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Abstract: Ship ballast water treatment methods face many technical challenges. The 

effectiveness of every treatment method usually is evaluated by using large scale 

equipment and a large volume of samples, which involves time-consuming, laborious, and 

complex operations. This paper reports the development of a novel, simple and fast 

platform of methodology in evaluating the efficiency and the best parameters for ballast 

water treatment systems, particularly in chemical disinfection. In this study, a microfluidic 

chip with six sample wells and a waste well was designed, where sample transportation 

was controlled by electrokinetic flow. The performance of this microfluidic platform was 

evaluated by detecting the disinfection of Dunaliella salina (D. salina) algae in ballast 

water treated by sodium hypochlorite (NaClO) solution. Light-induced chlorophyll 

fluorescence (LICF) intensity was used to determine the viability of microalgae cells in the 

system, which can be operated automatically with the dimension of the detector as small as  

50 mm × 24 mm × 5 mm. The 40 µL volume of sample solution was used for each 

treatment condition test and the validity of detection can be accomplished within about  

five min. The results show that the viability of microalgae cells under different treatment 

conditions can be determined accurately and further optimal treatment conditions including 
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concentrations of NaClO and treatment time can also be obtained. These results can 

provide accurate evaluation and optimal parameters for ballast water treatment methods. 

Keywords: electrokinetic flow; fluorescence detection; microalgae; microfluidic chip; 

ballast water treatment 

 

1. Introduction 

Most ships have to carry water as ballast, which is not only essential to normal navigation but vital 

to ships’ safety. Such water often contains nonindigenous organisms that will be released when the 

ship deballasts. The consequences caused by the introduction of harmful aquatic organisms and 

pathogens are of major concern; on entry into new environments these have been shown to cause 

extensive damage to local ecologies and have a severe impact on fisheries and vital economic 

activities. They can also pose a threat to human health and safety [1,2]. The Global Environmental 

Fund (GEF) has identified the introduction of invasive alien species and pathogens through ballast 

water as one of the four major marine hazards [3]. The International Convention for the Control and 

Management of Ships’ Ballast Water and Sediments in 2004 stipulated that ballast water that may be 

discharged by ships should meet desired standards. The phase-in of Regulation D-2 of Ballast Water 

Management, Ballast Water Performance Standard, D-2 occurs considering the construction date and 

ballast water capacity of vessels, but from 2016 onwards all vessels need to comply with it. The soon 

expected entry into force of the Ballast Water Management (BWM) Convention is an important 

driving force for ballast water treatment technology developments worldwide. The Convention is 

retroactive in implementation and requires ballast water treatment systems installation on existing 

ships [4,5]. Many ballast water treatment systems have been developed during the past decades [6–10]. 

Currently the chemical method is the most commonly used way of ballast water treatment and in order 

to ensure the lethal effect of a one-time injection of chemical reagent, high concentrations may be 

required. These produce additional unwanted byproducts and thus cause environmental pollution that 

may impact human health. To resolve these problems, the optimum effectiveness of chemical reagent 

concentration and treatment time should be evaluated before treating ballast water. However the 

effectiveness of every treatment method usually is evaluated by using large scale equipment and a 

large volume of samples, which always involves time-consuming, laborious, and complex operations. 

A simple and fast platform methodology of evaluating the efficient parameters for ballast water 

treatment systems is presented here to overcome to some degree these problems. The performance of 

this platform is based on the detecting viabilities of microorganisms with the use of a novel 

electrokinetically controlled microfluidic detector. 

The application of microfluidic chips in the life sciences has led to a diversity of new research 

directions. Compared with traditional methods, microfluidic chip analysis is highly efficient, small in 

size, easy to integrate, and low in overall cost [11–14]. Making a new microfluidic chip can be 

completed within a short time and it provides accurate measurement of micro-biological samples [15–17].  

Microfluidic devices offer the advantages of precise control over experimental conditions via custom 

designed chip architectures, parallelization, automation, and direct coupling to miniaturized 
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downstream analysis platforms [18]. As the microfluidic chip occupies few square centimeters, it is 

economical in terms of space and able to complete more complex processes and specific tasks. It is 

also friendly to the operating environment and thus is conducive to the development of portable 

instruments for a variety of applications. 

In the last decade, microvalves are most widely used to drive samples in microfluidic devices.  

