5‘ International Journal of K\
S Molecular Sciences Mw
Review

Cell-Penetrating Peptide as a Means of Directing the
Differentiation of Induced Pluripotent Stem Cells

Taku Kaitsuka and Kazuhito Tomizawa *

Received: 30 September 2015 ; Accepted: 30 October 2015 ; Published: 6 November 2015
Academic Editor: Jagdish Singh

Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjyo,
Kumamoto 860-8556, Japan; kaitsuka@kumamoto-u.ac.jp
*  Correspondence: tomikt@kumamoto-u.ac.jp; Tel.: +81-96-373-5050; Fax: +81-96-373-5052

Abstract: Protein transduction using cell-penetrating peptides (CPPs) is useful for the delivery
of large protein molecules, including some transcription factors. This method is safer than gene
transfection methods with a viral vector because there is no risk of genomic integration of the
exogenous DNA. Recently, this method was reported as a means for the induction of induced
pluripotent stem (iPS) cells, directing the differentiation into specific cell types and supporting
gene editing/correction. Furthermore, we developed a direct differentiation method to obtain
a pancreatic lineage from mouse and human pluripotent stem cells via the protein transduction
of three transcription factors, Pdx1, NeuroD, and MafA. Here, we discuss the possibility of using
CPPs as a means of directing the differentiation of iPS cells and other stem cell technologies.
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1. Introduction

Induced pluripotent stem (iPS) cells are generated from somatic cells and they have a capacity
to differentiate into multiple cell types [1]. The use of iPS cell technologies in regenerative medicine
involves the key steps of reprogramming, gene editing/correction, and differentiation (Figure 1).
Protein transduction via cell-penetrating peptides (CPPs) is a method for the delivery of peptides,
recombinant proteins, and large molecules [2]. This method is safer than gene delivery via viral
vectors because there is no risk of the genomic integration of exogenous genes. Therefore, this method
has the possibility to substitute for virus-mediated gene delivery in the multi steps of reprogramming,
gene editing/correction and differentiation (Figure 1). In this review, we summarize recent reports in
this field and the future possibility of utilizing this method in iPS cell technologies.
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Figure 1. CPP-mediated protein transduction technologies in reprogramming, gene editing/
correction, and differentiation of iPS cells. CPP-mediated protein transduction methods are used for
key steps in iPS cell technologies. The reprogramming of somatic cells is induced with Yamanaka-4
factors fused to CPPs. Gene correction of disease-specific mutation is performed by the CRISPR-Cas9
system with CPP-fused Cas9 endonuclease. The differentiation of iPS cells is directed with CPP-fused
transcription factors. OSKM, Oct4, Sox2, Kl1f4, c-Myc; TF, transcription factor.
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2. CPP-Mediated Protein Transduction

