact brain; however, cerebral ischemia  

may directly cause mitochondrial dysfunctions because the brain is highly susceptible to ischemic 

hypoxia [13]. The responses of mitochondria to cerebral ischemic-reperfusion injury are not yet 

completely identified, although several studies have suggested that during ischemic-reperfusion, 

mitochondria overproduce ROS that consume antioxidants, suppress the endogenous antioxidative 

defense system, disturb energy metabolism, and cause neuronal apoptosis [14–16]. 

Emerging evidence suggests that micro-RNAs (miRNAs) are associated and localized to 

mitochondria, indicating that the intricacy of the regulation of mitochondrial function is mediated  

by proteins which encoded by the nuclear and mitochondrial genomes [17–19]. Because mitochondria 

contain proteins mainly encoded by the nuclear genome [20], they may serve as a potential site  

for miRNA-mediated posttranscriptional regulation [21,22]. For instance, miRNAs that regulate 

mitochondrial function at the posttranscriptional level affect mitochondrial homeostasis, energy 

metabolism, oxidative stress, and apoptosis under physiological and pathological conditions [17,23,24]. 

The pathogenesis of cerebral ischemia-reperfusion injury involves miRNAs that alter the 

mitochondrial response and regulate the expression of key elements that mediate neuronal survival  

and apoptosis [25–28], including changes in mitochondrial membrane potential, ROS generation  

under oxidative stress, and apoptosis induced by energy metabolism. In this review, we briefly 

summarize the molecular mechanisms that determine mitochondrial function and the roles of miRNAs 

during ischemia-reperfusion. 

2. Mitochondria in Ischemia-Reperfusion Injury 

Mitochondria are found in almost all eukaryotic cells and function as “power houses” [29].  

The mitochondrial matrix is surrounded by a permeable outer membrane and a much less permeable 

inner membrane. The outer membrane is freely permeable to small metabolites due to the presence of 

an abundant protein, and the inner membrane includes components of the respiratory chain that catalyzes 

oxidative phosphorylation (OxPhos). Mitochondria are the main organelles that generate adenosine 

triphosphate (ATP) [30] and serve as the major sites of the oxidative metabolism of carbohydrates,  

fats, amino acids, and other biological molecules [31,32]. Mitochondria represent a key role in the 

pathogenesis of cerebral ischemia-reperfusion injury, which involves ROS generation, dysfunctional 

energy metabolism, and mitochondria-induced apoptosis. 
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2.1. Generation of ROS 

Mitochondria are potential major intracellular sources of ROS in almost all cells. The electron 

transport chain localized to the mitochondrial inner membrane is the main site for ROS generation [33]. 

Specifically, mitochondrial components such as the growth factor adaptor Shc, NADPH oxidase-4 

(NOX4), and the mitochondrial redox carriers complexes I and III [34] promote production of  

ROS [35–40]. Under normal physiological conditions, xanthine oxidase, and the electron transport  

chain of the mitochondrion, arachidonic acid, and NADPH oxidase are involved in the generation of  

the sources of ROS, for instance, superoxide anion (·O2
−), hydrogen peroxide (H2O2), and hydroxide 

radical (·OH−) [31]. Further, a series of intracellular antioxidants, for instance, superoxide dismutase 

(SOD), glutathione peroxidase (GSHPx), and glutathione rapidly remove excess ROS [41]. ROS remains 

at low levels under physiological conditions, and the homeostasis of cellular redox is crucial for 

numerous biological processes [42,43]. During brain ischemia-reperfusion, several processes, including 

the initial change in mitochondrial membrane potential and calcium overload, occur concurrently and 

cause neurons to undergo apoptosis. Among these processes, oxidative stress caused by excess ROS 

generation plays a major role in brain damage [44,45]. 

Sanderson et al. (2013) considered that mitochondrial changes during brain ischemia-reperfusion 

injury involve the following steps: ischemic starvation, reperfusion-induced hyperactivation, 

mitochondrial dysfunction, and delayed neuronal death [46]. During oxidation associated with 

mitochondrial respiration, energy is produced by the electrochemical potential stored in the inner 

mitochondrial membrane, which causes an asymmetric distribution of protons and other ions with 

different concentrations on both sides of the mitochondrial membrane that generates the mitochondrial 

membrane potential (ΔΨm). The ΔΨm is considered a reliable indicator of mitochondrial membrane 

permeability and a sensitive indicator of mitochondrial function [47]. 

