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Abstract: More than 240 million people around the world are chronically infected with hepatitis B
virus (HBV). Nucleos(t)ide analogs and interferon are the only two families of drugs to treat HBV
currently. However, none of these anti-virals directly target the stable nuclear covalently closed
circular DNA (cccDNA), which acts as a transcription template for viral mRNA and pre-genomic
RNA synthesis and secures virus persistence. Thus, the fact that only a small number of patients
treated achieve sustained viral response (SVR) or cure, highlights the need for new therapies against
HBV. The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing
system can specifically target the conserved regions of the HBV genome. This results in robust viral
suppression and provides a promising tool for eradicating the virus. In this review, we discuss the
function and application of the CRISPR/Cas9 system as a novel therapy for HBV.
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1. Introduction

The World Health Organization estimates that 240 million persons are chronically infected with
hepatitis B virus (HBV), a hepatotropic DNA virus which replicates by reverse transcription [1,2].
Chronically infected individuals are at an increased risk for liver cirrhosis and hepatocellular
carcinoma [3]. Currently, IFN-α and five oral nucleos(t)ide analogs (NUCs) are used for the
treatment of chronic hepatitis B [4]. NUCs inhibit the synthesis of viral DNA from pregenomic
RNA by targeting the multifunctional reverse transcriptase, named P protein. NUCs can
effectively reduce viral DNA level by multiple logs; however, virus reactivation often occurs within
weeks to months after treatment withdrawal [5,6]. In consequence, life-long of NUC therapy
is usually required [7]. Additionally, long-term NUC treatment may lead to the selection of
resistance-conferring mutations [8]. α interferons (IFN-α) has the advantage of a much shorter
treatment period (6 months to 1 year) and without the risk for mutant selection. The main
disadvantages of IFN-α are the injection-related adverse effects and the fact that only a small group of
patients are eligible for interferon therapy and less than 10% of them achieve a sustained response [9].
The ultimate goal of chronic HBV therapy should involve the full elimination of all viral DNA
from the body. Since a refractory intracellular HBV replication involves an intermediate which is
termed covalently closed circular (ccc) DNA, current treatments rarely achieve a cure [10]. The highly
stable HBV cccDNA, which is generated from the relaxed circular (RC) HBV DNA genome in the
infected hepatocytes, acts as the template for viral mRNA and pre-genomic RNA synthesis, and in
consequence gives rise to the new virions [11] (Figure 1).

To achieve significant rates of sustained virological responses or cure, new therapies with
alternative mechanisms of action against HBV are now under development [4]. New investigational
agents fall into two categories: direct-acting and host-targeting HBV inhibitors. Direct-acting
antivirals target critical steps of the HBV life cycle and include HBsAg inhibitors, capsid inhibitors,
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RNaseH inhibitors, DNA cleavage enzymes, and siRNA-acting drugs [6]. On the other hand,
host-targeting antivirals aim at targets involved in HBV entry and secretion and/or restore anti-virus
immune responses [6]. For completely eradicating HBV, the virus cccDNA intermediates must be
destroyed [12]. Novel nuclease-based gene targeting technologies, such as zinc finger nucleases
(ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced
short palindromic repeats (CRISPR)/Cas9 system, have been harnessed to disrupt HBV genome with
favorable effects [13–23]. These sequence-specific nucleases can create double-stranded breaks (DSBs)
at specific DNA locations, which may stimulate error-prone nonhomologous end joining (NHEJ)
pathway in the absence of repair templates, leading to the formation of insertions and deletions
(indels). The indels at the DSB site can result in frameshifts and/or the production of premature
stop codons, which disrupt the open reading frame (ORF) in the target gene. Given the highly
difficult design and costly preparation of the ZFNs and TALENs, the CRISPR/Cas9 system has
rapidly developed as a simpler and more versatile gene editing technology [24]. Here, we review
the function and application of CRISPR/Cas9 as a novel therapy for HBV.
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Figure 1. The life cycle of hepatitis B virus (HBV) with therapeutic targets. HBV binds to surface 
receptors and enters the hepatocyte. Viral particles migrate to the cell nucleus, where the HBV 
genomes are converted to a covalently closed circular (cccDNA) that serves as a template for viral 
transcription. The translation of viral mRNA in the cytoplasm results in the production of the core 
(C), polymerase (P), surface (S) and hepatitis B virus X (HBx) proteins. Next, genomic viral RNA is 
packaged into the progeny viral capsids. The core particle can either be encapsulated and secreted 
from the hepatocyte or be reimported into the nucleus for transformation to cccDNA. Clustered 
regularly interspaced short palindromic repeats (CRISPR)/Cas9-directed disruption of the HBV life 
cycle can target (A) or (B) the entry receptor sodium taurocholate co-transporting polypeptide (NTCP) 
which is necessary for the HBV life cycle. 