In the microvalve control process, a conventional piezoelectric valve can produce a large driving force 

with a fast response but the diaphragm can only produce a small movement even if a high voltage was 

generated [19]. A thermal-driven micro-valve consumes a large amount of power and takes a long 

reaction time [20]. The phase transition valve has the advantages of a simple structure and less material 

but it can be used one-time; it cannot achieve repeated switching [21]. By applying electroosmotic 

flow theory and electrophoresis to control flow through on-off into microchannel, the control system is 

greatly simplified. It does not require any complex component and can operate easily at any time. 

Approaches to detecting microalgae activity include using a light-induced chlorophyll fluorescence 

(LICF) detector. While the system is operated by the fluorescence excitation, a specific frequency in 

light produced by microalgae, and the intensity of fluorescence is directly dependent on microalgae 

chlorophyll content and can show the level of microalgae activity [22]. The process based on LICF 

detection of microalgae is simple, fast and shortens detection time than the use of the traditional 

detection methods such as optical microscopy processing, dye fluorescence microscopy, flow 

cytometry, molecular and biochemical methods. These traditional methods are operationally complex 

with complicated steps, long cycles and often have shortcomings in fluorescent dyes that are used [23–25]. 

Ballast water brought by foreign ships accounts for a large proportion of microalgae spread. Microalgae 

are literally invading the world and causing huge economic and environmental damage [26–28]. 

Therefore, microalgae are the main target for treatment and detection in our experiment and  

Dunaliella salina (D. salina) algae have been used as sample of microalgae. 

The viabilities of invasive microorganisms such as D. salina were detected after treatment with 

different concentrations of sodium hypochlorite solution (NaClO). Also, the same reagent 

concentrations were alternately introduced with different time durations. The manipulation of these 

conditions provides an accurate determination of the effective reagent concentration level and the 

optimum treatment time. 

2. Results and Discussion 

According to the two experiment sets, the experiments verified the system’s feasibility and reflect 

the advantages of the research contained in this paper. The generating laser power, temperature, system 

components and other experimental conditions were kept at the same setting during the whole 

experimental processing. 

The amplitude of signals, which were displayed on the computer screen with Labview software, 

was directly proportional to the activity of the microalgae cells. While the larger the activity, the 

stronger corresponding signal variation. A single pulse signal represents the activity of each 

corresponding D. salina which flows through the detection zone. After subsequent experimental data 

processed for the two sets of the experimental program, an appropriate number of signal amplitudes 

were selected to calculate the average value of fluorescence signal. The number between 30 to 50 signals 
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becomes the appropriate number and we set 40 for each group due to the test design. The relative 

activity of microalgae was the ratio of average value of the fluorescence signal amplitudes of each 

treated sample solution to the average value of signal amplitudes of ordinary sample solution under the 

same conditions. 

Relative	activity	of microalgae = average value of signal amplitudes of treated sample	soltuionaverage value of signal amplitude of N1 ordinary	sample	solution (1)

2.1. Relative Activity after Different Treatment Time 

The following two figures described the charts of fluorescence signal results from set (II) 

experiments. These figures compared D. salina activities under different treatment times with sodium 

hypochlorite solution. The chart describes the output voltage varies with the treatment time. Figure 1 

was the fluorescence signal diagram after 6 min treated with 3 mg/L sodium hypochlorite solution. 

Figure 2 was the fluorescence signal diagram for treatment about 12 min with 3 mg/L sodium 

hypochlorite solution. 

 

Figure 1. Fluorescence signal of D. salina after 6 min treatment with 3 mg/L of NaClO. 

The results of the two experiments were compared according to Figures 1 and 2. The fluorescence 

signal for the treatment time of about 12 min was significantly smaller than the signal amplitudes with a 

treatment time of 6 min; the microalgae activity was clearly lowered. It shows the system is feasible and 

reliable by verifying the fact that chemical disinfection reduced the microalgae activity in a certain time. 
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Figure 2. Fluorescence signal of algae when treated approximately 12 min with 3 mg/L of NaClO. 

2.2. Effect on D. salina through Treatment with Different Concentrations of NaClO at the Same Time 

Experiment set (I) detected the activity of D. salina treated with different concentrations of sodium 

hypochlorite solution under the same duration. The treatment time was set at about 5 min. The power 

supply was converted into the required voltage value to control the microalgae at a desired sample well 

which could flow in the microchannel until it arrived at the detection zone while sample solutions from 

other sample wells were controlled to stop the flow. Nevertheless a small amount of sample solution 

from other undesired samples wells have also flown through the detection zone, but this had little 

effect on the results and so it can be ignored. After attaining the number of microalgae from the 

detection zone, the procedures for a next test sample solution were ready for the next detection. This in 

turn obtained fluorescence signals amplitude of five different groups. 