Furthermore, intracellular Ca2+ maintains homeostasis through its uptake and release via the 

mitochondrial calcium uniporter [48,49], mitochondrial Na+/Ca2+ exchanger, mitochondrial permeability 

transition pore (MPTP), and pathways including the Na+-independent pathway of Ca2+ efflux and 

H+/Ca2+ antiporter pathway, etc. [50]. Under physiological conditions, ΔΨm is negative in the inner 

chamber; by contrast, it is positive in the outer chamber; only a small number of electrons “leak” in 

complexes I and III [42]. During ischemia, the initial change in mitochondria involves their membrane 

potential, and ROS generation is partly dependent on this change [39]. Insufficient oxygen delivery 

during ischemia causes increased electron leakage mediated by complexes I and III and triggers the 

disruption of ion pump function. Consequently, intracellular Ca2+ overload is detected, the sustained 

opening of the MPTP is stimulated [51], and the collapse of the electrochemical potential of H+ is 

triggered, all of which inhibits ROS production. When blood supply is reestablished, as it occurs due to 

membrane instability during early reperfusion, the reintroduction of oxygen enhances electron leakage, 

which markedly increases ROS production (called the ROS “burst”) [46]. Ca2+ inhibits complex I, which 

increases ROS generation in vitro and in vivo [52]. 
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2.2. Energy Metabolism 

Mitochondria generate ATP for most cells through oxidative phosphorylation to produce more than 

95% of a cell’s energy under physiological conditions via complexes I–V [53]. In almost all animal 

models of stroke, the oxidative metabolism in the ischemic core of brain is impaired by glucose and 

oxygen deficiency, which rapidly alters ATP and other energy-related metabolites that are mainly 

involved with the mitochondria [54]. In the mitochondrial matrix, the pyruvate oxidation,  

fatty acid (FA) oxidation, glutamine metabolism, and tricarboxylic acid (TCA) cycle pathways are 

associated with energy metabolism [32]. In cerebral ischemia-reperfusion injury, energy metabolism in 

the mitochondria may change through various mechanisms. 

Under pathological conditions, most cells in the penumbra remain viable after 2 h of ischemia; 

however, glucose and ATP contents decrease considerably and the phosphocreatine content decreases 

to approximately 70% of non-ischemic values [55]. A portion of the adenosine diphosphate (ADP) 

generated through ATP hydrolysis is metabolized to adenosine monophosphate and ATP. Ischemia 

inhibits oxidative metabolism. In contrast, anaerobic glycolysis increases indirectly and produces large 

amounts of lactic acid that decrease intracellular pH, causing a decrease in or loss of activities of multiple 

intracellular enzymes [56]. Moreover, the decrease in glucose metabolism may cause increased pyruvate 

oxidation [57], affecting the activation of acetyl coenzyme A and causes persistent activation of the TCA 

cycle [58]. Reperfusion partially restores blood flow in the brain and the glucose utilization is decreased 

to approximately half of the normal range in the ischemic core [59,60]. It also causes the concentration 

of ATP to recover more slowly than that of phosphocreatine or the adenylate energy charge. However, 

neurons in the penumbral tissue undergo entire or nearly entire recovery of phosphocreatine. The adenine 

nucleotide balance shows that the penumbra region of energy metabolism is moderately affected [60]. 

2.3. Release of Cyt c 

Cyt c, which plays a major role in apoptosis, is located in the inner membrane of mitochondria,  

is the first proapoptotic protein discovered in the mitochondria [61]. Its function is required for OxPhos 

and is implicated in intrinsic type II apoptosis [62]. MPTP likely promotes apoptosis caused by Cyt c 

release, then activates caspases (see below) [51,63,64]. The release of Cyt c from the mitochondria into 

the cytoplasm is the main inducer of apoptosis [65]. The mechanisms of mitochondrial apoptosis are as 

follows: First, loosely coupled or tightly bound Cyt c is damaged in the mitochondrial membrane and 

then released. Second, Bax (see below) in the outer mitochondrial membrane increases the permeability 

of the outer membrane of mitochondria and stimulates the release of free Cyt c [66]. 

