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Abstract: Parkinson’s disease (PD) is characterized by a progressive loss of dopaminergic
neurons and consequent dopamine (DA) deficit, and current treatment still remains a challenge.
Although neural stem cells (NSCs) have been evaluated as appealing graft sources, mechanisms
underlying the beneficial phenomena are not well understood. Here, we investigate whether
human NSCs (hNSCs) transplantation could provide neuroprotection against DA depletion
by recruiting endogenous cells to establish a favorable niche. Adult mice subjected to
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) were transplanted with hNSCs or vehicle into
the striatum. Behavioral and histological analyses demonstrated significant neurorescue response
observed in hNSCs-treated animals compared with the control mice. In transplanted animals,
grafted cells survived, proliferated, and migrated within the astrocytic scaffold. Notably, more
local astrocytes underwent de-differentiation, acquiring the properties of NSCs or neural precursor
cells (NPCs) in mice given hNSCs. Additionally, we also detected significantly higher expression
of host-derived growth factors in hNSCs-transplanted mice compared with the control animals,
together with inhibition of local microglia and proinflammatory cytokines. Overall, our results
indicate that hNSCs transplantation exerts neuroprotection in MPTP-insulted mice via regulating
the host niche. Harnessing synergistic interaction between the grafts and host cells may help
optimize cell-based therapies for PD.

Keywords: Parkinson’s disease; neural stem cells; transplantation; niche; endogenous
de-differentiated astrocytes

1. Introduction

A major hallmark of Parkinson’s disease (PD) is an extensive loss of dopaminergic neurons
in the substantia nigra (SN) and consequent dopamine (DA) deficit in the striatum [1]. Although
symptomatic improvements can be achieved by systemic administration of L-dopa or DA agonists,
there are still a great number of challenges such as diminished effectiveness and considerable side
effects [2].
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Alternatively, cell replacement therapies in PD are based on the premise that grafts can restore
dopaminergic neurotransmission, providing a functionally efficient substitute for neuron loss [3].
Neural stem cells (NSCs) are defined as multipotent, self-renewing progenitors [4,5], possessing
intrinsic capacity to rescue dysfunctional neural pathways. NSCs have been evaluated as appealing
donor graft sources [6–8], since they are endowed with certain differentiation stages [9]. Nonetheless,
several disadvantages have prevented its meaningful applicability [6,8,9]: (i) limited supply of cell
sources with homologous species; (ii) unstable cell survival and slow maturation; (iii) minimal
differentiation into dopaminergic neurons.

Recently, more studies have focused on the host microenvironment or the “niche”, which is
critical to determine the fate of donor cells [10,11]. Particularly, astrocytes are the support cells of the
nervous system, and host-derived reactive astrocytes in response to brain insult largely comprise
the inflammatory niche. Firstly, the astrocytes endfeet wrap brain blood vessels to establish the
gliovascular interface [12]. These cells participate in blood flow regulation, nutrient transport, and
modulation of synaptic transmission [12,13]. Indication of migratory patterns of endogenous NSCs
or neural precursor cells (NPCs) highlights the important role of astrocytes as host scaffold [14],
and raises the question of whether grafted cells themselves may attract local astrocytes, which in
turn facilitate survival and migration of the xenografts; Secondly, reactive astrocytes de-differentiate
into a phenotype resembling radial glial cells (RGCs) following DA depletion [4,15–17], and have
been proposed as the resident adult NSCs/NPCs which might exert beneficial effects. Several
findings have provided evidence that reactive astrocytes can be reprogrammed into immature [18]
or mature neurons [19] by transcription factors. In light of these studies, recruitment of endogenous
de-differentiated astrocytes (EDAs) residing within the brain niche might be promising for PD
therapies, because they might exhibit a remarkable capacity for differentiating into neuronal
phenotypes. However, there have been few detailed reports concerning the glial response to NSC
transplantation in PD; Thirdly, previous evidence has suggested that astrocytes, particularly the
EDAs are central to endogenous neuroprotection by release of neurotrophic factors such as glial
cell line-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), insulin-like
growth factor-1 (IGF-1), neurotrophin-3 (NT-3), and epidermal growth factor (EGF), etc. [20–22].
Therefore, investigation of the beneficial effects, particularly the capability of producing growth
factors by recruited endogenous NSCs/NPCs (e.g., EDAs) following transplantation would be crucial
for increasing accessibility of the niche. In addition to the above-mentioned elements, activated
microglia, the feature of neuroinflammation, are detrimental to the host and grafted cells via
releasing multiple cytotoxic molecules in the nigrostriatal pathway in PD [23,24]. Inhibition of
microglia and proinflammatory cytokines appears to protect dopaminergic neurons and ameliorate
behavioral disabilities.

In our study, adult mice were subjected to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)
lesions followed by intrastriatal transplantation of human neural stem cells (hNSCs). Initially,
we assessed whether hNSCs could produce behavioral benefits and protect against DA depletion.
We found that hNSCs transplantation not only produced immature neurons that survived and
migrated within the astrocytic scaffold, but also promoted de-differentiation of local astrocytes,
production of neurotrophic factors, and inhibition of microglia as well as proinflammatory cytokines,
demonstrating that hNSCs transplantation could provide neuroprotection via regulating the host
niche. Better understanding of the underlying mechanisms will facilitate application of hNSCs
therapy to the clinic.
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2. Results

2.1. Behavioral Tests

The rotarod as well as pole test were compared in different groups. No difference was observed
before cell transplantation. However, significant improvement in duration on the rotarod appeared in
grafted mice starting from seven days after hNSCs transplantation compared with controls (p < 0.05,
Figure 1A). At 26 rpm, hNSCs-treated mice remained on the rotarod significantly longer than the
control animals. Interestingly, the duration decreased from 28 days after treatment (still statistically
significant compared with control) as depicted in Figure 1A. For the pole test, hNSCs-treated mice
took a significantly shorter time to complete the paradigm after seven days post-transplantation
except for the time point of 42-days (Figure 1B).
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Figure 1. Transplantation of hNSCs (human neural stem cells) promotes functional recovery following 
MPTP injection. Motor performance in rotarod (A) and pole (B) tests of the hNSCs-treated or control 
groups demonstrated significant differences starting at 14 days after MPTP. Values represent mean ± 
SEM (* p < 0.05; two-way ANOVA). hNSCs, human neural stem cells; MPTP, 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine. 

2.2. hNSC (Human Neural Stem Cells) Transplantation Protects both Cell Bodies and Axons of the 
Nigrostriatal Dopaminergic Pathway 

To assess effects of nigrostriatal protection, we examined the optical densities of dopaminergic 
axons in the striatum and stereologically counted the number of dopaminergic neurons in the SN 
stained for tyrosine hydroxylase (TH). At 42 days following hNSCs transplantation, there was 
substantial restoration of innervation (Figure 2C). Values were normalized to the mean of mice given 
0.1 M phosphate buffered saline (PBS). Furthermore, hNSCs-transplanted mice had an average of 
4423.53 ± 146.00 cells expressing TH in the SN when compared with vehicle-infused animals which had 
only 3116.89 ± 119.20 dopaminergic neurons (p < 0.05, Figure 2B). 