The purpose of data processing is as far as possible to avoid human errors, system errors or accidental 

factors in the experiment. To do data processing, the same number of fluorescence signals of the average 

value of peak voltages which represent the characterization of relative activity of microalgae were firstly 

selected. Selecting the appropriate fluorescent signal meant the signal which had already removed the 

abnormal pulse gross error, system generated error or outside interference. The time span for selecting 

signals in each group should not be too long. If the duration is long, it may affect the activity by 

sodium hypochlorite solution so that the accuracy of the results will be reduced. The graph of relative 

activity of microalgae versus with different concentration of sodium hypochlorite solution is shown in 

Figure 3. The chart clearly showed the activity of D. salina is dramatically decreased under increasing 

concentrations of sodium hypochlorite solution under the same treatment time. 
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Figure 3. Graph of D. salina activity variation in accordance with the variation in 

concentrations of NaClO. 

2.3. Effect on D. salina Activity through Treatment at Constant Concentration of Sodium Hypochlorite 

Solution with Different Durations 

According to the experimental results of set (I), in Figure 3, if the concentration is too high it is 

difficult to observe the activity of the gradually changing processes. If the concentration is too small, 

the activity does not change significantly and thus does not facilitate the analysis of experimental 

results. Hence a moderate concentration of 3 mg/L sodium hypochlorite solution was chosen for the 

treatment of D. salina. During a certain time, the fluorescence signals amplitude was measured in the 

experiment. If the treatment time was too long, the signals magnitude would not be obvious. If the time 

was too short, it would be difficult to see the significant changes of signals amplitude. To avoid these 

two problems the treatment time was set at about 6 min. In this electrokinetic control method, there is a 

little delay time when implementing the experiment but it is never over 1 min. Likewise in data 

processing, there are some factors to be considered to remove gross error, systemic factors and outside 

interference signals that are generated. The statistic chart of the relative activity of microalgae varies 

with different treatment times of 3 mg/L concentration sodium hypochlorite solution under microscope 

detection and fluorescence detection is shown in Figure 4. 

The relative activity of microalgae under microscope detection was calculated using a 

hemocytometer, (XB.K.25.0.10 mm, 1/400 mm2, Qiujing, China), to determine the concentration of 

microalgae cells in a sample solution. The treated sample solution was pipette into the plate and the 

cover glass placed on the sample. A 1:10 dilution was made with water. Cells were carefully counted 

on the five squares grid of surface plate and recorded. According to the number of cells counted in a  
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square, area of the square, the height of the sample and dilution factor, total cells can be calculated by 

Equation (2). 

Total cells = Total cells counted × .  × 10,000 cells/mL × volume (mL) (2)

Counting and calculation was repeated three times for each test under the treatments of 6, 12, 18 

and 24 min, respectively. Counting under the microscope and calculations could not be precise because 

it was very difficult to count moving cells. However both viable and non-viable unmoving cells were 

counted. The equation of relative activity of microalgae under microscope detection is as follow. 

Relative activity of microalgae (mi) =  (3)

where Ncc: Total cells of sample solution, Nct: Total living cells of sample solution treated with NaClO. 

The final result from microscope detection shows that the living cells are decreasing with time  

(see Figure 4). 

On the other hand, the relative activity of microalgae under fluorescence detection was calculated 

by applying Equation (1). It gives precise and clear data of microalgae activity on every minute while 

the detection under a microscope produces uncertain data. The main advantage of detection with 

fluorescence is that chlorophyll from even a dead cell can still be detected in practice [14]. Final 

results show that the increase in treatment time, the decrease D. salina activity and microalgae can be 

completely disinfected about 30 min by using 3 mg/L concentration of NaClO. Actually according to 

our experiments, when the relative activity of algae cells are more than 0.8, especially more than 0.85, 

the algae cells are very active and always move everywhere. However when the relative activity of 

algae cells is less than 0.2, especially less than 0.15, the algae cells hardly move in a long time and 

their activities are very low and close to dead. So, the threshold of relative activity should be within the 

range of from 0.15 to 0.2, above this threshold, algae cells are healthy. 

