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Abstract: As our understanding of biological dynamics continues to be refined, it is 

becoming clear that biomolecules can undergo transitions between ordered and disordered 

states as they execute functional processes. From a computational perspective, studying 

disorder events poses a challenge, as they typically occur on long timescales, and the 

associated molecules are often large (i.e., hundreds of residues). These size and time 

requirements make it advantageous to use computationally inexpensive models to 

characterize large-scale dynamics, where more highly detailed models can provide 

information about individual sub-steps associated with function. To reduce computational 

demand, one often uses a coarse-grained representation of the molecule or a simplified 

description of the energetics. In order to use simpler models to identify transient disorder 

in RNA and proteins, it is imperative that these models can accurately capture structural 

fluctuations about folded configurations, as well as the overall stability of each molecule. 

Here, we explore a class of simplified model for which all non-hydrogen atoms are 

explicitly represented. We find that this model can provide a consistent description of 

protein folding and native-basin dynamics for several representative biomolecules. We 

additionally show that the native-basin fluctuations of tRNA and the ribosome are robust to 

variations in the model. Finally, the extended variable loop in tRNAIle is predicted to be very 

dynamic, which may facilitate biologically-relevant rearrangements. Together, this study 

provides a foundation that will aid in the application of simplified models to study disorder 

during function in ribonucleoprotein (RNP) assemblies. 
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1. Introduction 

Over the last 10 years, it has become evident that order-disorder transitions at the molecular level 

are essential for biomolecular function [1]. Some notable examples include the: intrinsically disordered 

protein sequences facilitate DNA-binding [2]; localized order-disorder transitions (i.e., cracking) are 

associated with large-scale conformational rearrangements in proteins [3–5]; and the disorder of tRNA 

molecules can determine elongation dynamics [6]. These examples illustrate how biological dynamics 

result from an intricate balance of molecular stability, folding and function.  

The current study explores variations of a widely-used theoretical model for biomolecular 

simulations, in order to help bridge our description of biomolecular functional and folding dynamics. 

Specifically, we apply all-atom structure-based models (i.e., all-atom “SMOG” models [7]) and determine 

if they can accurately capture the ratio of folding temperatures Tf and physiological temperatures. In  

other words, can one use this approach to consistently describe protein stability and native-basin 

fluctuations? Structure-based models (also called Gō-like models) were originally developed for the 

study of protein folding, where a coarse-grained representation was employed [8]. This class of models 

was subsequently extended to an all-atom representation [7], which is the focus in the current study.  

The principle of minimal frustration states that the energetic roughness associated with protein folding 

is much smaller than the energy gap between the folded and unfolded ensembles (Figure 1) [9–11].  

To approximate these minimally-frustrated landscapes, structure-based models explicitly assign each 

atomic interaction an energetic minimum that is consistent with the experimentally-resolved structure.  

In applications to proteins, models that employ these descriptions have had considerable success in 

elucidating many aspects of the dynamics, including the relationship between folding rates and chain 

length [12], dimer formation dynamics [13], the role of solvation effects [14], the influence of structure 

on folding mechanisms [15], mechanisms of DNA binding [16] and the stabilizing/destabilizing  

effects of crowding agents [17]. Using a variant of an all-atom structure-based model, long-timescale 

simulations have also enabled the identification of folding intermediates, predicting the modes by which 

proteins may aggregate and form amyloid structures [18,19]. 

In recent years, the use of all-atom structure-based models has been extended to RNA and large-scale 

biomolecular assemblies, providing insights into the physical-chemical properties of conformational 

transitions [20] and assembly [21] of the ribosome. When studying these larger systems, the arguments 

used to justify the application of these models must be considered. In the case of folding, Bryngelson 

and Wolynes showed that the associated landscapes are relatively smooth, or minimally frustrated [9–11]. 

This concept is central to the application of structure-based models for folding. In contrast, there is  

not a general principle that ensures that the landscapes associated with large-scale conformational 

rearrangements will be smooth. Despite the lack of an analytic theory, traditional all-atom explicit-solvent 

simulations of the ribosome suggest that the roughness associated with aa-tRNA accommodation is 

small (~1kBT, where kB is the Boltzmann constant and T is temperature) [22]. It is important to note that 

since all-atom explicit-solvent simulations are typically limited to microsecond timescales, large-scale 
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transitions are only computationally accessible in some instances [5]. Nonetheless, shorter timescale 

simulations (hundreds of nanoseconds) can be used to infer the magnitude of the short-scale roughness. 