 
Figure 2. The hNSCs-treated mice are more resistant against MPTP neurotoxicity. (A) Although the 
overall number of dopaminergic neurons in hNSCs-treated mice (A3) was still smaller than that of 
cells in intact animals without MPTP (absolute controls) (A1), significantly more remaining TH cells 
were observed in transplanted mice (A3) compared with animals given PBS (A2); Quantification of 
nigral TH positive neurons (B) and optical density of striatal TH positive fibers (C) revealed 
significant recovery in hNSCs-treated mice compared with animals given PBS. Data of optical 
densities are normalized to the mean of PBS-treated animals. Scale bars represent 200 μm. Bars 
represent mean ± SEM (* p < 0.05; two-tailed Student’s t-test). TH, tyrosine hydroxylase; SN, substantia 
nigra; PBS, phosphate buffered saline. 

Figure 1. Transplantation of hNSCs (human neural stem cells) promotes functional recovery
following MPTP injection. Motor performance in rotarod (A) and pole (B) tests of the hNSCs-treated
or control groups demonstrated significant differences starting at 14 days after MPTP. Values
represent mean ˘ SEM (* p < 0.05; two-way ANOVA). hNSCs, human neural stem cells; MPTP,
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.

2.2. hNSC (Human Neural Stem Cells) Transplantation Protects both Cell Bodies and Axons of the
Nigrostriatal Dopaminergic Pathway

To assess effects of nigrostriatal protection, we examined the optical densities of dopaminergic
axons in the striatum and stereologically counted the number of dopaminergic neurons in the
SN stained for tyrosine hydroxylase (TH). At 42 days following hNSCs transplantation, there was
substantial restoration of innervation (Figure 2C). Values were normalized to the mean of mice given
0.1 M phosphate buffered saline (PBS). Furthermore, hNSCs-transplanted mice had an average of
4423.53 ˘ 146.00 cells expressing TH in the SN when compared with vehicle-infused animals which
had only 3116.89 ˘ 119.20 dopaminergic neurons (p < 0.05, Figure 2B).
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Figure 2. The hNSCs-treated mice are more resistant against MPTP neurotoxicity. (A) Although the
overall number of dopaminergic neurons in hNSCs-treated mice (A3) was still smaller than that of
cells in intact animals without MPTP (absolute controls) (A1), significantly more remaining TH cells
were observed in transplanted mice (A3) compared with animals given PBS (A2); Quantification of
nigral TH positive neurons (B) and optical density of striatal TH positive fibers (C) revealed significant
recovery in hNSCs-treated mice compared with animals given PBS. Data of optical densities are
normalized to the mean of PBS-treated animals. Scale bars represent 200 µm. Bars represent
mean ˘ SEM (* p < 0.05; two-tailed Student’s t-test). TH, tyrosine hydroxylase; SN, substantia nigra;
PBS, phosphate buffered saline.

2.3. Survival, Migration and Phenotypic Fate of Grafted hNSCs

Two weeks after hNSCs transplantation, we analyzed grafted cell survival and migration in the
striatum. Grafted cells in treated mice appeared to live with normal morphologies. The overall
number surviving in hNSCs transplants at day-14 appeared to be greater than those at day-7,
although this failed to achieve statistical significance (p > 0.05). The number of surviving cells
was estimated to be more than that of actually transplanted because cells within the transplants
continued to proliferate. Approximately, 68.09 ˘ 3.08 percent of grafted cells expressed Ki-67 at day-7
(Figure 3B). However, the number of transplanted cells present in the host brain gradually decreased
after longer time (by 28 and 42 days following transplantation, 64.79 ˘ 4.89 and 33.91 ˘ 2.26 percent
of grafts at day-7 respectively) (Figure 3E).
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in (B) demonstrated one representative proliferating stem cell (arrow) with enlarged double nuclei; 
(D) At 14 days post-transplantation, some grafted cells still expressed Nestin, which demonstrated 
that they were at the early stage of neurogenesis and remained poorly differentiated. Scale bars 
represent 50 μm in (A); 20 μm in (B,D); 10 μm in (C); (E) Grafted cells survived well for at least 14 
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In terms of migration of grafted cells, hNSCs seemed to be broadly distributed around the 
transplanted core in the striatum (Figure 4). Many of the migrating cells expressed nestin, some of 
which co-labeled with Ki-67 (Figure 3). At 14 days post-treatment, grafted cells mainly dispersed 
along the grafted trajectory and migrated towards the corpus callosum (cc) or even connected with 
the rostral migratory stream (RMS) (Figure 4H). Typically, these cells were of an elongated shape, 
which sprouted and extended their neurites, pointing in the direction of migration. Grafts were 
strongly immunoreactive to doublecortin (Dcx) (54.49% ± 3.15% of green fluorescent protein (GFP) 
positive cells) accompanying cell migration since 14 days post-treatment (Figure 4). However, no 
astrocytic differentiation was observed because grafted cells did not stain for glial fibrillary acidic 
protein (GFAP) at all time points. 

Figure 3. The hNSCs express the marker of neural precursor cell and proliferate at an early stage
following transplantation. Immunofluorescence staining showed that a large number of GFP positive
hNSCs (A–D; green) expressed Nestin (A–D; red), some of which co-labeled with Ki-67 (B–D, blue).
At 7 days post-transplantation (B), the hNSCs dispersed along the grafted core which accommodated
some of GFP/Nestin/Ki-67 positive cells (arrows); (C) Higher magnification images of the boxed areas
in (B) demonstrated one representative proliferating stem cell (arrow) with enlarged double nuclei;
(D) At 14 days post-transplantation, some grafted cells still expressed Nestin, which demonstrated
that they were at the early stage of neurogenesis and remained poorly differentiated. Scale bars
represent 50 µm in (A); 20 µm in (B,D); 10 µm in (C); (E) Grafted cells survived well for at least 14 days,
but significantly fewer cells survived 28 and 42 days following treatment. Cell number was expressed
as percentage of day-7 group. Values represent mean ˘ SEM (* p < 0.05; two-tailed Student’s t-test).
GFP, green fluorescent protein.

In terms of migration of grafted cells, hNSCs seemed to be broadly distributed around the
transplanted core in the striatum (Figure 4). Many of the migrating cells expressed nestin, some
of which co-labeled with Ki-67 (Figure 3). At 14 days post-treatment, grafted cells mainly dispersed
along the grafted trajectory and migrated towards the corpus callosum (cc) or even connected with
the rostral migratory stream (RMS) (Figure 4H). Typically, these cells were of an elongated shape,
which sprouted and extended their neurites, pointing in the direction of migration. Grafts were
strongly immunoreactive to doublecortin (Dcx) (54.49% ˘ 3.15% of green fluorescent protein (GFP)
positive cells) accompanying cell migration since 14 days post-treatment (Figure 4). However, no
astrocytic differentiation was observed because grafted cells did not stain for glial fibrillary acidic
protein (GFAP) at all time points.
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Figure 4. hNSCs differentiate into immature neurons and migrate within the host striatum. Typically, 
these GFP positive cells (A,C; green) were immunoreactive to Dcx (B,C; red) 14 days post-transplantation 
(54.49% ± 3.15%). Additionally, arrows in (F) illustrated donor-derived immature neurons within the 
migratory chains. Transplanted hNSCs dispersed along the dotted lines in (H) and migrated towards 
the cc or even connected with the RMS (arrows) 14 days after transplantation. Some of the GFP 
positive cells extended their neurites, pointing in the direction of migration at this time point, while 
arrow in (G) demonstrated that transplanted hNSCs exhibited mature appearance with elongated 
shape and numerous processes 21 days following treatment. Scale bars represent 20 μm in (A–C); 50 
μm in (D–G); 100 μm in (H). GFP, green fluorescent protein; Dcx, doublecortin; LV, lateral ventricle; 
cc, corpus callosum; RMS, rostral migratory stream. 
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host-derived GFAP positive astrocytes compared with that in the animals given vehicle. However, 
significantly greater increase of Ki-67 positive astrocytes was found in the striatum of mice receiving 
hNSCs (Figure 5C). Furthermore, astrocytes mainly accumulated along the grafted trajectory within 
the hNSCs (Figure 5A), most of which displayed hypertrophic cell bodies extending thick process 
(Figure 5B2,C). It is noteworthy that, there were a great number of GFAP/Nestin and GFAP/Sox2 
positive cells in the striatum, suggesting these GFAP positive astrocytes were in the process of  
de-differentiation, acquiring the properties of NSCs/NPCs (Figure 6). Quantification showed 
significantly more EDAs in hNSCs-treated mice in comparison with the control animals. 