Figure 1. The life cycle of hepatitis B virus (HBV) with therapeutic targets. HBV binds to surface
receptors and enters the hepatocyte. Viral particles migrate to the cell nucleus, where the HBV
genomes are converted to a covalently closed circular (cccDNA) that serves as a template for viral
transcription. The translation of viral mRNA in the cytoplasm results in the production of the core (C),
polymerase (P), surface (S) and hepatitis B virus X (HBx) proteins. Next, genomic viral RNA is
packaged into the progeny viral capsids. The core particle can either be encapsulated and secreted
from the hepatocyte or be reimported into the nucleus for transformation to cccDNA. Clustered
regularly interspaced short palindromic repeats (CRISPR)/Cas9-directed disruption of the HBV life
cycle can target (A) or (B) the entry receptor sodium taurocholate co-transporting polypeptide (NTCP)
which is necessary for the HBV life cycle.
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2. The Emergence of CRISPR/Cas9: From Bacterial Immune System to Versatile Genome
Editing Tool

The CRISPR system was originally found to be a bacterial adaptive immune defense system
against invading plasmids and phages [25]. Ribonucleoprotein complexes formed with CRISPR
RNAs (crRNAs), trans-activating crRNA (tracrRNA), and Cas proteins can perform crRNA-guided
recognition and degradation of foreign nucleic acids [26]. The Cas protein-mediated DNA cleavage
requires a complementarity between the target sequence and the crRNA, and the presence of a proto
spacer adjacent motif (PAM). Later, the type II CRISPR/Cas system from Streptococcus pyogenes was
further engineered with the development of a chimeric single-guide RNA (sgRNA) which consists of
a fusion of crRNA/tracerRNA and a Cas9 protein [27] (Figure 2). Importantly, the sgRNA and Cas9
protein are sufficient for induction of targeted DNA binding and cleavage in a variety of systems,
including cultured human cells, rats, mice, Caenorhabditis elegans, zebrafish, Drosophila, bacteria,
Arabidopsis thaliana, and others [28–36]. This two-component system can be utilized by targeting
to any DNA sequences with the PAM form, making it a highly versatile tool for various applications.
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Figure 2. Schematic of CRISPR/Cas9 mediated-genome editing. (A) The sgRNA guides the Cas9 
protein to cut specific DNA sequence by recognizing the protospacer-adjacent motif (PAM) sequence 
and a complementary target sequence; (B) The breaks induced by Cas9 are repaired either through 
homology-directed repair (HDR) or non-homologous end joining (NHEJ), results in precise gene editing 
with insertions or deletions (indels), respectively. NGG: PAM sequence. 

3. CRISPR/Cas9 Target HBV cccDNA and Inhibit HBV Replication 

The HBV genome has four long open reading frames (surface, core, polymerase, and X protein) 
which are translated into only seven proteins highly important for viral replication [37]. In theory, 
targeting any one of the seven proteins would likely be sufficient to suppress viral gene expression 
and replication (Figure 3). 

There are several examples of targeting HBV genome with varying degrees of success by 
CRISPR/Cas9 system (Table 1). Lin et al. first reported that the CRISPR/Cas9 system could be used to 
disrupt the HBV genome both in vitro and in vivo [15]. They showed that HBV-specific Cas9/sgRNA 
combinations were able to significantly reduce the production of HBV core and HBsAg when Cas9 
and a HBV expression plasmid were co-transfected into Huh7 hepatocyte-derived cellular carcinoma 

Figure 2. Schematic of CRISPR/Cas9 mediated-genome editing. (A) The sgRNA guides the Cas9
protein to cut specific DNA sequence by recognizing the protospacer-adjacent motif (PAM) sequence
and a complementary target sequence; (B) The breaks induced by Cas9 are repaired either through
homology-directed repair (HDR) or non-homologous end joining (NHEJ), results in precise gene
editing with insertions or deletions (indels), respectively. NGG: PAM sequence.