Since the full energy landscapes of biomolecular assemblies will likely have both rough and smooth 

regions, it is important to consider the scope of what may be learned from applications of simpler 

models to conformational rearrangements. Structure-based models assign a particular configuration (or 

configurations) to be the dominant potential energy minimum (minima). With this “roughness-free” 

representation of the landscape, predicted free-energy barriers are the result of steric interactions, changes 

in configurational entropy and mutually-exclusive (competing) stabilizing interactions. Accordingly, 

these simple models may be used to identify signatures of disorder and molecular flexibility during 

functional conformational rearrangements. 

 

Figure 1. Energy landscapes and modeled energetic interactions. (A) Schematic view of  

a minimally-frustrated energy landscape for a protein folding. There is a large energy  

gap between the unfolded and folded ensembles, and the energetic roughness is small. 

Functional conformational rearrangements are associated with transitions between  

low-energy minima; (B) To explore the balance between folding and functional dynamics 

in biomolecules, we consider multiple functional forms of the stabilizing interactions in 

our model. Specifically, we change the exponent n associated with the attractive term in the 

native-contact interactions (Equation (2)). Increasing n has the primary effect of decreasing 

the length of the attractive tail and, therefore, the width of the minimum, while leaving the 

depth of the minimum unaltered. This specific modification was studied to determine how 

stability may be modulated through modifications of the entropic contribution to the free 

energy and whether aspects of the dynamics are robust. The explored functional form is also 

straightforward to implement, allowing it to be easily applied to modulate stability in other 

simplified and coarse-grained models.  

In the current study, we consider simple variations of our class of structure-based models and ask  

if we can improve the model’s description of the balance between functional and folding dynamics.  

As described below, the original version of our structure-based model predicts that the folding 

temperature and the temperature at which functional transitions occur will differ by approximately  

a factor of two, which is significantly larger than estimates for real proteins. While these models 

generally provide a description of the folding dynamics that is consistent with experiments [23–27], 

this large separation of folding temperatures and functional temperatures may raise questions as to how 
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accurately localized disorder events are described in low-temperature (i.e., close to physiological 

temperatures) simulations with these models. Here, by making a modest adjustment to the model,  

we seek to find a balance between functional temperatures and folding temperatures that is consistent 

with experimental observations. Such an improved level of agreement between the simulations and 

experiments would bolster confidence in predictions of localized disorder with these models.  

To explore the balance between folding dynamics and functional fluctuations, we apply our model 

to multiple proteins, tRNAs and the ribosome. We first provide a detailed description of the folding 

dynamics of two small proteins: the SH3 domain of c-Src (SH3) and Chymotrypsin Inhibitor 2 (CI2). 

We focus on these two proteins, since they have been extensively studied previously, both theoretically 

and experimentally. By first showing that folding is appropriately described for these well-studied 

proteins, future studies may be extended to larger classes of proteins. For CI2 and SH3, we find that 

folding temperature and barrier height are significantly altered by changes in the model. We also find 

that the folding mechanisms are generally robust and consistent with experiments. We next compare the 

structural fluctuations about the native configurations in the simplified model to those obtained from 

explicit-solvent simulations. To characterize the robustness of RNA dynamics to variations in the 

model, we evaluated the native-basin fluctuations of multiple tRNA species and the ribosome. We 

show that the structural fluctuations are not dependent on the model, that there are aspects of tRNA 

fluctuations that are common across species and that there are distinct motions associated with the 

tRNA variable loop. Together, this study represents a systematic analysis of a commonly-used model, 

which provides a foundation for identifying and quantifying the role of disorder during large-scale 

transitions in ribonucleoprotein (RNP) assemblies, including those that engage tRNA molecules. 