It has been hypothesized that eukaryotic cells gained the function of endocytosis via evolution
from a common origin of prokaryota [3]. Endocytosis was essential for biological diversity via the
acquisition of mitochondria in animals and chloroplasts in plants [3]. Proteins fused with CPPs are
internalized into cells via macropinocytosis [4,5], which is a form of fluid phase endocytosis [6].
Cell types with a macropinocytosis process can be transduced with recombinant proteins via
CPPs. The CPP sequence was originally found in natural proteins as the HIV trans-activator
of transcription (TAT) [7,8] and the Drosophila melanogastor homeodomain transcription factor
Antennapedia [9]. That sequence in these proteins with the capacity of penetrating cells is called the
protein transduction domain (PTD). Both TAT and Antennapedia contain arginine and lysine-rich
residues in their PTDs [2]. Recombinant proteins fused to their PTD sequences or artificial CPPs
like arginine-rich peptide (poly-arginine) can internalize into cells. In general, 6 to 12 arginines
exhibit transduction activity as CPPs [10,11], while it has recently been reported that three arginines
are sufficient for transduction capacity [12]. The first step of protein internalization into cells
is mediated via binding to heparan sulfate proteoglycans, recruiting activated GTPase Racl to
lipid rafts, followed by macropinocytosis [4,13-16]. However, there are some reports showing
that heparan sulfate proteoglycans are not necessary for protein transduction [17-19]; therefore,
detailed mechanisms are largely unknown. Several molecules including Racl, p21-activated kinase 1
(Pakl), phosphatidylinositol 3-kinase, oncogene Ras, Src, histone deacetylase 6 (Hdac6), and heat
shock protein 90 (Hsp90) have been implicated in macropinocytosis [20], suggesting that these
molecules could influence the efficiency of protein transduction. Furthermore, it has been reported
that protein entry into cells is also regulated by various molecules, such as coatomer subunit
alpha and Nat/HCO3~ cotransporter [21]. Recently, a unique method was reported, involving
the intracellular delivery of naive protein (not fused to any CPPs) via NaCl hypertonicity-induced
macropinocytosis and a transduction compound, propanebetaine [22]. Surprisingly, the authors
found these components in the buffer used on the purification of recombinant proteins. They also
found that Nat/H* exchanger 1 (Nhel) plays an important role in this hypertonicity-induced
protein transduction. Furthermore, another group also showed a transduction method without CPPs,
involving the cationic lipid-mediated delivery of proteins with negatively supercharged proteins [23].
They used commonly available cationic lipid nucleic acid transfection reagents, lipofectamines.

3. Protein Transduction into iPS Cells

In general, lentivirus or retrovirus is used as a carrier for exogenous gene transduction to express
protein, knockdown, or to edit endogenous genes in iPS cells and embryonic stem (ES) cells. These
methods show high transduction efficiency; however, they lead to the integration of exogenous
DNA into chromosomes of host cells, especially when viral vectors are used [24]. In the case of
gene editing, the random occurrence of a deleterious mutation cannot be ruled out. Plasmid DNA
transfection with cationic lipids can reduce the risk of integration into chromosomes; however, almost
all pluripotent stem cells are generally difficult to transfect and the transfection efficiency is relatively
low. Electroporation is a robust method to increase the efficiency of transfection, but it often leads to
cell injury and death. The transduction methods combined with piggyBac transposon were developed
for iPS cell generation as minimized genomic integration and the complete elimination of exogenous
reprogramming factors, for application to regenerative medicine [25,26]. DNA transposons are
genetic elements that can relocate between genomic sites by a “cut and paste” mechanism. Important
features of the piggyBac transposon is that it transposes efficiently in many different species and that it
nearly always excises itself precisely and leaves no footprint behind [27,28]. The piggyBac system has
been shown to be applicable to human and mouse cell lines and this system becomes very attractive
as a genetic tool. This piggyBac system has recently attracted attention, such as for the reprogramming
of somatic cells and purification of differentiated cells [29]. A protein transduction method could also
be useful for the transduction of exogenous proteins into iPS cells because of their high transduction
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efficiency and zero risk of genomic integration. In fact, proteins fused to poly-arginine were efficiently
transduced into human iPS cells, whereas proteins without CPPs were not (Figure 2; unpublished
data) [30]. In these cells, the signals of transduced EGFP-9R proteins were detected in the cytoplasm
and cell membrane.

A

EGFP-9R

Figure 2. Protein transduction into human iPS cells. Human iPS cells of 201B7 were treated with EGFP
or 9R-EGFP for 6 h at a final concentration of 1 uM and GFP fluorescence was analyzed by confocal
microscopy. (A-C) EGFP-treated cells. Images of EGFP fluorescence (A); DIC (B) and their merge
(C) were shown. (D-F) EGFP-9R-treated cells. Images of EGFP fluorescence (D); DIC (E) and their
merge (F) were shown; (G) Magnified image of indicated area by white box in (D). GFP fluorescence
was detected in the cytoplasm and cell membrane. Scale bars are 100 um. 9R, nine arginines. DIC,
differential interference contrast.