The Bcl-2 family and its regulation of mitochondrial permeability were the focus of extensive 

investigations. The members of the Bcl-2 family can be categorized according to their specific functions 

during apoptosis [67] as follows: (1) anti-apoptotic proteins, for instance, Bcl-2, Bcl-xl, and Bcl-W, 

which contain a minimum of three BH domains; and (2) proapoptotic proteins such as Bax, and Bak, 

which contain domains of BH1, BH2, and BH3. BH3-only proteins, which include Bid, Bad, and NOXA, 

are another group of pro-apoptotic proteins [68–70]. Bcl-2 family proteins contain 20 amino acid 

residues in the hydrophobic region in the C-terminal region that mediates interaction with the outer 

mitochondrial membrane. This region is present on the mitochondrial membrane and regulates the 
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release of Cyt c. Anti-apoptotic Bcl-2 proteins, which are distributed mainly in the outer mitochondrial 

membrane, nuclear membrane, and endoplasmic reticulum (ER), elicit a stable organelle membrane 

effect. Unlike anti-apoptotic proteins, Bax and Bak directly interact with mitochondria, resulting in the 

release of Cyt c to trigger apoptosis [71,72]. 

The mitochondria involved in brain ischemia-reperfusion injury trigger apoptosis [72]. The 

production of ROS and release of apoptotic factors into the cytoplasm are implicated in the activation of 

cell death cascades. These factors mainly includes Cyt c and Apoptosis-inducing factor (AIF) [73].  

Cyt c is transported through specific pores formed by proapoptotic proteins such as Bax, which are 

embedded in the outer mitochondrial membrane. During ischemia-reperfusion, the sequence of apoptotic  

events begins with the binding of Cyt c to apoptosis protein-associated factor 1 (Apaf-1) [74,75].  

The Apaf-1/caspase-9/Cyt c complex is formed, and caspase-3 is activated, which triggers neuronal 

death [76]. 

3. miRNAs Regulate Mitochondrial Function during Cerebral Ischemia-Reperfusion Injury 

miRNAs (20–22 nucleotides) regulate the expression of genes by binding to the 3′ untranslated 

regions of mRNAs, causing downregulation of gene expression or mRNA degradation [77,78].  

The biogenesis of all miRNA families converts the primary (pri)-miRNA transcript into the active 

mature miRNA. The pri-miRNA transcript is cleaved by the enzyme Drosha, yielding the precursor 

(pre)-miRNA [79]. In the cytoplasm, pre-miRNAs are converted into 18–22 bp double-stranded  

RNAs [80]. After Dicer cleavage, the mature miRNA is passed into the RNA-induced silencing complex, 

where it guides the complex to target mRNAs [81]. Generally, passive-strand miRNA (miRNA*) is 

degraded and does not affect gene expression. However, recent research indicated that miRNA* 

molecules have similar biological effects as mature miRNAs by repressing target mRNAs [82]. Since 

the discovery of lin-4 and let-7, numerous miRNAs were detected using techniques such as northern 

blotting, deep sequencing, and bioinformatics [83–85]. Evidence indicates that miRNAs are essential 

for cellular processes such as proliferation, differentiation, and apoptosis [86–88]. 

The expression of more than 30% of genes for coding proteins are regulated by miRNAs [89]. 

Moreover, cerebral miRNAs are altered after ischemia-reperfusion injury, suggesting that miRNA-mediated 

translational may play a pivotal role in modulating gene expression [28,90]. Because the mitochondrial 

outer membrane is freely permeable to small metabolites, it is the main location for assembling miRNA 

and its processing components. miRNAs may also translocate to the mitochondrial matrix to perform 

their function by targeting mitochondrial genomes. Mitochondrion-associated miRNAs participate in 

cellular processes such as response to stress, metabolism, and death. Therefore, mitochondrial function 

during cerebral ischemia-reperfusion injury requires highly coordinated gene expression, which is partly 

modulated by numerous miRNAs. 
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3.1. Mitochondrial Oxidative Stress 

miRNAs have been detected within or in association with mitochondria from various tissues and cell 

types involved in a variety of biological processes [91–93]. These miRNAs function as critical regulatory 

molecules in the regulation of cellular redox reactions. Therefore, we assumed that these molecules act 

as regulators during cerebral ischemia-reperfusion injury (Table 1, lines 1 to 14). During early ischemia, 

the mitochondrial membrane potential changes due to hypoxia. For instance, miR-210 is stimulated by 