2. Results and Discussion 

To construct a theoretical model that is capable of providing a consistent description of  

a molecule’s energy landscape, which spans from unfolded to functional configurations (Figure 1A), 

we considered multiple forms of our structure-based model. We assessed the performance of each 

variation of the model by evaluating the predicted dynamics of protein folding (CI2 and SH3) and 

structural fluctuations at physiologically-relevant temperatures. We also surveyed the dynamics of tRNA 

molecules and the ribosome. As described below, we demonstrate that variations in the model provide 

descriptions of the folding mechanisms of CI2 and SH3 that are largely consistent with results from 

previous theoretical and experimental studies. However, we find that the predicted folding temperature 

Tf and free-energy barrier height are model dependent. Finally, we characterize the native-basin 

fluctuations of SH3, CI2, tRNATyr, tRNAIle and the 70S ribosome. Our analysis demonstrates that  

a single model that employs a simplified description of the energetics can accurately describe protein 

folding, protein dynamics and RNA dynamics, for the set of biomolecular systems considered. Thus, 

we provide evidence that this model may be used to consistently describe the dynamics of both the 

protein and RNA components of RNP machines. 

2.1. Protein Folding Kinetics and Stability Are Model Dependent 

To probe the effects of model variations on protein stability and folding rates, we simulated two 

proteins (SH3 and CI2) using five variations of the native-contact interaction potential (Equation (2),  
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n = 6, 7, 8, 9 or 10) [28]. The physical significance of changing n is that it modulates the length scale 

of the attractive tail in the atom-pair interaction. Here, we identified Tf as the temperature at which  

the specific heat Cv reaches a peak value (Figure 2A,D). For both proteins, there is a single peak in Cv, 

consistent with folding being a pseudo-first order phase transition [15,29,30]. While the two-state 

character of folding is preserved across models, Tf decreases with n. This can be interpreted as being 

the result of the reduced configurational entropy of the folded ensemble. That is, as n is increased,  

the native-basin is more narrowly defined, resulting in a reduction in configurational entropy and 

destabilization of the protein, which leads to decreased values of Tf. 

 

Figure 2. Protein folding temperatures and free-energy barriers depend on the details of 

the model. The folding properties of CI2 (A–C) and SH3 (D–F) were compared for 

different functional forms of the native contact interactions (Figure 1B). The folding 

temperatures, identified from the peaks in the specific heat curves (A,D), show a reduction 

in native-state stability as n is increased (i.e., as the length scale of the attractive tail is 

decreased). For both proteins, the probability of being on a transition path as a function of 

the number of native contacts P(TP|Q) exceeds 0.3, suggesting that the transition state 

ensemble (TSE) is accurately captured by the coordinate Q. As n is increased, the free-energy 

barrier associated with folding increases. Note: Due to the magnitude of the free-energy 

barrier for folding of SH3, it was computationally not tractable to obtain sufficient 

statistics for the n = 9 and n = 10 models. 

To study the predicted folding kinetics, we first show that our structural folding coordinate 

accurately captures the transition state ensemble (TSE). Here, we used the fraction of native contacts Q 

as a reaction coordinate for folding (see the Experimental Section). To evaluate the appropriateness of 

Q to describe folding kinetics, we performed long equilibrium simulations at the folding temperature 

and calculated the probability of being on a transition path as a function of Q, P(TP|Q). If Q accurately 

identifies the folding TSE and if the dynamics is diffusive along Q, then P(TP|Q) will reach a peak 

value of 0.5 [31]. This property has been used extensively by Hummer and colleagues to determine 

appropriate coordinates for protein folding [31–34]. Consistent with their studies, we find that Q 

performs reasonably well, where P(TP|Q) reaches values of ~0.3–0.4 (Figure 2B,E). This further 
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confirms that the two-state character of the folding dynamics is preserved in all models considered here, 

consistent with previous theoretical and experimental measurements for these proteins [7,8,29,30].  

While the two-state character of protein folding for CI2 and SH3 is consistently described by all 

variations of the model, we find that the height of the free-energy barrier is correlated with n. In other 

words, as the length scale of the attractive tail is decreased (n increased), the scale of the free-energy 

barrier is increased. This is consistent with observations from simulations with a coarse-grained model 

(one atom per residue), which found an increase in cooperativity of folding and larger free-energy 

barriers when native interactions were modeled using shorter-range interactions [35]. The same study 

also showed that by decreasing the length scale of the attractive tail, the distribution of folding times was 

more consistent with experimental ranges than when a longer-range attractive interaction was employed. 