Macropinocytosis occurs in most cell types, including pluripotent stem cells. Endocytosis
processes are important in pluripotent stem cells for nutrient absorption [31], cellular signaling like
Notch [32], Wnt [33,34], and gap junctional intercellular communication [35]. Under extracellular
stimulation, GTPase, Racl, and Cdc42 activate Pakl [36] and these proteins trigger the active
rearrangement of the actin cytoskelton and lead to macropinocytosis [20]. ES cells have been reported
to express Racl and Cdc42, which regulate their migration [37]. In cancer cells, macropinocytosis
is stimulated by the oncogene Ras, being important for macropinocytosis [38,39]. ES cells express
embryonic stem cell-expressed Ras (E-Ras) [40], which have function in macropinocytosis in ES and
iPS cells; however, its role is relatively unknown. Molecular mechanisms of macropinocytosis in iPS
cells have also attracted research interest in this field.

4. iPS Cell Differentiation with Protein Transduction of Specific Transcription Factor

In the general method, some cytokines and growth factors are used to mimic organ development
in pluripotent stem cells and direct the differentiation into specific cell types. Small molecules are
also used to inhibit selective molecular signaling and guide to specific molecular activation. There
have been several reports of efficient methods promoting differentiation from human iPS cells into
neurons [41], retinal cells [42], lung cells [43], and pancreatic [ cells [44], using some cytokines,
growth factors, and small molecules. In addition to these biological factors and chemicals, the protein
transduction of specific transcription factors is a useful method for directing the differentiation.
We previously developed a differentiation method by the step-wise transduction of recombinant
Pdx1, NeuroD, and MafA-11R proteins [45]. Pdx1 and NeuroD have their own PTDs [46,47], while
MafA is fused with 11 arginines (11R) as CPPs. In mouse ES cells, these three proteins improved
the efficiency of differentiation into insulin-producing cells (Figure 3) [45]. In human iPS cells,
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culture in differentiation medium with recombinant Pdx1 facilitates differentiation into pancreatic
endocrine progenitors [45]. In this method, the order of transduced proteins and timing of protein
transduction are important components for efficient differentiation. The protocol of Pdx1 transduced
on days 5 and 7, NeuroD on days 9 and 11, and MafA-11R on days 13 and 15, was the most
efficient by determining the number of insulin-positive cells, while a different order and timing
reduced this efficiency (Figure 3) [45]. The order of transduced proteins is similar to developmental
expression in vivo. Thus, the order of Pdx1, NeuroD, and MafA-11R is crucial for differentiation
into insulin-producing cells. However, the yield of insulin-producing cells was relatively low (~1%).
One reason is that full activity of protein transduced into cells was not achieved with this simple
method using CPP-containing proteins. A well-optimized protocol for protein transduction will be
required. Recently, well-established protocols for the pancreatic differentiation of human iPS cells
have been reported [44,48,49]. These protocols use many cytokines, growth factors, hormones, and
chemicals. Molecules originating from endogenous factors are thought to be safer and suited for
usage in regenerative medicine, although some chemicals have a risk of mutagenicity. In these
protocols, toxic chemicals are used, such as phorbol dibutyrate [44]. The possibility that differentiated
cells cause tumorigenesis cannot be ruled out. It will be necessary to replace mutagenic chemicals
with safe materials as recombinant proteins.

dlo dl1 d|3 dI I7 d|9 d1|1 d1I d1|5 d1|7
[ | | | | | | | | I
T ActA FGF10 NAM T
bFGF Ccyc GLP-1
ES/iPS cells RA Insulin-producing
cells