3. CRISPR/Cas9 Target HBV cccDNA and Inhibit HBV Replication

The HBV genome has four long open reading frames (surface, core, polymerase, and X protein)
which are translated into only seven proteins highly important for viral replication [37]. In theory,
targeting any one of the seven proteins would likely be sufficient to suppress viral gene expression
and replication (Figure 3).

There are several examples of targeting HBV genome with varying degrees of success by
CRISPR/Cas9 system (Table 1). Lin et al. first reported that the CRISPR/Cas9 system could be used to
disrupt the HBV genome both in vitro and in vivo [15]. They showed that HBV-specific Cas9/sgRNA
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combinations were able to significantly reduce the production of HBV core and HBsAg when Cas9
and a HBV expression plasmid were co-transfected into Huh7 hepatocyte-derived cellular carcinoma
cells. In addition, this system could efficiently reduce levels of intrahepatic HBV-expressing
vectors and the serum levels of HBsAg in an HBV hydrodynamics-mouse model. Using lentiviral
transduction of Cas9 and HBV-specific gRNAs, Kennedy et al. extended these findings by
demonstrating effective inhibition of HBV DNA production and cccDNA accumulation for in vitro
models of both chronic HBV infection (HepAD38 cells) and de novo infection (HepaRG cells) [16].
The CRISPR/Cas9 system suppressed total HBV viral DNA levels by up to ~1000-fold and cccDNA
levels by up to ~10-fold. Seeger and Sohn demonstrated that HBV infections could be inhibited up to
eightfold by HBV-specific guide RNAs in sodium taurocholate cotransporting polypeptide (NTCP)
expressing HepG2 cells [17]. In another study, Liu et al. reported that HBV-specific gRNA/Cas9
could inhibit the replication of HBV of different genotypes both in vitro and in vivo, which was due
to clearance and error prone repair of viral DNA templates [18]. Zhen et al. targeted the surface
ORF, both in HepG2.2.15 cells and an in vivo hydrodynamics-mouse model [19]. The HBsAg levels
in the culture supernatants and mouse serum were lowered by CRISPR/Cas9 treating. The system
could also effectively inhibit HBV DNA levels and HBsAg expression in mouse livers. Dong et al.
demonstrated that the CRISPR/Cas system could be used for inhibiting intracellular cccDNA and
viral replication in precccDNA-transfected Huh7 cells and in a new mouse model carrying HBV
cccDNA [20]. Ramanan et al. showed that sgRNAs targeting conserved regions of HBV cause strong
inhibition of virus replication both in vitro and in vivo, and extended this antiviral activity to virus
isolated from patients [21]. Upon continuous expression of Cas9/sgRNA, the group demonstrated a
sharp decline of cccDNA and HBV proteins in a de novo infection model. Wang et al. applied dual
gRNAs to guided CRISPR/Cas9 system to inactivate HBV of genotypes A–D in vitro [22]. In the most
recent study of HBV and CRISPR, Karimova et al. demonstrated that an improved CRISPR/Cas9
nickase system can disrupt both HBV cccDNA and integrated HBV sequences in HeLa and HEK293
cell lines [23]. Also, by targeting S- or X-ORFs, they successfully inhibit HBsAg expression in both
chronically and novel de novo infected human hepatoma cell lines. In summary, these studies have
demonstrated the usefulness of the CRISPR/Cas9 system in destroying HBV cccDNA both in vitro
and in vivo, and shown the therapeutic potential of CRISPR/Cas9 in acute and chronic HBV infection.
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Table 1. Application of CRISPR/Cas9 to HBV.