While we cannot conclude on folding time distributions from our current dataset, these related findings 

from a coarse-grained model suggest that other aspects of protein folding may also be more accurately 

accounted for when larger values of n are used.  

Since Q is an appropriate coordinate for describing folding of these proteins, we can infer features 

of the kinetics from the free-energy barriers according to ݇	 =  F is the height of∆ .(஻ܶ݇/ܨΔ−)	exp	ܥ	

the barrier along Q, and C is interpreted as a barrier-crossing attempt frequency [36,37]. Since it is  

not expected that C will vary significantly between proteins of a similar size, increased barrier heights 

signify a decrease in the folding rate or an increase in the mean first passage time for folding.  

To compare with experimental quantities, we may use a value of C = 1 μs−1 [37,38] to estimate a 

timescale of folding from the barrier height. A barrier of 8kBT (i.e., the height of the barriers observed 

for CI2 with n = 10 and SH3 with n = 8) would correspond to a timescale ~3 ms, as compared to 60 μs 

for a barrier of 4kBT. Experimentally, these proteins have been measured to fold on millisecond 

timescales [29,30,39], which are more consistent with the barriers obtained with larger values of n. The 

barriers predicted by the n = 8 and n = 10 models for SH3 and CI2 are also consistent with findings 

from explicit-solvent simulations. Specifically, extremely-long explicit-solvent simulations predict 

free-energy barriers of ~4kBT for proteins that fold on sub-millisecond timescales [40]. Thus, the 

larger barriers obtained for SH3 and CI2 are consistent with these proteins folding slower than those 

studied using explicit-solvent models. With regards to considerations when modeling protein stability, 

this result suggests that a value of Tf may be viewed as an adjustable parameter that can be fit by 

selecting the appropriate value of n. The resulting free-energy barrier may then be considered  

a consequence of the stability.  

2.2. Robustness of Folding Mechanisms 

Since structure-based models can provide descriptions of the structural characteristics of folding for 

CI2 and SH3 that are consistent with experimental measurements [8,23,24], we next aimed to see if the 

predicted mechanisms of folding are robust to changes in n. To describe the structural properties 

associated with folding, we calculated the fraction of native contacts formed with residue i, as a 

function of the global folding coordinate Q: Qi(Q). Qi(Q) can be interpreted as describing the order in 

which native structure is formed, on average. For example, if residue i has five contacts formed in the 

native configuration, then Qi(0.2) = 0.8 would indicate that, on average, four contacts are formed with 

residue i when 20% (Q = 0.2) of the protein’s total native contacts are formed. In comparison, one may 
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envision a different residue j, where Qj(0.2) = 0.1 and Qj(0.9) = 0.8. This would indicate that, on 

average, the native structural content around residue j forms later in the folding process than the native 

structural content around residue i.  

The predicted structural properties of folding for CI2 are robust to changes in the energetic model. 

Figures 3A,B show Qi(Q) for CI2 with n = 6 and n = 10. To compare the folding dynamics of different 

models, we calculated the difference in Qi(Q) for the n = 10 and n = 6 models. In Figure 3C, red 

indicates that structure about a residue forms earlier in the n = 10 model than in the n = 6 model. Blue 

indicates that the native structure is formed later. Similar to an earlier study, which showed that folding 

mechanisms are only marginally impacted by changes in the contact strength ε [7], we find that changing 

the functional form of the contacts (i.e., changing n) also has a minimal effect on the folding 

mechanism of CI2.  

 

Figure 3. Predicted folding mechanisms of CI2 and SH3 with different models. To describe 

the folding mechanism, we calculated Qi(Q): the average fraction of native contacts  

formed with residue i as a function of the global folding coordinate Q. Qi(Q) was 

calculated for CI2 with (A) n = 6 and (B) n = 10 and for SH3 with (D) n = 6 and (E) n = 8. 