2.5. Quantitative Analysis of Neurotrophic Factors 

To test the possibility that transplanted hNSCs stimulate the host cells to provide a favorable 
niche, we examined the mRNA levels of neurotrophic factors, using primers specifically recognizing 
mouse but not human GDNF, BDNF, and NT-3. Total RNA was extracted from striatal and nigral 
tissues at early (7-day) and later (28-day) stages. Real time quantitative reverse transcriptase 
polymerase chain reaction (QRT-PCR) analysis showed significant increases in BDNF mRNA levels 
of the hNSCs treated group at each time point (Figure 7A,B). The effect was also seen in the treated 
mice with a trend towards greater increase of NT-3 mRNA levels compared to the control mice, but 
it did not achieve statistical difference at seven days (Figure 7E,F). No difference of GDNF levels was 
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All results were normalized to mRNA levels of glyceraldehyde 3-phosphate dehydrogenase 
(GAPDH) and showed as relative expression to the control levels at seven days. 

Figure 4. hNSCs differentiate into immature neurons and migrate within the host striatum.
Typically, these GFP positive cells (A,C; green) were immunoreactive to Dcx (B,C; red) 14 days
post-transplantation (54.49% ˘ 3.15%). Additionally, arrows in (F) illustrated donor-derived
immature neurons within the migratory chains. Transplanted hNSCs dispersed along the dotted
lines in (H) and migrated towards the cc or even connected with the RMS (arrows) 14 days after
transplantation. Some of the GFP positive cells extended their neurites, pointing in the direction of
migration at this time point, while arrow in (G) demonstrated that transplanted hNSCs exhibited
mature appearance with elongated shape and numerous processes 21 days following treatment. Scale
bars represent 20 µm in (A–C); 50 µm in (D–G); 100 µm in (H). GFP, green fluorescent protein; Dcx,
doublecortin; LV, lateral ventricle; cc, corpus callosum; RMS, rostral migratory stream.

2.4. Reactive Astrocytes Response to hNSCs Transplantation

hNSCs transplantation did not cause a statistically significant difference in the presence of
host-derived GFAP positive astrocytes compared with that in the animals given vehicle. However,
significantly greater increase of Ki-67 positive astrocytes was found in the striatum of mice receiving
hNSCs (Figure 5C). Furthermore, astrocytes mainly accumulated along the grafted trajectory within
the hNSCs (Figure 5A), most of which displayed hypertrophic cell bodies extending thick process
(Figure 5B2,C). It is noteworthy that, there were a great number of GFAP/Nestin and GFAP/Sox2
positive cells in the striatum, suggesting these GFAP positive astrocytes were in the process of
de-differentiation, acquiring the properties of NSCs/NPCs (Figure 6). Quantification showed
significantly more EDAs in hNSCs-treated mice in comparison with the control animals.

2.5. Quantitative Analysis of Neurotrophic Factors

To test the possibility that transplanted hNSCs stimulate the host cells to provide a favorable
niche, we examined the mRNA levels of neurotrophic factors, using primers specifically recognizing
mouse but not human GDNF, BDNF, and NT-3. Total RNA was extracted from striatal and nigral
tissues at early (7-day) and later (28-day) stages. Real time quantitative reverse transcriptase
polymerase chain reaction (QRT-PCR) analysis showed significant increases in BDNF mRNA levels
of the hNSCs treated group at each time point (Figure 7A,B). The effect was also seen in the treated
mice with a trend towards greater increase of NT-3 mRNA levels compared to the control mice,
but it did not achieve statistical difference at seven days (Figure 7E,F). No difference of GDNF
levels was observed at each time point except for expression in the tissue of striatum at seven
days (Figure 7C,D). All results were normalized to mRNA levels of glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) and showed as relative expression to the control levels at seven days.
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Figure 5. Striatal astrocytes in response to hNSCs transplantation. (A) Local GFAP positive astrocytes 
(red) accumulated around the xenografts (GFP, green) when the hNSCs continued to migrate within 
the striatum 14 days following treatment. Most of the astrocytes (B2, red) co-localized with Ki-67 (B2, 
green), indicating that they became reactive and re-exhibited proliferative capacity, whereas few 
astrocytes could be found in the striatum of intact animal without MPTP (B1). Cell nuclei were 
counterstained with DAPI (blue). Moreover, the astrocytes displayed hypertrophic cell bodies with thick 
processes (arrows in C). More Ki-67 positive astrocytes were observed in the striatum of mice receiving 
hNSCs (C2) compared with animals given vehicle (C1) 14 days after transplantation. Although no 
significant difference of GFAP positive cell number was observed in hNSCs-treated mice when 
compared with animals given vehicle (D), there was a greater increase of Ki-67/GFAP positive cells 
in the striatum of treated mice (F). Data are expressed as mean ± SEM (* p < 0.05; two-tailed Student’s 
t-test). Scale bars represent 50 μm in (A,B); 20 μm in (C). GFAP, glial fibrillary acidic protein. DAPI, 
4′,6-diamidino-2-phenylindole. 

 
Figure 6. hNSCs transplantation promote de-differentiation of host-derived astrocytes in the striatum. 
A large number of GFAP positive astrocytes (B,C, red) expressed intermediate filament Nestin (A,C, 
green). Furthermore, most local astrocytes (arrows in D, green) co-localized with transcription factor 
Sox2 (arrows in D, red), suggesting that they de-differentiated into a phenotype resembling RGCs 
that were shown to be transient NPCs. Cell nuclei were counterstained with DAPI (blue) (A–D); 
Quantification of GFAP/Nestin positive cells (E) and GFAP/Sox2 positive cells (F) in the striatum 
showed significantly more EDAs in hNSCs-treated mice compared with the control animals. Bars 
represent mean ± SEM (* p < 0.05; two-tailed Student’s t-test). Scale bars represent 50 μm in (A–C); 20 
μm in (D). RGCs, radial glial cells; NPCs, neural precursor cells; EDAs, endogenous de-differentiated 
astrocytes. 