HIF-1α-regulated hypoxia and miR-210 is strongly induced in response to hypoxia, thereby activating 

ROS generation [94] (Figure 1). During reperfusion, there is a burst of ROS, including ·O2
−, H2O2, and 

·OH−. Moreover, miRNAs regulate ROS generation to a certain extent under conditions of mitochondrial 

oxidative stress. H2O2-induced upregulation of MDH is likely mediated by the downregulation of  

miR-743a [95]. miR-128a directly target Bim-1 to increase intracellular ROS levels and then alters  

the intracellular redox state [96]. miR-145 represses CaMKII-δ expression and ROS-induced Ca2+ 

overload [97]. Similarly, miR-155 represses the expression of src homology 2 (SH2)-containing inositol 

5-phosphatase 1 (SHIP1) and increases ROS generation [98]. 

miRNAs influence the balance of ROS. For instance, NOX4 and NOX2 belong to the NOX  

family of NADPH oxidases that produce large amounts of ROS [99]. NOX4 was discovered in 

nonphagocytic cell types and tissues, and its mRNA is the direct target of miR-23b [100] (Figure 1). 

miRNA-25 increases the expression of NOX4 and mediates oxidative/nitrative stress as well as  

the consequent mitochondrial dysfunctions [101]. NOX2 increases ROS generation in various cell types, 

and NOX2 mRNA is the target of miR-34a, which exhibits proapoptotic activity, mainly by enhancing 

NOX2 expression and ROS production [102]. In addition, the ROS defense system is composed of 

several enzymes, including SOD, catalases (CATs), GSHPx, and PRDXs [103]. 

 

Figure 1. Regulatory role of miRNAs in mitochondrial oxidative stress during brain 

ischemia-reperfusion injury. 
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Under conditions of pathological reperfusion, three antioxidant enzymes, MnSOD, GPX2, and 

Txnrd2, present in mitochondria, are negatively regulated by miR-17* [104]. Moreover, the  

senescence of cells is inhibited by miR-335 and miR-34a through the upregulation of SOD2 and Txnrd2 

expression [105] (Figure 1), causing a decrease in ROS production. Inhibition of miR-181a expression 

protects cells against oxidative stress-induced apoptosis through the direct inhibition of Gpx1 expression 

and ROS generation [106]. These antioxidant enzymes, which are the major components of the primary 

antioxidant system, coordinately remove the ROS generated in the mitochondria. Nevertheless,  

the conversion of ·O2
− to H2O2 is inhibited by miR-21, which occurs when miR-21 directly decreases 

SOD3 levels or indirectly reduces SOD2 levels, and ROS levels are affected by miR-21 [107]. 

Furthermore, NF-κB increases miR-21 expression under oxidative stress; however, H2O2-induced ROS 

activity is partly protected by the overexpression of miR-21 [108]. ROS is similarly regulated by  

miR-30b that targets CATs, and antisense molecules enhance cytoprotective mechanisms against 

oxidative stress by strengthening the antioxidant defense system [109]. 

Excessive amounts of ROS including ·O2
−, H2O2, and hydroxyl radicals (OH·), are produced in  

the mitochondria during brain ischemia-reperfusion injury. The nuclear transcription factors HIF-1α and 

NF-κB contribute to the generation of ROS during cerebral ischemia-reperfusion. SOD detoxifies  

O2
− by converting it to H2O2, which is converted to H2O by CATs or GSHPx/Gpx1. NOX4 and  

NOX2 generate ·O2
−-generating enzymes. miRNAs targeting mitochondrial-related proteins and 

antioxidative enzymes as well as nuclear transcription factors under mitochondrial oxidative stress are 

shown in Figure 1. 