For (A,B,D,E), Qi is colored from blue (0: no native contacts formed) to red (1: all native 

contacts formed). To compare the dynamics with each model (C,F), we calculated the 

difference in native contact formation ∆Qi(Q), colored blue (a decrease in native contact 

formation) to red (an increase in native contact formation). The order of native structure 

formation is robust for CI2, where ∆Qi(Q) is nearly zero for all values of Q and i. For SH3, 

∆Qi(Q) adopts large values at Q = 0.45, indicating that there is less native structure in the 

tails (residues 2–7, 54–56) in the model with n = 8. As described in the text, this delay in 

the formation of the tail interactions is more consistent with experiments than the dynamics 

predicted by the n = 6 model. 
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The overall folding mechanism of SH3 is not globally altered when n is changed (Figure 3). 

However, we do find that for Q = 0.45–0.5 (i.e., TSE region) the degree of native structure formation 

is noticeably perturbed. Specifically, we find that at the TSE there is less native content in the  

C-terminal and N-terminal tails when n is increased from 6 to 8. In fact, in the TSE, there is almost no 

native content in the tail when n = 8. In contrast, the n = 6 model predicts that approximately 30% of 

the native contacts are formed with the terminal residues in the TSE, similar to other theoretical  

results [41]. It is interesting to note that the reduced native content of the terminal residues when n = 8 

represents an improved level of agreement with experimental measurements. That is, ϕ-value analysis  

is an experimental measure of the degree of native content formed about each residue in the TSE, where 

ϕ = 0 indicates no native content is formed and ϕ = 1 indicates all native content is formed. Previous  

ϕ-value measurements have shown that ϕ ~0 for the terminal residues of SH3 and ~0.8 for residues 25 

and 40–50 [42,43]. These experimental values are more consistent with the results obtained with the  

n = 8 model than the results obtained with the n = 6 model. While the original intention of the study was 

not to improve the description of SH3 folding, this result does provide further support that the revised 

form of our model may yield a more accurate description of both folding and function. 

2.3. Native-Basin Fluctuations Consistent with All-Atom Explicit-Solvent Models 

We next evaluated the model dependence of native-basin fluctuations in proteins and RNA. 

Changing the model parameter n has the potential to impact the fluctuations about the native 

configuration. That is, since the curvature of the energetic basin increases with n (Figure 1B), the scale 

of the native-basin fluctuations may decrease. Figure 4 shows the scale of the spatial root mean squared 

fluctuations (RMSF) as a function of temperature and n for SH3 and CI2. We additionally computed the 

RMSF for two different tRNA molecules and the ribosome. For all systems, at a given temperature, the 

value of the spatial RMSF only decreases slightly with increasing n. 

To obtain benchmark estimates of the scale of molecular fluctuations at a reference temperature 

(i.e., near physiological temperature), we performed two-microsecond explicit-solvent simulations of 

CI2 and SH3. From these, we computed the RMSF values for both proteins. Since explicit-solvent 

simulations use a semi-empirical formulation of the energetics, which has been developed 

independently of our structure-based models, we can use these estimates of the RMSF as an external 

metric for assessing the scale of fluctuations in solution. That is, all-atom explicit-solvent models 

(CHARMM [44,45] for proteins and AMBER [46] for the ribosome) do not include explicit 

information about the native configuration. Rather, every atom is assigned a partial charge that 

approximates the local electron density, and all atom pairs interact via non-specific van der Waals 

interactions. Due to the increased computational requirements of explicit-solvent models, it was not 

feasible to perform exhaustive explicit-solvent simulations of the tRNA molecules.  
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Figure 4. Structural fluctuations are robust to the form of the native-contact interactions. 

The average spatial root mean squared fluctuations (RMSF) were calculated as a function 

of temperature and n for (A) CI2; (B) SH3 and (C) the 70S ribosome. For all systems,  

the scale of the native-basin fluctuations showed a minimal dependence on the model.  

The average RMSF values obtained from explicit-solvent simulations are shown as  

dashed lines. By comparing the scale of the fluctuations in the simplified model and  

the explicit-solvent simulations, we identify the temperature in the simplified model  

that produces fluctuations consistent with those occurring at 300 K. To corroborate the 

character of the simulated fluctuations in the simplified model, we compared the RMSF  

for each residue to those obtained from two-microsecond explicit-solvent simulations of  

(D) CI2 and (E) SH3. There is visible agreement between the models for SH3 and CI2. For 

SH3, the linear correlation coefficient of the RMSF values is 0.87. For CI2, the correlation 

coefficient of the RMSF values is 0.65 (all residues) to 0.8 (excluding the loop region). 