Target HBV Infection Model Results Reference

P1, S1, XCp, and PS2 ORFs Huh7 Reduction in HBsAg level in medium Lin et al. [15]

HBV hydrodynamics-mouse model Reduction in HBsAg level in serum Lin et al. [15]

P, S, and C ORFs HepAD38 and HepaRG Reduction in viral DNA and cccDNA levels. Reduction in HBsAg and HBeAg level in medium Kennedy et al. [16]

ENII-CP/X and Pre-C ORFs HepG2 with HBV receptor NTCP Eight-fold inhibition of HBV infection Seeger and Sohn [17]

P, S, X and C ORFs HepG2 Reduction of intracellular HBV replication intermediates and extracellular virion DNA Liu et al. [18]

HBV hydrodynamics-mouse model Reduction in HBsAg and HBeAg level in serum and the expression of HBcAg in liver Liu et al. [18]

P, S, X and C ORFs HepG2.2.15 Reduction in HBsAg level in medium and intracellular cccDNA Zhen et al. [19]

HBV hydrodynamics-mouse model Reduction in HBsAg level in serum Zhen et al. [19]

X/L and X ORFs
Huh7 Reduction in HBsAg and HBeAg level in medium and intracellular cccDNA Dong et al. [20]

HepG2.2.15 Reduction in HBsAg level in medium Dong et al. [20]

HBV hydrodynamics-mouse model
carrying cccDNA Reduction in HBsAg and HBeAg level in serum and intrahepatic cccDNA Dong et al. [20]

P, S, X and C ORFs
HepG2 with HBV receptor NTCP Reduction in HBsAg, HBV DNA, 3.5kb RNA and cccDNA levels in culture medium Ramanan et al. [21]

HepG2.2.15 Reduction in HBV DNA and cccDNA levels Ramanan et al. [21]

HBV hydrodynamics-mouse model Reduction in HBsAg and viral DNA level in serum Ramanan et al. [21]

P, S, X and C ORFs HuH-7 Reduction in HBsAg and HBeAg level in medium Wang et al. [22]

HepAD38 Reduction in HBsAg, HBeAg, HBV DNA, and cccDNA levels in culture medium Wang et al. [22]

S and X ORFs
HepG2.2.15 and HepG2-H1.3 Significant reduction in HBsAg level in medium Karimova et al. [23]

HepG2 hNTCP Significant reduction in HBsAg level in medium Karimova et al. [23]

P: polymerase; S: surface; X: HBx; C: core; ORF: open reading frame; XCp: X core promotor; cccDNA: covalently closed circular DNA; L: large surface protein; PS2: pre-S2;
CP: core promoter; ENII-CP: enhancer II and core promoter.
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4. The Limitations of the CRISPR/Cas9 Technology as a Novel Therapeutic for HBV

Current studies provide a proof of concept, but there are significant issues that need to be
addressed before the translation of CRISPR/Cas9 systems to clinical HBV treatment.

The greatest concern is the ability to eradicate all viruses. However, the best result of HBV
cleavage using CRISPR/Cas9, achieved by Ramanan et al., is reduction of cccDNA by about 92% in
culture cell [19]. A potential challenge is that HBV DNA can be found in various tissues outside
the liver and a range of cell lines are permissive for HBV replication [38–40]. For eradication of
HBV, it is essential to deliver the nucleases to every last infected cell in hepatic and extrahepatic viral
reservoirs. To achieve sustained anti-HBV activity in vivo, an efficient delivery vehicle should be used.
Due to the low immune potential, non-integrating nature, and high infection efficiency, recombinant
adeno-associated viral vectors (rAAVs) is currently the best choice for delivering CRISPR/Cas9.
Nevertheless, the total length of the humanized Cas9 gene (~4.2 kb), sgRNA and the regulatory
elements surpasses the ~4.5 kb cargo size of rAAV [41]. This packaging obstacle can be solved by
taking advantage of a split-Cas9 system [42] or by using a smaller Cas9 orthologs, such as SaCas9
from Staphylococcus aureus, which is >1 kb shorter [41].