Table 1. miRNAs associated with mitochondrial oxidative stress, energy metabolism  

and apoptosis. 

miRNAs Target Function References 

miR-181a GPx1 reduces ROS production [106] 
miR-210 ISCU, COX10 activates the generation of ROS [94] 
miR-21 SOD3, TNF-α modulates the levels of ROS [107] 

miR-743a mdh2 increase MDH production [95] 
miR-145 CaMKIIδ regulates ROS-induced Ca2+ overload [97] 
miR-155 SHIP1 enhances ROS production [98] 
miR-23b NOX4 increases the level of ROS scavengers [110] 
miR-25 NOX4 mediates oxidative/nitrative stress [101] 
miR-34a NOX2 enhanced ROS production [102] 
miR-30b CATs againsts oxidative stress [109] 
miR-17* MnSOD, GPX2, TrxR2 clears up the high levers of ROS [104] 

miR-335, miR-34a SOD2, Txnrd2 decrease generation of ROS [105] 
miR-128 Bmi-1 increases Intracellular ROS levels [96] 
miR-302 E2F3 reduces intracellular ROS [111] 
miR-210 ISCU, COX10 up-regulates the glycolysis [94] 

miR-23a/b c-Myc enhances glutamine metabolism [112] 
miR-378/378* PGC-1β energy metabolism [113] 

miR-378* PGC-1β inhibits TCA gene expression [114] 
miR-15a UCP-2 inhibits the synthesis of insulin [115] 
miR-15b Arl2 decrease mitochondrial integrity [116] 
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Table 1. Cont. 

miRNAs Target Function References 

miR-338 COXIV decreases oxidative phosphorylation [117] 
miR-141 SlC25A3 influences mitochondrial ATP production [118] 

miR-199a-5p CAV1 inhibits ATP levels, mitochondrial DNA [119] 
miR-696 PGC-1α up-regulates aerobic metabolism [120] 
miR-122 PKM2 increases glycolysis [121] 

miR-221/222 PUMA inhibits mitochondrial pathway of apoptosis [122] 
miR-155 p53 accumulates DNA damage [98] 
miR-134 Bcl-2 anti-apoptotic gene Bcl-2 [123] 
miR-29a BH3-only reduces neuronal vulnerability [124] 
miR-145 BH3-only against mitochondria apoptotic pathway [125] 
miR-30a LC3 enhances beclin 1-mediated autophagy [126] 
miR-181a GRP78 regulates GRP78 expression [127] 

miR-497/302b Bcl-2 induces neuronal apoptosis [128] 
miR-21 Bcl-2 decreases Bax/Bcl-2 ratio [129] 
miR-29c Birc2, Bak1 increases apoptosis [130] 
miR-23a XIAP leads to different ways of cell death [131] 
miR-23a APAF-1/caspase-9 increases in the activation of caspase-9 [132] 
miR-499 Drp1 regulates mitochondrial dynamics [133] 
miR-133 caspase-9, -3 increases caspases-9 and -3 [134] 
miR-124 Ku70 against I/R-induced neuronal death [135] 
miR-761 MFF inhibits mitochondrial fission and apoptosis [136] 
miR-214 NCX1 against Ca2+ overload injury and cell death [137] 

3.2. Energy Metabolism in Mitochondria 

Mitochondrial energy metabolism during brain ischemia-reperfusion injury is regulated by  

miRNAs [138]. (Table 1, lines 15 to 25). During the early stages of ischemia, oxidative metabolism 

declines as glycolysis increases, and studies of miR-210 under hypoxia in different cell types show that 

the main components of hypoxic response are regulated by HIF-1α [139]. HIF-1α contributes to  

the metabolic shift by downregulating several steps of mitochondrial metabolism through direct 

inhibition of the Fe-S cluster assembly protein 1/2 and Cyt c oxidase 10 (COX10) expression, which 

decreases mitochondrial function and upregulates glycolysis [94] (Figure 2). 