Figure 5. Striatal astrocytes in response to hNSCs transplantation. (A) Local GFAP positive astrocytes
(red) accumulated around the xenografts (GFP, green) when the hNSCs continued to migrate within
the striatum 14 days following treatment. Most of the astrocytes (B2, red) co-localized with Ki-67
(B2, green), indicating that they became reactive and re-exhibited proliferative capacity, whereas
few astrocytes could be found in the striatum of intact animal without MPTP (B1). Cell nuclei
were counterstained with DAPI (blue). Moreover, the astrocytes displayed hypertrophic cell bodies
with thick processes (arrows in C). More Ki-67 positive astrocytes were observed in the striatum of
mice receiving hNSCs (C2) compared with animals given vehicle (C1) 14 days after transplantation.
Although no significant difference of GFAP positive cell number was observed in hNSCs-treated mice
when compared with animals given vehicle (D), there was a greater increase of Ki-67/GFAP positive
cells in the striatum of treated mice (F). Data are expressed as mean ˘ SEM (* p < 0.05; two-tailed
Student’s t-test). Scale bars represent 50 µm in (A,B); 20 µm in (C). GFAP, glial fibrillary acidic protein.
DAPI, 41,6-diamidino-2-phenylindole.
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showed significantly more EDAs in hNSCs-treated mice compared with the control animals. Bars 
represent mean ± SEM (* p < 0.05; two-tailed Student’s t-test). Scale bars represent 50 μm in (A–C); 20 
μm in (D). RGCs, radial glial cells; NPCs, neural precursor cells; EDAs, endogenous de-differentiated 
astrocytes. 

Figure 6. hNSCs transplantation promote de-differentiation of host-derived astrocytes in the striatum.
A large number of GFAP positive astrocytes (B,C, red) expressed intermediate filament Nestin
(A,C, green). Furthermore, most local astrocytes (arrows in D, green) co-localized with transcription
factor Sox2 (arrows in D, red), suggesting that they de-differentiated into a phenotype resembling
RGCs that were shown to be transient NPCs. Cell nuclei were counterstained with DAPI (blue)
(A–D); Quantification of GFAP/Nestin positive cells (E) and GFAP/Sox2 positive cells (F) in the
striatum showed significantly more EDAs in hNSCs-treated mice compared with the control animals.
Bars represent mean ˘ SEM (* p < 0.05; two-tailed Student’s t-test). Scale bars represent 50 µm
in (A–C); 20 µm in (D). RGCs, radial glial cells; NPCs, neural precursor cells; EDAs, endogenous
de-differentiated astrocytes.
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Figure 7. QRT-PCR analysis of host-derived BDNF, GDNF, and NT-3 mRNA levels in different tissues 
(Str and SN). BDNF was significantly up-regulated at each time point in mice receiving hNSCs (A,B); 
The effect was also seen in the treated mice with a trend towards greater increase of NT-3 mRNA 
levels compared with control mice, but it did not achieve significant difference at seven days (E,F); 
No difference of GDNF levels was observed at each time point except for expression at seven days in 
the striatum (C,D). All results were normalized to GAPDH mRNA levels and expressed as relative 
fold change to the levels at 7-day of the control group. Data are expressed as mean ± SEM (* p < 0.05; 
two-way ANOVA). QRT-PCR, real time quantitative reverse transcriptase polymerase chain reaction; 
BDNF, brain-derived neurotrophic factor; GDNF, glial cell line-derived neurotrophic factor; NT-3, 
neurotrophin-3; Str, striatum; SN, substantia nigra; GAPDH, Glyceraldehyde 3-phosphate 
dehydrogenase. 

We also detected mouse protein levels of these growth factors in different tissues at different 
time points (7-day, 28-day, 56-day) by enzyme-linked immunosorbent assay (ELISA). 
Transplantation of hNSCs led to statistical increases in BDNF (Figure 8A,B) and NT-3 (Figure 8E,F) 
protein expression, when compared with those treated with vehicle. Although hNSCs treatment 
significantly induced production of GDNF at seven days, compared with control group, it failed to 
result in any difference at later stages (Figure 8C,D). 

2.6. Inhibition of Microglia and Proinflammatory Cytokines after Transplantation 

Overall, there was a significantly reduced microglial reaction in the striatum of hNSCs-treated 
mice (30,674.52 ± 2061.42) in contrast to the control (69,372.55 ± 1870.38, mainly presenting activated 
shape) (p < 0.05, Figure 9), suggesting that transplantation exerted a dampening influence on host 
inflammation. A substantial proportion of ionized calcium-binding adapter molecule 1 (IBA-1) 
positive microglia presented fully active phagocytic forms in control mice (Figure 9D). The ramified 
microglia (resting state of microglia) were identified in the surrounding grafted area in animals given 
hNSCs (Figure 9E). All of the IBA-1 positive microglia were host-derived without expressing GFP. 
No IBA-1 positive microglia co-labeled with Nestin or Sox2, demonstrating that the reactive cells did 
not revert to an immature state. Additionally, protein content of IL-1β and TNF-α was 

Figure 7. QRT-PCR analysis of host-derived BDNF, GDNF, and NT-3 mRNA levels in different
tissues (Str and SN). BDNF was significantly up-regulated at each time point in mice receiving
hNSCs (A,B); The effect was also seen in the treated mice with a trend towards greater increase
of NT-3 mRNA levels compared with control mice, but it did not achieve significant difference
at seven days (E,F); No difference of GDNF levels was observed at each time point except for
expression at seven days in the striatum (C,D). All results were normalized to GAPDH mRNA
levels and expressed as relative fold change to the levels at 7-day of the control group. Data are
expressed as mean ˘ SEM (* p < 0.05; two-way ANOVA). QRT-PCR, real time quantitative reverse
transcriptase polymerase chain reaction; BDNF, brain-derived neurotrophic factor; GDNF, glial cell
line-derived neurotrophic factor; NT-3, neurotrophin-3; Str, striatum; SN, substantia nigra; GAPDH,
Glyceraldehyde 3-phosphate dehydrogenase.

We also detected mouse protein levels of these growth factors in different tissues at different time
points (7-day, 28-day, 56-day) by enzyme-linked immunosorbent assay (ELISA). Transplantation of
hNSCs led to statistical increases in BDNF (Figure 8A,B) and NT-3 (Figure 8E,F) protein expression,
when compared with those treated with vehicle. Although hNSCs treatment significantly induced
production of GDNF at seven days, compared with control group, it failed to result in any difference
at later stages (Figure 8C,D).