Figure 3. Scheme of the protocol for pancreatic differentiation with Pdx1, NeuroD and MafA-11R
protein transduction. Dissociated mouse ES or iPS cells were plated at day 0 and directed to pancreatic
differentiation in medium supplemented with Activin A (ActA) and basic fibroblast growth factor
(bFGF) from days 1 to 7, followed by medium supplemented with fibroblast growth factor 10 (FGF10),
KAAD-cyclopamine (CYC), and retinoic acid (RA) from day 7 to 11, and medium supplemented
with nicotinamide (NAM) and glucagon-like peptide-1 (GLP-1) from day 11 to 17. At day 17,
a part of differentiated cells express insulin and mature pancreatic 3-cell markers. Blue boxes show
recombinant proteins of Pdx1, NeuroD, and MafA-11R and these proteins were added at the indicated
time-points. d: day; 11R: 11 arginine.

Specific transcription factors are used for directing differentiation into other cell types. For neural
differentiation, the forced expression of Ngn2 by lentiviral vectors is used for the efficient induction
of functional neurons [50]. Transient overexpression of Nkx2-1 and Pax8 directs the differentiation
of mouse ES cells into thyroid follicular cells [51]. Mesp1l expression in the doxycycline-inducible
Mesp1 ES cell line promotes skeletal myogenic derivates in the absence of serum-derived factors [52]
and the inducible expression of MyoD by piggyBac vector leads to efficient differentiation into mature
myocytes [53]. In pancreatic differentiation, the combined expression of Pdx1l and MafA with
either Ngn3 or NeuroD by adenoviral vectors facilitates the differentiation of mouse ES cells into
insulin-producing cells [54]. Each method uses exogenous genes for the induction of transcription
factors with lentiviral, adenoviral, and piggyBac vectors. These transduction methods cannot exclude
the risk of the genomic integration of exogenous DNA and such methods are not desirable for
clinical application. The protein transduction method is safer than viral vectors because there is
no risk of genomic integration. Therefore, this method has the capacity to substitute for such
transcription factors. Recently, there have been several reports of a differentiation protocol with
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protein transduction, as neural induction by Nkx2.2, Olig2, or Pax6 [55-57], myogenic induction by
MyoD [58,59]. It is hoped that this method will become widely used for directing the differentiation.

5. Gene Editing with CPP-Mediated Protein Transduction

The protein transduction method via CPPs is also useful for introducing Cre recombinase
and FLP recombinase proteins into cells to excise target genes [60-62] and for introducing Cas9
endonuclease and guide RNA to edit or correct genes [63]. Recently, D’Astolfo’s group and
Zuris’s group reported native protein transduction via the hypertonicity- or cationic lipid-mediated
delivery of Cre and Cas9, respectively [22,23] and D’Astolfo’s group also succeeded in Cas9 protein
transduction into H1 human ES cells by this method [22]. Furthermore, protein transduction via CPPs
can be used for siRNA delivery into pluripotent stem cells by fusing siRNA to the RNA-binding
domain with CPPs [64]. These technologies are now being used in human pluripotent stem cells
as a research element, especially TAT-Cre-mediated gene excision [65-67]. Gene-editing/correction
technologies in iPS cells are desired for generating disease models carrying specific mutations or the
transplantation of gene-corrected autologous tissues [68,69]. Thus the protein transduction method
is also attractive in this gene-editing technology as a method without exogenous genes.

6. Usage of Protein Transduction in iPS Cell Generation or Direct Conversion

In contrast to directing the differentiation of stem cells, there is some difficulty in reprogramming
somatic cells to iPS cells and the direct conversion of somatic cells to other cell types with protein
transduction. Some groups reported the generation of mouse or human iPS cells by protein
transduction via CPPs [70-72]. We have also attempted the reprogramming of fibroblasts with protein
transduction of Oct4, Sox2, KIf4, and c-Myc proteins. However we failed to generate iPS cell colonies.
In previous reports, the efficiency of iPS cell generation by proteins was significantly lower (about
0.001%) [71] compared to transduction via retroviral vectors (0.02%) [1]. Furthermore, it was reported
that cells transduced with these four proteins via CPPs resembled the ES cell morphology but failed
to expand like iPS cells; therefore, only partial reprogramming occurred using this method [73].
For complete reprogramming, the robust expression of the four factors might be needed equally to
retroviral vector-mediated transduction. To use this for clinical utilization, more efficient protocols
with robust expression are needed for this protein-mediated reprogramming.