The second concern is the potential off-target effects with CRISPR/Cas9 system [43]. Only one
of the nine studies conducted next-generation sequencing at limited potential off-target locations
for HBV specific sgRNAs [15–23]. While Cas9-directed cleavage has not been detected within the
human genome at sites of homology to viral Cas9 target, an extensive genome-wide off-target
analysis is warrant. The data published previously showed that significant off-target activity of
CRISPR/Cas9 system does occur at a high rate, even for sgRNAs that have mismatches up to five
nucleotides [43]. Several approaches have been developed to reduce off-target effects: (i) The “paired
nicking” strategy [44]. By using two spaced gRNAs and a mutated Cas9 (Cas9n) with single-strand
DNA cleavage capacity, a nick instead of DSBs can be produced on both DNA strands. With the
opposite intact strand as a template, nicks would be further repaired precisely by the cell machine.
The paired sgRNAs and Cas9n was reported to reduce off-target effect by 1500-fold comparing to the
wild-type Cas9; (ii) Truncate sgRNAs at the 51 end of the complementary targeting sequence. Fu et al.
demonstrated that shorter sgRNAs with 17 or 18 nucleotides can improve target specificity by more
than 5000-fold without reducing the on-target efficiency [45]; (iii) Another variant Cas9 (fCas9) was
engineered by fusing catalytically inactive Cas9 to Fok I nuclease [46]. The cleavage induced by
fCas9 requires that each part of the dimmer binding to DNA. Using the fCas9 system, a specificity of
140-fold higher than typical Cas9 was achieved in human cell by increasing the number of targeting
bases [46]. However, these approaches remain less efficient.

The third concern is selecting proper target sites in the HBV genome. The major problem of
Nucleos(t)ide analog treatment is the emergence of therapy-resistant HBV variants. Given that the
CRISPR/Cas9 system relies on precise sequence recognition, if the viral load is sufficiently high,
viral genomes with de novo mutations that cause loss of the CRISPR/Cas9 recognition site will be
selected for, and would provide a therapy-resistant pool of viruses able to re-establish infection. Thus
the targeting sequence should avoid overlapping with regions such as (Y)-methionine (M)-aspartic
acid (D)-aspartic acid (D) (YMDD) motif. Importantly, HBV is classified into eight genotypes A–H
since the high sequence divergence. Targeting to highly conserved sequences among different
viral genotypes and using multiple CRISPR/Cas9 constructs simultaneously, are good strategies for
minimising the problem of existing and de novo mutations.

The last concern is the integrated linearised HBV DNA, which may be cut by the CRISPR/Cas9.
The integration of subgenomic HBV DNA fragments into host genome is common in patients with
hepatocellular carcinoma or chronic infection [47]. The cleavage of integrated viral DNA can also
leads to indels in the host genome, which may potentially disrupt the host gene function. The
unwanted adverse effect should be carefully evaluated.
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5. Potential Gene Editing Target for HBV Therapy with CRISPR/Cas9

Novel Genome editing technologies have been recently used as weapons against several human
viruses [48,49]. In the field of curative HIV research, studies showed that CD4+ T cells with chemokine
(CC motif) receptor 5 (CCR5)-disrupted by nucleases are resistance to HIV-1 infection [50,51]. A major
breakthrough is that ZFNs which cleave CCR5 have entered phase I clinical trials [52]. Sodium
taurocholate co-transporting polypeptide, which mediates the transport of bile acids and other
molecules from portal circulation, was recently identified as an entry receptor of HBV and HDV [53].
One category of the indirect anti-HBV agents in development are entry inhibitors, which targeting
the HBV receptor NTCP [54]. With the encouraging result of nucleases based CCR5 gene therapy, it
stands to reason that using CRISPR/Cas9 to disrupt NTCP expression may block the entry of HBV
and prevent the spread of viral infection. Again, although no reports of serious diseases associated
with defects in the NTCP gene have been published yet, the potential alteration of gene function and
toxicity of NTCP disruption should be evaluated.

6. Conclusions

The CRISPR/Cas9 technology has tremendously advanced our ability to alter the genome and
also brought about a new age of gene therapies to treat diseases. Although still in a proof-of-concept
stage, CRISPR/Cas9 system can be used to inhibit HBV replication and gene expression both in vitro
and in vivo, and may constitute a new therapeutic approach for HBV infection. A combination of
CRISPR/Cas9-based therapy and RT inhibitors currently used may achieve the highest rates of viral
response. While many obstacles remain, including safety and delivery efficiency of the system, it is
clear that CRISPR/Cas9 technologies offer great promise for the cure of chronic HBV infection.
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