 

Figure 4. Relative activity of D. salina varies with time with 3 mg/L of NaClO treatment. 
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3. Materials and Methods 

3.1. The Detection System 

3.1.1. System Structure 

The system is mainly based on fluorescence detection using a microfluidic chip. This includes a 

signal detection sub-system, a signal processing sub-system, a data acquisition sub-system, a signal 

display sub-system and a direct current (DC) power supply module. The signal detection sub-system is 

composed of an electrode holder, a specific designed microfluidic chip, laser controller and laser diode 

(DL-488-050, the wavelength of 488 nm, Shanghai Xilong Opto electronics Technology Co., Ltd., 

Shanghai, China). The microchip was constructed by polydimethyl siloxane (PDMS) (Sylgard 184, 

Dow Corning, Midland, MI, USA) and a glass substrate (50 mm × 24 mm × 1.07 mm, CITOGLAS, 

Suzhou, China). It was designed with six sample wells at the left side and one waste well at the right 

side (see Figure 5). Platinum electrodes were inserted into six sample wells and the waste well. All 

these platinum electrodes were connected to low-voltage regulated DC power supply by the way of an 

electrode holder for the main purpose of controlling the flow of sample solution into the microchannel. 

In the signal processing part, there are three components: an emission filter (ET680, Chroma, Bellows 

Falls, VT, USA), photo diode PD (S8745-01 Hamamatsu, Bridgewater, NJ, USA), and filter amplifier 

circuit. An emission filter was mounted to filter fluorescence frequency between the microchip and a 

photo diode. To collect the data, data acquisition equipment NIusb-6259 board (National Instruments, 

Austin, TX, USA) was chosen. A personal computer (PC) with LabVIEW software (2011 version, 

National Instruments, Austin, TX, USA) finally displayed the signal results. All components were 

assembled as shown in Figure 5. 

 

Figure 5. Diagram of system structure (the green dots represents the microalgae cells,  

the blue arrow represents the excitation light and the red arrow represents emitted 

chlorophyll fluorescence). 
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3.1.2. Design and Fabrication of the Microfluidic Chip 

A detailed design of the microfluidic chip and its dimensions are shown in Figure 6. The chip was 

fabricated by bonding a PDMS layer and a glass substrate through applying the soft lithography 

technology [29,30]. According to protocol for conducting experiments, the platform design contained 

six sample wells N1 to N6 with the dimension of 4 mm diameter × 4 mm height, and a waste well N7. 

The seven wells were formed by punching holes in the PDMS layer. Each of the sample wells is 

connected to the waste well by microchannels as shown in Figure 6. The detection zone was located at 

the center of the detection channel as indicated in Figure 6. The chip finally was cleaned by using 

plasma cleaner (HARRICK PLASMA). Afterward, the chip was carefully placed on the testing area to 

ensure the direction of laser incident rays was aligned with the detection zone. The laser diode was 

also set up with an appropriate distance to the chip. 

 

Figure 6. Structure and dimensions of a microfluidic chip. 

3.2. Preparation of Sample Solution 

3.2.1. Culture of Dunaliella Salina 

Dunaliella salina (D. salina), a kind of unicellular microalgae, was obtained from Liaoning Sea 

Fisheries Research Institute (LSFRI, Dalian, China). It was cultured in a 5000 mL specification 

Erlenmeyer flask with 3000 mL seawater medium that was enriched with a certain amount of trace 

element solution and vitamin solutions. After preparation of culture medium, it was immediately 

placed under incubation at room temperature. 

3.2.2. Titration of Sodium Hypochlorite Solution (NaClO) 

At first the chlorine content in sodium hypochlorite solution was determined. NaClO was dissolved 

in seawater by setting the ratio 1:10. The chlorine level was determined by the iodine method; 

Secondly, required reagents for titration was systematically prepared by using 10% potassium iodide 

(KI) solution, 0.5% starch solution, 2 mol/L H2SO4 solution, 0.1 mol/L K2Cr2O7 standard solution and 

0.1 mol/L Na2S2O3 solution; Thirdly Na2S2O3 solution was standardized in the dark and titrated until 

the color changed from blue to bright green; Finally, the volume of sodium hypochlorite and chlorine 
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content was calculated. Sodium hypochlorite is very unstable, especially when there is rapid 

decomposition through light and heat, and therefore it is kept in the dark at a low temperature. 