Direct conversion occurs by the robust expression of specific transcription factors. Ascll, Brn2,
and Mytll convert fibroblasts into neurons [74], Gata4, Mef2c, and Tbx5 convert fibroblasts into
cardiomyocytes [75], Gata4, Hnflx, and Foxa3 and the inactivation of p19Arf convert fibroblasts into
hepatocytes [76], Hnf4x plus Foxal, Foxa2, and Foxa3 convert fibroblasts into hepatocytes [77] and
Sox10, Olig2, and Zfp536 convert fibroblasts into oligodendrocyte precursor cells [78]. They used
retroviral or lentiviral vectors for gene transduction and the robust expression of these transcription
factors. The protein transduction method has the capacity to replace these viral vector-mediated
transductions; however, there is no report at present. Practical protocols are desired regarding
protein-mediated direct conversion.

7. Conclusions

As stated above, it has been shown by many reports that some steps in iPS cell technologies
can be done by protein transduction methods (Table 1). The transduction of exogenous genes via
plasmids, viral vectors, and nucleic acids cannot completely exclude the risk of genomic integration.
Proteins transduced via CPPs function transiently, but not stably in the cell. This kinetics could
be suitable to mimic a differentiation process, because the expression of key transcription factors
rapidly and dynamically fluctuates in defined periods in in vivo development and stable expression
is rare. This method is useful as a means for directing the differentiation of iPS cells and for
clinical application.
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Table 1. Summary of pluripotent stem cell technologies via protein transduction methods.

CPPs Proteins Supplements Technologies Cell Types References
Poly-arginine OSKM NA Reprogramming MEFs [70]
Poly-arginine OSKM NA Reprogramming HNFs [71]

NA ES cell-derived Streptolysin O Reprogrammin, Mouse cardiac [72]
extract proteins ptoly Prog & fibroblasts
Hydrophobic OSKMN or Partial

MTDs OSKML NA reprogramming HDFs (73]

TAT Cre NA Recombination Mouse ES cells [60]

TAT Cre NA Recombination Human ES cells [61]

TAT FLP dTAT-HA2 peptide Recombination MO“SEESOCZHEH‘&“ [62]
Poly-arginine Cas9 and sgRNA NA Gene disruption Human ES cells [63]

Hypertonic solution L Mouse or human
NA Cre or Cas9 and NDSB-201 Gene editing ES cells [22]
NA Cre, TALE or Cas9 Amom.c pr Ot?lf‘s and Gene editing Mouse ES cells [23]
cationic lipids
PTDs or Pdx1, NeuroD NA Pancreatic Mouse ES cells or [45]
Poly-arginine and MafA differentiation human iPS cells
TAT Nkx2.2 NA  Neural Mouse NSCs [55]
differentiation
Neural
TAT Pax6 NA differentiation Rat NSCs [57]

CPP, cell-penetrating peptide; ES, embryonic stem; HDF, human dermal fibroblasts; HNF, human newborn
fibroblast; iPS, induced pluripotent stem; MEF, mouse embryonic fibroblast; MTD, macromolecule
transduction domain; NA, not applicable; NSC, neural stem cells; OSKM, Oct-4, Sox2, K1f4, c-Myc; OSKMN,
Oct-4, Sox2, Klf4, c-Myc, Nanog; OSKML, Oct-4, Sox2, K1f4, c-Myc, Lin28; PTD, protein transduction domain;
sgRNA, single-guide RNA; TAT, trans-activator of transcription.
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