2.6. Inhibition of Microglia and Proinflammatory Cytokines after Transplantation

Overall, there was a significantly reduced microglial reaction in the striatum of hNSCs-treated
mice (30,674.52 ˘ 2061.42) in contrast to the control (69,372.55 ˘ 1870.38, mainly presenting activated
shape) (p < 0.05, Figure 9), suggesting that transplantation exerted a dampening influence on host
inflammation. A substantial proportion of ionized calcium-binding adapter molecule 1 (IBA-1)
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positive microglia presented fully active phagocytic forms in control mice (Figure 9D). The ramified
microglia (resting state of microglia) were identified in the surrounding grafted area in animals given
hNSCs (Figure 9E). All of the IBA-1 positive microglia were host-derived without expressing GFP. No
IBA-1 positive microglia co-labeled with Nestin or Sox2, demonstrating that the reactive cells did not
revert to an immature state. Additionally, protein content of IL-1β and TNF-α was downregulated in
the striatum and SN of mice receiving hNSCs compared with the control animals (Figure 9G–J).
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Figure 8. Detection of BDNF, GDNF, and NT-3 protein levels in different tissues (Str and SN) by 
ELISA. Transplantation of hNSCs induced significant increases in BDNF (A,B) and NT-3 (E,F) protein 
expression, when compared with vehicle-treated control group. Although hNSCs treatment 
significantly induced production of GDNF at seven days, compared with control group, there was no 
difference of GDNF protein level at later stages (C,D). Data are displayed as mean ± SEM (* p < 0.05; two-
way ANOVA). ELISA, enzyme-linked immunosorbent assay. 
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Figure 8. Detection of BDNF, GDNF, and NT-3 protein levels in different tissues (Str and SN)
by ELISA. Transplantation of hNSCs induced significant increases in BDNF (A,B) and NT-3 (E,F)
protein expression, when compared with vehicle-treated control group. Although hNSCs treatment
significantly induced production of GDNF at seven days, compared with control group, there was no
difference of GDNF protein level at later stages (C,D). Data are displayed as mean ˘ SEM (* p < 0.05;
two-way ANOVA). ELISA, enzyme-linked immunosorbent assay.
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Figure 9. Effects of hNSCs-induced inhibition of host microglia and proinflammatory cytokines. 
Fewer IBA-1 positive microglia (red) presented in the striatum of hNSCs-treated mice (B) than the 
control animals (A); (C) Transplanted hNSCs (green) gathered local microglia with activated forms 
(red) to a limited area around the xenografts. Cell nuclei were counterstained with DAPI (blue)  
(A–C). Most microglia presented fully activated forms in control mice (arrows in D), while arrow in 
(E) indicated the ramified microglia (resting state of microglia) in transplanted animals. Cell nuclei 
were hematoxylin counterstained in (D,E). The numbers of microglia in different groups were 
compared as illustrated in (F). Additionally, the expression of IL-1β (G,H) and TNF-α (I,J) was 
downregulated in the striatum and SN of mice receiving hNSCs compared with the control animals. 
Data are expressed as mean ± SEM (* p < 0.05; two-tailed Student’s t-test). Scale bars represent 50 μm 
in (A–C); 20 μm in (D,E). IBA-1, ionized calcium-binding adapter molecule 1; IL-1β, interleukin-1β; 
TNF-α, tumor necrosis factor-α. 

3. Discussion 

In the present study, we have demonstrated that transplantation of hNSCs into the striatum of 
MPTP-insulted mice protected dopaminergic neuron degeneration and improved host neurological 
function. Grafted cells survived and proliferated in the host brain, producing new neurons that 
migrated extensively and connected with host cells. We observed that reactive astrocytes were 
predominantly distributed close to xenografts, providing a migratory scaffold for graft-derived cells. 
Interestingly, in the striatum of hNSCs-treated mice, local astrocytes underwent de-differentiation, 
which might revert to the state of neuroepithelial precursor cells with multipotent differentiation 
potential for neurons or glia. Additionally, we also detected significantly higher expression of host-
derived neurotrophic factors in hNSCs-treated mice compared with the control animals, together 
with attenuated activation of microglia and inhibition of proinflammatory cytokines, suggesting that 
hNSCs transplantation could alter host niche to provide neuroprotection. 

3.1. Survival of Grafted hNSCs in the Striatum 

Early studies reported that transplanted NSCs were able to survive and differentiate in PD  
rodents [6–8,25,26]. Only a small number of grafted cells were detectable, whereas approximately 
75% dopaminergic neurons loss was observed after MPTP [8,26,27]. Yasuhara et al. [8] identified 

Figure 9. Effects of hNSCs-induced inhibition of host microglia and proinflammatory cytokines.
Fewer IBA-1 positive microglia (red) presented in the striatum of hNSCs-treated mice (B) than the
control animals (A); (C) Transplanted hNSCs (green) gathered local microglia with activated forms
(red) to a limited area around the xenografts. Cell nuclei were counterstained with DAPI (blue) (A–C).
Most microglia presented fully activated forms in control mice (arrows in D), while arrow in (E)
indicated the ramified microglia (resting state of microglia) in transplanted animals. Cell nuclei were
hematoxylin counterstained in (D,E). The numbers of microglia in different groups were compared as
illustrated in (F). Additionally, the expression of IL-1β (G,H) and TNF-α (I,J) was downregulated in
the striatum and SN of mice receiving hNSCs compared with the control animals. Data are expressed
as mean ˘ SEM (* p < 0.05; two-tailed Student’s t-test). Scale bars represent 50 µm in (A–C); 20 µm
in (D,E). IBA-1, ionized calcium-binding adapter molecule 1; IL-1β, interleukin-1β; TNF-α, tumor
necrosis factor-α.

3. Discussion

In the present study, we have demonstrated that transplantation of hNSCs into the striatum of
MPTP-insulted mice protected dopaminergic neuron degeneration and improved host neurological
function. Grafted cells survived and proliferated in the host brain, producing new neurons that
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migrated extensively and connected with host cells. We observed that reactive astrocytes were
predominantly distributed close to xenografts, providing a migratory scaffold for graft-derived cells.
Interestingly, in the striatum of hNSCs-treated mice, local astrocytes underwent de-differentiation,
which might revert to the state of neuroepithelial precursor cells with multipotent differentiation
potential for neurons or glia. Additionally, we also detected significantly higher expression of
host-derived neurotrophic factors in hNSCs-treated mice compared with the control animals, together
with attenuated activation of microglia and inhibition of proinflammatory cytokines, suggesting that
hNSCs transplantation could alter host niche to provide neuroprotection.

3.1. Survival of Grafted hNSCs in the Striatum

Early studies reported that transplanted NSCs were able to survive and differentiate in PD
rodents [6–8,25,26]. Only a small number of grafted cells were detectable, whereas approximately
75% dopaminergic neurons loss was observed after MPTP [8,26,27]. Yasuhara et al. [8] identified
neurological improvement in response to hNSCs transplantation, with ~1% of grafts survival, little
migration as well as differentiation into TH positive neurons. Harrower et al. [11] also reported
poor survival and maturation of NSCs (~5%) even in immunosuppression PD rats. In our study,
although cells within the xenografts continue to proliferate, few have been found to survive
42 days post-treatment. Moreover, limited hNSCs develop typically and express Dcx, the specific
marker for migrating neuroblasts (Figure 4), suggesting that hNSCs have differentiated into new
immature neurons.

3.2. Distribution of Local Astrocytes Response to hNSCs Transplantation

Astrocytes, the cells that compose the gliovascular interface, participate in regulation of blood
flow, modulation of synaptic transmission, and nutrient transport such as L-dopa uptake [12,13].
These cells play a key role in the migratory process of endogenous NSCs/NPCs in adult animals.
Migration along the RMS is characterized by chain migration in which neuroblasts migrate closely
with each other in a tube-like structure established by astrocytic cells [5,14,28]. The specific glial
tubes are critical in brain maturation, supporting the survival of immature neurons and facilitating
their migration [28]. Previously, Uchida et al. [29] transplanted hNSCs into the lateral ventricle of
neonatal mouse. They found the extent and pattern of cells migration were similar to endogenous
NSCs/NPCs, which started from the subventricular zone (SVZ) to the olfactory bulb (OB). Indeed,
our results support their findings that grafted hNSCs recruit host astrocytes to the grafted trajectory.
Most grafted cells seem to form chains surrounded by these host-derived astrocytic structures,
and migrate towards the cc as well as the RMS, which were mainly comprised of astrocytic cells
(Figure 4H) (Figure 5A). We consider that hNSCs transplantation induce accumulation of local
astrocytes which may provide the migratory scaffold for graft-derived cells.