During hypoxia, glucose, ATP, and phosphocreatine levels are reduced, and miRNAs regulate ATP 

generation and conversion to ADP. For instance, miR-15b modulates the concentration of ATP by 

targeting Arl2, and miR-15b overexpression reduces Arl2 expression, and therefore inhibits ADP/ATP 

exchange and ATP synthesis [116]. Furthermore, miR-15a directly inhibits the expression of the  

gene encoding uncoupling protein-2 (UCP-2) to increase oxygen consumption and reduce ATP 

generation [115]. COXIV, a key protein in the electron transfer chain of the mitochondria, takes part in 

ATP production. The changes of COXIV levels affects mitochondrial function. Moreover, miR-338 

regulates the expression of COXIV and targets a wide variety of mitochondrial mRNAs that encode vital 

proteins are involved in oxidative phosphorylation [117]. 
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Figure 2. Energy metabolism in the mitochondria during cerebral ischemia-reperfusion 

injury and the regulatory role of miRNAs. 

miR-378 inhibits PGC-1β expression [113], whereas miR-378-5p activates PGC-1β expression and 

induces reduction in tricarboxylic acid cycle gene expression [114] (Figure 2). Numerous miRNAs 

function during reperfusion which involves in lipid peroxidation and excess lactate production with 

excessive ROS generation and synthesis of glutathione from glutamate [140]; the following are  

the examples: miR-23a/b represses glutaminase expression [112], miR199-a-5p participates in 

mitochondrial activity and mitochondrial β-oxidation. miR-199-a-5p overexpression exacerbates  

the deposition of FA and decreases ATP and mitochondrial DNA (mtDNA) concentrations by inhibiting 

caveolin1 [119]. miR-696 directly targets the activated receptor gamma co-activator 1-α (PGC-1α) and 

regulates FA oxidation capacity and mitochondrial biogenesis. Overexpression of miR-696 decreases 

FA oxidation and mtDNA content [120]. miR-141 regulates SLC25A3 expression, and affects 

mitochondrial ATP production [118]. The overexpression of miR-183 inhibits the expression of IDH2, 

which is one of the mitochondrial enzymes related to the TCA cycle [141]. 

During cerebral ischemia, oxidative metabolism and glucose content decrease considerably, but 

glycolysis is sustained, causing impaired oxidative metabolism of pyruvate by mitochondria.  

The process of generating energy by glucose oxidative metabolism mainly includes the generation of 

pyruvate, pyruvate metabolism, and TCA cycle. Lipid peroxidation occurs during reperfusion.  

The miRNAs involved in this process are indicated on the right. 

3.3. Mitochondrial Pathways of Apoptosis 

Mitochondria-induced neuronal apoptosis during ischemia-reperfusion involves reduction of the 

mitochondrial membrane potential and opening of the MPTP that is associated with Bcl-2 family 

proteins [142]. Cyt c, AIF, and other apoptotic factors are released into the cytoplasm, as a result,  

Apaf-1 is activated, the caspase cascade is stimulated, and cell apoptosis is directly induced [143,144]. 
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miRNAs involved in the mitochondrial apoptosis pathway regulate various proteins (Table 1 lines 26 to 

42). For instance, p53 regulates the cell cycle and apoptosis, and p53 is activated in a microglia 

subpopulation in the inflamed human brain, causing cell death triggered via the mitochondrial apoptosis 

pathway [145,146] (Figure 3). p53 negatively regulates c-Maf in microglia by inducing miR-155 [147]. 

However, p53 activation and pernicious cascade resulting in the mitochondrial apoptotic pathway are 

limited by miR-30a [148]. 

 

Figure 3. Apoptosis under pathological conditions of reperfusion and the regulatory  

roles of miRNAs. 

The mitochondrial apoptotic pathway is inhibited by miR-221/222 through the regulation of the  

BH3-only protein PUMA [122]. Bnip3, a member of the BH3-only protein family, is a direct target of 

miR-145 and regulates the mitochondrial apoptotic pathway during myocardial ischemia-reperfusion 

injury [125]. miR-29a is highly expressed in astrocytes, and it targets PUMA to decrease ischemic injuries 

in vitro and in vivo and reduces ischemic brain injury by attenuating neuronal vulnerability [124]. Moreover, 

miR-29a targets multiple Bcl-2 family members, including those that are proapoptotic or anti-apoptotic,  

to regulate cell proliferation [149,150]. miR-181 levels change in response to stroke; in addition, 

increased GRP78 levels are implicated in cellular functions such as protein folding in the ER and 

inhibiting apoptosis [127] and in increasing the expression of Bcl-2 family members. Furthermore, 

global cerebral ischemia and focal ischemia are alleviated by inhibiting miR-181a production [151]. 