3.3. Working Principle 

Firstly, test sample solutions which combined culture medium solution and titrated sodium 

hypochlorite solution were filled by a digital pipette into all wells; Secondly, electrodes were put into 

the wells and connected with the power supply. Low-voltage regulated DC power supply controlled 

the desired value of electrical potential to each electrode. This control causes the flow of sample from 

the sample well to the waste well by the way of specific micro-channel; Thirdly, by understanding the 

principle of microalgae fluorescence excitation and their spectrum, the laser controller was adjusted to 

fit the power. It is irradiated within a certain frequency to the detection zone of the chip. The laser 

diode was used as an excitation source. When the sample solution flows through the detection region 

under laser irradiation, the excited fluorescence can be observed. The emitted optical fluorescence was 

filtered by a red filter. Afterwards, the optical signal result of chlorophyll fluorescence was received  

by the photodiode and converted into electrical signals. The output voltage of the photodiode is 

proportional to the corresponding chlorophyll fluorescence intensity, that is, the signal amplitude 

objectively reflects the size and activity of microalgae. A differential amplifier circuit was designed to 

improve the signal-to-noise ratio of the output signal from the photodiode; Finally, data acquisition 

equipment (DAQ) board was used for acquiring and processing the signals from the amplifier circuit. 

DAQ collected the data and finally signal results were displayed by a computer with LabVIEW 

software. A displayed downward signal peak represents the fluorescence signal amplitude produced by 

living algae. The whole experiment was repeated three times. 

3.4. Electrokinetic Control on a Microfludic Chip 

To understand the electrokinetic phenomenon in microchannels, electroosmotic flow (EOF) and 

electrophoresis theory were applied along with the induced Joule heating effect. All these theories are 

based on electro hydrodynamic theory [19]. Our research involves the control of the flow involves the 

control of the on/off flow of sample solution in the microchannel by varying electric field intensities 

and we therefore applied the above-mentioned theories in our experiments. 

3.4.1. Analysis of Control by Electroosmosis 

Current research applications of electrical phenomena in microfluidic basically use a model 

proposed by Stern [31]. The main one is the electric-double-layer potential distribution theory based  

on the Poisson-Boltzmann equation [32], which is able to derive the specific electric-double-layer 

potential distribution. Although the Poisson-Boltzmann equation is limited by solving the non-linear 

conditions, this equation can be used to describe the state when the fluid is in the fully developed stage 

in the passage. According to the electric double layer theory, the microfluidic chip’s channel wall 

becomes polarized when in contact with an electrolyte solution [33]. The factors of electric property 

depend on the pH value of the solution, electrolyte concentration, ionic strength, the characteristic of 

channel inner surface. However electricity directly determines the quantity of positive/negative ions 
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and the wall surface ζ potential. Due to the effect of ions, viscous force or solvent action, ion 

migrations of diffusion layer occurred [34,35]. These ions migrations will carry the liquid forming an 

electroosmotic flow. The Von Smoluchowski equation [36] gives the expression of electroosmotic 

flow velocity: 

ueo = −  (4)

where ueo is the electroosmotic velocity, ε is relative dielectric constant of the electrolyte solution, ε0 is 

the vacuum dielectric constant, μ is fluid viscosity , ζ is the ζ potential at the wall surface, and E is 

electric field intensity. It can be seen that the electric field intensity, fluid viscosity and wall ζ potential 

all affect the velocity of electroosmotic flow. From the application point of view, the control of 

electroosmotic flow can be achieved by controlling the wall ζ potential, dielectric properties of the 

solution and external electric field. 

3.4.2. Analysis of Control by Electrophoresis 

Electrophoresis is the motion of a charged particle under the effect of the electric field [37] that is, 

the electric field in the electrolyte solution and its force toward the electrode of opposite moving 

phenomenon. In an electrolyte solution, a charged particle experiences the Coulomb’s force and the 

viscous drag force. When these two forces are balanced, the charged particle achieves a steady moving 

speed, namely electrophoretic velocity uep. The electrophoretic velocity of spherical particles is given by: 

uep =  (5)

where uep is electrophoretic velocity, and ζp is the ζ potential of the particle surface. 

3.4.3. Analysis of Control by Electrokinetics on a Microfluidic Chip 

It is clearly observed in the above equations that the kinematic velocity of the charged particles in 

an electrostatic field is related to the external electric field intensity, the characteristic of electrolyte 

solution, and the surface charges of the wall and particles. The vector sum of electroosmotic flow 

velocity and electrophoretic velocity becomes the kinematic velocity of the charged particles in the 

electrolyte [38]. = εεμ −ζ + ζ  (6)

In the above Equations (2) and (3), the velocity of charged particles in the electrolyte solution is 

closely related with ζ potential of the particle surface ζp and ζ potential of the channel wall surface ζ 

while dynamic viscosity μ, electric field intensity E, relative dielectric constant of the medium ε, and 

permittivity of vacuum ε0 are unchanged. Due to this equation, the following conclusion was reached. 