In addition to distribution of local astrocytes, we also quantify the overall number of astrocytes
residing in the striatum. Although there is a trend towards decrease of local astrocytes after
hNSCs transplantation, we have found no significant difference between hNSCs-treated mice and the
control animals. Previous reports demonstrated that neuroprotective effects were due to attenuated
activation of astrocytes in PD models [6,30,31]. However, in the present study, significantly greater
increase of reactive astrocytes undergoing proliferation has been revealed in mice receiving hNSCs.
The response demonstrate that cell transplantation may recruit more reactive astrocytes to re-exhibit
proliferative capacity.

3.3. EDAs as a Promising Source for Endogenous Repair

Astrocytes are the most abundant cells in the nervous system, which support neuronal
survival and regeneration [32,33]. Reactive astrocytes, characterized by enlarged cell bodies, thick
processes, and high expression of GFAP [34], is a prominent neuropathological feature, particularly
in neurodegenerative disorders such as PD [35]. Evidence implicating neurodegeneration in the
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nigrostriatal pathway indicates that massive and prolonged reactive astrocytes are induced after
exposure of MPTP in animals [23,36]. It appears that GFAP expression remains upregulated
even after the main wave of dopaminergic structure destruction [37,38]. The precise effects
exerted by the astrocytes in neurodegeneration and neuroregeneration processes are still highly
controversial [31,36].

Reactive astrocytes were thought to play a minimal role in neuroprotection. However, an
increasing body of literature suggests that these cells may turn into highly neuroprotective cells in
certain circumstances [23,33,36]. They have been proposed as resident NSCs/NPCs in both the SVZ
and striatum of adult animal [5]. A subset of GFAP positive astrocytic cells in the SVZ of rodents gives
rise to transient amplifying cells, which then generate migrating neuroblasts [14,28]. Similarly, it is
worth emphasizing that, reactive astrocytes in the striatum have also been proposed as proliferating
NSCs/NPCs following injury [17,39].

In our study, we have demonstrated that the proliferating astrocytes in the striatum co-localize
with both Nestin and Sox2, indicating that they have reverted to an immature state. Nestin represents
a kind of intermediate filament and is expressed strongly in multipotential stem cells and precursor
cells of the developing neuroepithelium [5,15,16]. It is downregulated when these cells differentiate
into neuronal or glial cells both in vivo and in vitro. Lin et al. [15] showed re-expression of Nestin in
reactive astrocytes which exhibit certain features of neuroepithelial cells, suggesting a recruitment of
these cells from a pool of precursor cells. Wachter et al. [16] found reactive astrocytes co-expressed
Ki-67, Nestin, and Pax6 in the striatum of PD rats. They considered these local cells derived from
mature astrocytes that, upon dopaminergic denervation, became reactive and regained the ability
of precursor cells, not from stem cell niches in the SVZ. The reversal was named de-differentiation,
which transformed mature astrocytes into a phenotype resembling RGCs. In agreement with their
interpretations, we have observed dramatically increased number of EDAs co-expressing Nestin and
Sox2 in hNSCs-treated animals as well. Sox2 is a transcription factor involved in the development
of the nervous system, which controls neuronal and astrocytic specification [5,16]. Early studies
have shown that Sox2 is capable of reprogramming astrocytic cells to immature neurons [18,40]. The
fact that the number of proliferating astrocytes which express Nestin as well as Sox2 is increased
following transplantation has led us to speculate that xenografts to some extent induce and promote
local astrocytes to de-differentiate and acquire the properties of NSCs/NPCs, which might further
differentiate into a neuronal phenotype, such as neuroblasts or even neurons. The speculative idea
may represent one of the possible compensatory mechanisms for improved behavioral functions
following hNSCs transplantation in PD animals. Recently, investigators have reprogrammed reactive
astrocytes into immature [18] or mature neurons [19] by transcription factors both in vitro and in vivo.
Nevertheless, it remains uncertain whether the reactive astrocytes without being engineered ex vivo
could definitely give rise to dopaminergic neurons in the DA-depleted striatum. Future studies
shall attempt to reveal the reactive astrocytes response to hNSCs transplantation in the SN, and to
corroborate our idea that EDAs could yield neuronal cells to exert neuroprotection.

3.4. Secretion of Neurotrophic Factors within Local Microenvironment

It is well known that survival of stem or precursor cells (both endogenous and exogenous
cells) depends largely on their niche [10]. Harnessing the synergistic interaction between cells
and niche may lead to the optimization of cell-based therapies for PD [6]. Importantly enough,
the EDAs are known to release numerous neurotrophic factors including BDNF, NT-3, IGF-1, and
GDNF both in vivo and in vitro, which effectively increase neurogenesis, promote neurite plasticity,
and enhance functional recovery [7,20,21,41,42]. Based on the protective actions of neurotrophic
factors on dopaminergic neurons [7,32,42,43], we examined host niche in the striatum and SN,
using primers as well as antibodies specifically recognizing mouse but not human GDNF, BDNF,
and NT-3. The hNSCs-treated group presented higher level of BDNF, NT-3, and GDNF than the
control group at some time points. Motor improvement appeared in treated mice after seven
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days post-transplantation. Our findings support the concept that transplanted NSCs not only
accommodate to their host but may stimulate their host to accommodate to them [7]. In other words,
these cells can recruit EDAs, which may release growth factors to establish a more favorable
niche, and a combination of both exogenous and endogenous cells can be extremely potent
and advantageous.

Specifically, reactive astrocytes are the major source of GDNF after DA depletion [36,44,45].
Redmond et al. [46] considered that astrocytes highly expressed GDNF, and played a critical role
in promoting effective processing and release of DA, which were consistent with previous findings.
Notably, our results display that although the levels of GDNF in grafted animals are higher than
controls, no significant difference is achieved at later stages. Several possible explanations can be
elucidated here. Firstly, host-derived reactive astrocytes release an abundant supply of GDNF after
DA depletion, determining baseline of this growth factor at high level in control mice. Secondly,
we have demonstrated that animals in the control group underwent severe inflammatory response.
Importantly, MPTP-induced inflammation produces a high amount of proinflammatory cytokines
such as tumor necrosis factor-α (TNF-α) as well as interleukin-1β (IL-1β), which can elevate GDNF
concentration [42,45]. Therefore, expression of GDNF in control group remains high at each
time point.

In our study, we have revealed improvements in both the striatal and nigral tissues for
neurotrophic factors even though the cells were transplanted in the striatum. It is well known that the
nigrostriatal pathway, one of the major dopamine pathways in the brain, is made up of projections
from SN to the striatum. Intriguingly, Sun et al. [47] found striatal dopaminergic projection neurons
could form long axons that targeted the SN. Herzog et al. [48] clearly showed the pattern of retrograde
transport of neurotrophic factors through the nigrostriatal axons in PD model. Neurotrophic factors
were secreted from striatal cells, and retrograde transported to SN after uptake by nigrostriatal
terminals. According to their findings, we speculate that the retrograde transport of neurotrophic
factors leads to protection of residual dopaminergic neurons in the SN. Other possible explanations
include regulating the host niche by local astrocytes in the SN, which needs to be testified.