Moreover, Bcl-2 is a target of miR-134, miR-497, and miR-302 [123,128,152]. The overexpression  

of either miR-497 or miR-302b reduces the expression of their target genes and increases  

caspase-3-mediated apoptosis [128]. The downregulation of miR-134 reduces ischemic injury by 

enhancing the expression of CREB [123] (Figure 3). Moreover, miRNAs strongly regulate the 

downstream steps in the mitochondrial apoptotic pathway, and antisense miR-23a enhances apoptosis 

via the APAF-1/caspase-9 apoptotic pathway [132]. The X-linked inhibitor of apoptosis (XIAP), which 
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is the main endogenous caspase inhibitor, is the target of miR-23a. After a stroke, miR-23a expression 

in men and women differ significantly, leading to caspase-dependent and -independent cell deaths in 

women and men, respectively [131]. miR-133 increases caspase-9 and caspase-3, thereby stimulating 

the mitochondrial apoptotic pathway [134] and miR-21-induces decreases in the Bax-to-Bcl-2 ratio and 

caspase-3 activity [129]. miRNA-29c directly targets the mRNAs encoding Birc2 and Bak1 and 

increases apoptosis [130]. Mitochondrial fission occurs through phosphorylation and dephosphorylation 

of dynamin-related protein 1 [153], which is regulated by miR-499 [133]. 

Cerebral ischemia-reperfusion injury triggers the mitochondrial release of Cyt c, AIF, Diablo,  

and EndoG via Bak. Cyt c then binds to procaspase-9 and Apaf-1 to form the apoptosome.  

The procaspase-9 complex is transactivated to activate caspase-9. Caspase-9 cleaves and activates 

downstream caspases such as caspase-3 to induce apoptosis. XIAP simultaneously inhibits caspases-9 

and caspase-3. Bcl-2 and Bax prevent Cyt c release and interfere with this pathway. p53 and PUMA are 

involved in this process. miRNAs that target the mitochondrial apoptotic pathways are indicated on  

the right in Figure 3. 

4. Perspectives 

Stroke is a multi-factor disease, with limited therapeutic strategies. Therefore, numerous clinical trials 

to treat this disease have failed [154]. The early stage of cerebral ischemia is accompanied by hypoxia, 

and mitochondria are the most sensitive organelles to hypoxia. During cerebral reperfusion, changes in 

mitochondria may partly predict disease progression. The levels of some miRNAs change significantly 

in cerebral ischemia-reperfusion injury [155,156]. In addition, miRNAs target various mitochondrial and 

mitochondria-associated proteins. Therefore, miRNAs may serve as useful tools to manipulate 

mitochondrial function (Table 1). The pathological process of the ischemia-reperfusion cascade in the 

brain involves a complex series of events, which may be driven by multiple cellular pathways that act 

coordinately, and miRNAs simultaneously regulate numerous target genes [157]. Therefore, miRNAs 

are potential targets for the treatment of stroke (Table 2). Moreover, products of one miRNA target genes 

may belong to the same functional protein-protein interaction network [158]. miRNAs may perform  

a range of functions, including regulation of long noncoding RNAs [159] and control of epigenetic 

mechanisms [160]. Current research indicates that the mechanisms of miRNA-targeting therapeutics 

include the following: (1) change in the absorption, distribution, metabolism, and excretion of  

anti-miRNAs; (2) upregulate the expression of targeted miRNAs or enhance their biogenesis;  

and (3) upregulate other miRNAs that target the same genes [161]. Most miRNA-targeting molecules of 

stroke are in the preclinical stage, and certain obstacles to their use must be removed. Although the 

multiplicity of binding targets presents potential difficulties, the modulation of miRNA levels may 

provide a new strategy for treating stroke and represents a potentially effective treatment paradigm. 
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Table 2. miRNAs as therapeutic targets. 

miRNAs Indications Method Developmental Stage References

miR-181 cerebral ischemia antagomir therapy preclinical [127] 
miR-181 cerebral ischemia antagomir therapy preclinical [162] 

miR-181b ischemic stroke antagomir therapy preclinical [163] 
miR-497 ischemic brain injury antagomir therapy preclinical [152] 

Let7f ischemic stroke antagomir therapy preclinical [164] 
miR-424 cerebral I/R antagomir therapy preclinical [165] 
miR-200c cerebral ischemia antagomir therapy preclinical [166] 
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