When the two ζ potentials have opposite signs: it means one ζ potential is positively charged and 

another one is negatively charged; the directions of electroosmotic velocity and electrophoresis 

velocity will be the same. When the two ζ potential parameters are represented by the same symbol, 

the electrophoretic velocity direction will be opposite to the direction of electroosmotic velocity in the 
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micro-channel. The actual speed of the electrokinetic particle velocity in the micro-channel is the 

vector sum of electrophoretic velocity and electroosmotic velocity. 

After the power switch is turned on, D. salina flows in the direction from the negative pole to the 

positive pole. According to the simulation results and experimental phenomena software point of view, 

the flow effect of sample solution will be more distinct when applied to zero voltage at the inlet  

and applied 80–100 voltage at the outlet. Generally D. salina will not flow or flow slightly in the 

micro-channel when 40–50 voltage is applied at the inlet. So, we adopted three optimization types of 

voltages, 90, 45 and 0 V. This is dictated by the power switch on/off to control flow through into 

microchannels by electricity instead of using the traditional role of micro-valve control. 

3.5. Experimental Procedures 

Two main detection sets were researched in our experiment. A first set was the detection of  

D. salina activity after treatment with the use of different concentrations of sodium hypochlorite 

solution under the same processing time. Treatment time was set at about five min. The second was 

detection by using the same concentration of sodium hypochlorite solution in different treatment time 

spans, which is in accordance with a certain time gradient detection of its activity. According to the 

results in the first set, 3 mg/L sodium hypochlorite solution was chosen as an effective of point of 

view. The deficiency of D. salina for every second can be observed during the whole processing time. 

To start detection for the first set, 30 µL of ordinary culture solution was first loaded by pipette into 

each well and then 10 µL titrated sodium hypochlorite solution with varying levels of concentrations 

which set at 0, 1, 2, 3 and 4 mg/L were respectively added into N2, N3, N4, N5 and N6 sample wells 

while a 10 µL culture solution was added to N1 and a 10 µL pure water into the waste well. When the 

treatment time for the sample solution was near to five min, the power supply was turned on to 

electrodes and also the laser power was switched on and adjusted. The electrode at the waste well was 

set to 90 V. The N1 sample solution was first allowed to flow in the microchannel. The situation of  

D. salina swimming in the microchannel could be observed under a microscope (Nikon Eclipse Ti-E, 

Nikon, Kobe, Japan). By applying LICF detector, PD and DAQ, detected D. salina algae signals were 

displayed on PC and data recorded. At a certain time after the first detection, electrode voltages were 

tuned to allow only the flow of N2 sample solution to the detection zone. The same procedure was then 

continued to detect D. salina activity that was treated with the concentrations of 1, 2, 3 and 4 mg/L 

sodium hypochlorite solution in order. After all the testing was completed, the data was saved and 

analysis was conducted. 

In the second set of experiments, the detecting procedure was roughly the same as the first one;  

the main difference was the treatment time with the same sodium hypochlorite solution in the second 

set. A desired amount of 30 µL culture solution was loaded into all wells and another 10 µL of 3 mg/L 

concentration sodium hypochlorite solution was added into each of the sample wells except N1. 

Firstly, the culture solution in N1 flowed through the detection channel under the control of electric 

potential and the detected data results saved. After 5 min of treatment with NaClO, the sample solution 

in N2 was allowed to flow and also detected. After another 5 min, the sample solution in N3 flowed in 

the channel and was detected. Similarly the sample solutions in N4, N5 and N6 were tested under the 
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same duration. After approximately 30 min, the whole detection process was completed. The data 

results were carefully saved in each step of detection. 

4. Conclusions 

In this study, a new microfluidic platform for fast evaluation of effectiveness of a ballast water 

chemical treatment method is presented. The novel features of the microfluidic platform described here 

include the following: (1) Effectiveness of a ballast water treatment method can be evaluated by the 

viability of microalgae cells under different chemical treatment conditions on a microfluidic chip;  

(2) The viability of microalgae cells was represented by average intensities of chlorophyll fluorescence 

emitted when the cells are passing through the detection zone in a microfluidic chip; (3) Sample 

transportation is controlled automatically by electrokinetic flow in a microfluidic chip, which is 

simple, easy to operate and small in size; (4) Compared with the traditional methods, the developed 

microfluidic system has some advantages such as small volume of sample solution required, speed, 

accuracy and low cost; and (5) It has great potential be extended to become a common evaluation 

platform in ship’s ballast water treatment systems as well as chemical treatment systems. 
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