3.5. Inhibition of Microglia and Proinflammatory Cytokines

Activation of microglia is the feature of neuroinflammation in PD [23,24]. Notably, the
decrease of activated microglia was formerly thought to parallel the inhibition of astrocytes following
treatment [30,49]. Nevertheless, as previously discussed, our data show that, although there is no
difference in the number of striatal astrocytes between mice given hNSCs and vehicle, fewer microglia
are observed in hNSCs-treated mice. We have found that most microglia are distributed around the
xenografts, suggesting that the hNSCs could gather microglia to a limited area and thus attenuate
overall inflammation in the brain niche. Additionally, we have revealed a significant downregulation
of proinflammatory cytokines, such as IL-1β and TNF-α. Consequently, we consider that hNSCs
induce anti-inflammatory effects on the host niche of Parkinsonian mice.

4. Experimental Section

4.1. Preparation of hNSCs

GFP-labeled human neural stem cell line was obtained from a neural stem cell line deriving
from human fetal brain (Angecon Biotech, Shanghai, China) by lentivirus-mediated gene transfer
to express GFP, and prepared for transplantation. All procedures were approved by the Human
Experimentation and Ethics Committee. Briefly, primary dissociated single cell suspensions from
human cortex tissues of legally terminated embryos with approval of National Health and Family
Planning Commission of the People’s Republic of China, were incubated in serum-free NSC medium
(Angecon Biotech, Shanghai, China) according to the manufacturer’s instruction. A plating density of
100 cells/µL favored the establishment of neurospheres at 37 ˝C with 5% CO2. Neurosphere cultures
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were digested with 0.05% trypsin-EDTA (Invitrogen, Carlsbad, CA, USA) followed by trypsin
inhibitor (Roche, Mannheim, Baden-Württemberg, Germany), and were replated at 100 cells/µL
every 7 to 10 days. On the day of transplantation, hNSCs were dissociated and rewashed before a
final concentration adjustment.

4.2. MPTP Administration

All animal experiments were performed in accordance with guidelines on the care of laboratory
animals, and have been approved by the ethics committee of Peking Union Medical College Hospital.
Adult C57BL/6J female mice (10-week-old) weighing approximate 25 g were maintained in a 12-h
light/dark circle in cages, and acclimated to the experimental environment for 1 week before
modeling. PD model was induced by acute MPTP exposure [27]. MPTP hydrochloride (20 mg/kg;
Sigma, St. Louis, MO, USA) in saline was injected intraperitoneally four times in 1 day at 3 h intervals.
MPTP was handled in accordance with the published guideline [27].

4.3. Behavioral Tests

4.3.1. Rotarod

Rotarod test was performed on day 7, 14, 21, 28, 35, 42, 49 after MPTP injection. All mice were
pre-trained about 1 week before tests with rod diameter of approximate 3 cm. The training consisted
of 3 consecutive runs at 26 rpm until the mice were unable to maintain themselves for 300 s on the
rotating rod and lasted for 3 days. One day prior to MPTP administration, baseline was obtained
under the same condition. Subsequently, test series started at speed of 26 rpm. Each animal received
2 trials with a rest interval of 5–10 min, and the latencies to fall off the rod within 180 s were recorded
and averaged.

4.3.2. Pole Test

Mice were placed head upwards on the top of one upright pole approximate 30 cm long as well
as 8 mm in diameter. The base of the pole was maintained in the cage. Once laid upon the top, mice
oriented themselves downwards and descended to the ground. Animals also received 3 days training
which consisted of 3 consecutive trials of each session. After establishing the baseline, each animal
experienced 2 trials and the time to descend was recorded.

4.4. Cell Transplantation

Mice subjected to MPTP were randomly assigned to two groups: (1) the hNSCs-treated group
(MPTP + hNSCs), and (2) the control group (MPTP + vehicle). Mice received bilaterally intrastriatal
transplantation of undifferentiated hNSCs or vehicle 7 days after MPTP administration. Following
anesthesia, animals were secured onto the stereotactic frame (Stoelting, Wood Dale, IL, USA) using an
incisor clamp and two ear bars. A midline rostro-caudal incision was created and then, two burr holes
were formed bilaterally at the sites based on coordinates relative to bregma (left, anteroposterior,
+0.06 cm, mediolateral, +0.20 cm; right, anteroposterior, +0.06 cm, mediolateral, ´0.20 cm) by
a high-speed drill. Each animal in treated group received 2 µL of cell suspension bilaterally at
coordinates: dorsoventral, ´0.22 and ´0.28 cm, relative to dura. Approximately 5 ˆ 104 hNSCs
in 0.5 µL PBS or an equal volume of vehicle was transplanted at 4 sites by microsyringe at an infusion
rate of 0.1 µL/min for a total dose of 2 ˆ 105/2 µL. The needle was withdrawn slowly following
a wait of 2 min. Animals were returned to a temperature-controlled blanket until they recovered
from anesthesia.

4.5. Fixation and Immunohistochemistry

To determine transplanted cell survival, neuronal phenotype expression, and synapse formation,
immunohistochemical procedures were conducted. At day 7, 14, 28, 42 after cell engraftment,
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under deep anesthesia, animals were perfused intracardially with cold 0.1 M PBS followed by
4% paraformaldehyde (PFA). Brains were carefully removed and post-fixed at 4 ˝C overnight,
cryoprotected in 30% sucrose for 3 days. A complete set of coronal sections containing the striatum as
well as the SN were then created at a thickness of 30 µm using freezing microtome (Leica, Nussloch,
Baden-Württemberg, Germany) and stored at ´20 ˝C. Every eighth section of striatum or sixth section
of SN was processed.

4.5.1. Immunofluorescence Staining

Primary antibody of GFP (1:500, Aves, Tigard, OR, USA) was used to identify transplanted
hNSCs. Brain slices were processed free-floating at 4 ˝C overnight with specific primary antibodies,
diluted in 0.1 M PBS containing 0.3% Triton X-100 and 5% Bovine Serum Albumin (BSA)
(Sigma-Aldrich, St. Louis, MO, USA). To detect co-localization of cell type-specific markers, each slice
was incubated with Sox2 (1:100, Millipore, Billerica, MA, USA), Nestin (1:500, Millipore, Billerica,
MA, USA), Ki-67 (1:200, Thermo Fisher Scientific, Waltham, MA, USA), Dcx (1:200, Santa Cruz
Biotechnology, Santa Cruz, CA, USA), and GFAP (1:600, Millipore, Billerica, MA, USA) respectively.
All the antibodies were tested on the brain tissues including positive and negative controls to assure
their specificity. Secondary antibodies (all from Invitrogen, Life technologies, Carlsbad, CA, USA)
in 0.1 M PBS containing 0.3% Triton X-100 and 5% BSA were utilized and listed: Alexa Fluorr

488 donkey anti-mouse (1:1000), Alexa Fluorr 488 donkey anti-chicken (1:1000), Alexa Fluorr 546
donkey anti-goat (1:1000), Alexa Fluorr 594 goat anti-chicken (1:1000), Alexa Fluorr 647 donkey
anti-mouse (1:1000), Alexa Fluorr 647 donkey anti-rabbit (1:1000). All staining procedures were
conducted in the dark room for 2 h at room temperature in combination with nucleus counterstaining
41,6-diamidino-2-phenylindole (DAPI, 0.1 µg/mL, Sigma-Aldrich, St. Louis, MO, USA). Finally,
sections were washed with 0.1 M PBS, mounted on glass slides and coverslipped with medium.

4.5.2. Peroxidase Immunohistochemistry

Immunoperoxidase staining for TH, GFAP, and IBA-1 were performed. Brain slices were
processed free floating, pretreated for peroxidase activity using 3% hydrogen peroxide (H2O2) in
0.1 M PBS containing 5% Triton X-100 for 20 min, and blocked with 5% normal horse serum (NHS)
(Vector laboratories, Burlingame, CA, USA) for 1 h. Thereafter, selected tissue slices were incubated
with primary antibodies of TH (1:800, Millipore, Billerica, MA, USA), GFAP (1:600, Millipore,
Billerica, MA, USA), and IBA-1 (1:400, Wako, Chūō-ku, Osaka, Japan) at 4 ˝C overnight. Slices
were again washed 3 times with 0.1 M PBS, incubated with biotinylated horse anti-rabbit IgG (Vector
laboratories, Burlingame, CA, USA) or goat anti-chicken IgG (Vector laboratories, Burlingame, CA,
USA) secondary antibody for 1 h, and then treated with biotinylated protein A and avidinbiotinylated
horseradish peroxidase complexes (ABC kit, Vector laboratories, Burlingame, CA, USA) for another
1 h at room temperature. Immunoreactive cells were visualized with 3,31-diaminobenzidine
(DAB) and urea H2O2 tablets (Sigma-Aldrich, St. Louis, MO, USA) dissolved in double distilled
water. As negative controls, immunohistochemistry was performed without the primary antibodies.
Following immunoperoxidase staining, sections were hematoxylin counterstained. Finally, sections
were mounted onto glass slides, dehydrated through a graded series of ethanol, cleared in xylene,
and coverslipped.

4.6. QRT-PCR Analysis of Gene Expression in the Striatum and VM

QRT-PCR was preformed on mRNA from striatum and ventral mesencephalon (VM) mainly
containing the SN to analyze the expression of GDNF, BDNF, and NT-3. Total RNA was
extracted from different tissues using Trizol reagent (Invitrogen, Life technologies, Carlsbad,
CA, USA) according to the recommendations of the manufacturer. RNA concentration was
determined by the spectrophotometric measurement of 260 nm with NanoDrop2000/2000c
(Thermo Fisher Scientific, Waltham, MA, USA). Using cDNA reverse transcription kit (Applied
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Biosystems, Life technologies, Carlsbad, CA, USA), two micrograms of RNA were reverse
transcribed. Two microlitres of reverse transcribed cDNA was amplified in a 20 µL of reaction
mixture containing 10 µL SYBRr Premix Ex TaqTM (Takara Bio, Otsu, Shiga, Japan) and
0.5 µL of each primer. The amplified procedure consisted of 95 ˝C for 5 min, and 40 cycles
of reactions at 95 ˝C for 10 s, 60 ˝C for 30 s. The primers were as follows: GDNF (82 bp),
forward 51-TCCAACTGGGGGTCTACGG-31, reverse 51-GCCACGACATCCCATAACTTCAT-31;
BDNF (137 bp), forward 51-TCATACTTCGGTTGCATGAAGG-31, reverse
51-AGACCTCTCGAACCTGCCC-31; NT-3 (96 bp), forward 51-AACAGAGACGCTACAATTCGC-31,
reverse 51-GGTTGCCCACATAATCCTCCAT-31; GAPDH, (133 bp), forward
51-ACAACTTTGGCATTGTGGAA-31, reverse 51-GATGCAGGGATGATGTTCTG-31. cDNA of
GAPDH was used as an internal control. Relative expression of a given sample was normalized to
an internal control, and was calculated using the 2´∆∆Ct method.

4.7. ELISA Analysis

Mice were sacrificed via cervical dislocation, and tissues of striatum and VM were collected
respectively. Homogenized samples with high protein content were subjected to mouse ELISA kit
(Abcam, Cambridge, Cambridgeshire, UK) to determine protein concentration of BDNF, GDNF, NT-3,
IL-1β, and TNF-α. Each assay was performed in accordance with manufacturer’s instructions. The
concentrations in the brain tissues were expressed as pg/mL (BDNF, GDNF, IL-1β, and TNF-α) or
ng/mL (NT-3) total protein.

4.8. Quantification

Fluorescently immuno-labeled sections were analyzed on a Zeiss LSM780 confocal
laser-scanning microscope (Carl Zeiss, Oberkochen, Baden-Württemberg, Germany), and images
were captured and reconstructed using the Zeiss LSM software. Immunoreactive cells were analyzed
with Bitplane-Imaris software 7.2 (Bitplane, Belfast, County Antrim, UK) manually under blinded
conditions on coded slides. Briefly, utilizing 20ˆ lens, 6 regions (3 on the left hemisphere and
3 on the right) were evaluated bilaterally in 3 representative sections including the grafted cells (0.73,
0.43, 0.13 mm anterior to the bregma, 30-µm thick, 300-µm interval) in each animal. Grafted cells
in the striatum were counted in 4 representative animals per group [6]. Data were expressed as the
mean ˘ SEM of the percent of GFP positive cells co-labeling with specific markers. Grafts survival
was estimated as percentage of GFP-expressing cells at each time point compared with day-7 group.

Nonfluorescent immuno-stained sections were captured on a Nikon Eclipse 90i microscope
(Nikon, Shinagawa, Tokyo, Japan) and analysis was performed using the Stereo Investigator
(MicroBrightField Bioscience, Williston, VT, USA) as previously described [50]. For each animal,
GFAP and IBA-1 positive cells (astrycytes and microglia) in the striatum and cells expressing
TH (Dopaminergic neurons) in the SN were analyzed. The entire striatum or SN was identified
as region of interest for each section. The number of immunoreactive cells in each counting
frame (150 µm ˆ 150 µm) was then analyzed under 20ˆ objective using optical dissector method.
Optical dissectors were 150 µm ˆ 150 µm ˆ 25 µm cubes spaced in a systematic random manner
300 µm ˆ 300 µm apart and offset 4 µm from the section surface. A positive cell was defined as
the presence of its nucleus either within the counting frame or touching green frame lines, but not
touching red frame lines. The total number of positive cells in the striatum was calculated as raw
counts ˆ 8 (section evaluation) ˆ 4 (area of grid 300 µm ˆ 300 µm divided by area of counting
frame 150 µm ˆ 150 µm) ˆ 25 µm (average mounted thickness)/17 µm (optical dissector height).
For sections containing SN, total number equaled raw counts ˆ 6 (section evaluation) ˆ 4 ˆ 25 µm/
17 µm. The optical densities of striatal TH-immunostained sections were analyzed with ImageJ (NIH,
Bethesda, MD, USA).
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4.9. Statistical Analysis

All data were presented as mean ˘ SEM and analyzed using GraphPad Prism 6.0 (GraphPad
Software, San Diego, CA, USA) for Mac OS X. The difference between two groups was analyzed by
a two-tailed Student’s t-test, while two-way ANOVA followed by Tukey’s post-hoc analysis were
conducted for multiple comparisons between two or more groups. A p value of less than 0.05 was
defined as a threshold for statistical significance.

5. Conclusions

hNSC transplantation provides cues for recruiting local astrocytes to the grafted area,
stimulating de-differentiation of host-derived astrocytes, followed by niche regulation including
production of endogenous growth factors as well as attenuation of microglia activation. Both the
grafts and host cells within the brain niche can interact to achieve neuroprotection against DA
depletion. Harnessing synergistic interactions may help optimize cell-based therapies for PD.
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