Our explicit-solvent simulations of CI2 and SH3 predict average RMSF values of 0.95 and 1.23 Å. 

For the ribosome, previous explicit-solvent simulations (300–1400 ns) predict an RMSF of ~1.8 Å [6]. 

With these values, we identified the temperature for which the structure-based model reproduces the 

same scale of fluctuations as observed in explicit-solvent simulations at 300 K (marked by horizontal 

lines in Figure 4A–C). At the temperature where the scale of the fluctuations is consistently described 

by both models, the distribution of fluctuations in each protein is also similar (Figure 4D,E). The 

correlation coefficient between the RMSF values obtained with the two approaches is 0.87 for SH3. 

For CI2, the correlation coefficient is smaller (0.65), where the region of poorest agreement is the 

extended loop (residues 35–45). Since the density of contacts is lower in the loop region, structure-based 

models (which are built on the contact map) are not expected to provide an optimal description of 

those fluctuations. When excluding the loop region, the correlation coefficient between the RMSF 

values exceeds 0.8, indicating agreement for regions where there is a sufficiently high contact density. 
  



Int. J. Mol. Sci. 2015, 16 6877 
 

 

2.4. Identifying the Balance between Folding and Functional Temperatures 

To extend the description with these models to function, we compared estimates of the folding 

temperature and the temperature at which native-basin fluctuations are properly described. 

Specifically, we determined the temperature (Tref) in the simplified model that reproduces the 

fluctuations observed in explicit-solvent simulations, which were performed at 300 K. Experimental 

measurements have implicated folding temperatures for CI2 and SH3 [29,30]. Thus, we can also 

compute the ratio of temperatures at which the proteins undergo native-basin dynamics Tref and the 

folding temperature Tf in the structure-based model: Tref/Tf. We compared these values to experimental 

estimates in order to determine how well each variant of the structure-based model can bridge the 

functional and folding regimes.  

The ratio of Tref/Tf predicted by the structure-based model is more consistent with experimental 

observations for larger values of n. Experimentally, the folding temperature of SH3 has been measured 

to be 356 K [30]. For CI2, a precise value of the folding temperature in the absence of denaturant has 

been difficult to ascertain, though it is likely significantly larger than 373 K [29]. Since our description 

of native fluctuations is based on simulations at 300 K, the corresponding experimental values of Tref/Tf 

can be estimated as 300/350~0.8 for SH3 and <0.75 for CI2. We find that with the structure-based model 

(n = 6), Tref/Tf is approximately 0.45 for CI2 and 0.67 for SH3 (Figure 5). As already discussed, as n is 

increased, Tf decreases and Tref is only marginally altered. Accordingly, increasing n results in 

increases of Tref/Tf to approximately 0.6 and 0.75 for CI2 and SH3, respectively.  

 

Figure 5. Changing the contact definition provides a description that more accurately 

captures the balance between folding and functional dynamics. To compare the native-basin 

fluctuations and folding dynamics of CI2 and SH3, we calculated the ratio Tref/Tf. Tref is the 

simulated temperature in the structure-based model that yields a value of the average RMSF 

that is consistent with that obtained from explicit-solvent simulations performed at 300 K.  

To compare to experimental quantities, the appropriate ratio is 300/Tf, where Tf is the 

folding temperature in K. Experimentally, Tf of SH3 has been measured to be ~360 K [30], 

corresponding to Tref/Tf ~0.8. For CI2, experiments have found the folding temperature in 

the absence of denaturant to exceed the boiling point of water [29]. While an exact value of 

Tf is not available, we can conclude that Tref/Tf < 0.75. For both CI2 and SH3, the current 

study shows that increasing n provides a balance between folding and native-basin fluctuations 

in the structure-based model that is more consistent with experimental measurements. 
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While our values of Tref/Tf are closer to experimental values as n is increased, the structure-based 

model may still slightly underestimate the ratio for CI2. One source of uncertainty in our analysis is 

that the folding temperature is known to be high, though the exact value is not known. If the folding 

temperature is significantly larger than 400 K, then Tref/Tf will be smaller than 0.75, and it may even 

approach 0.6 (i.e., the value obtained with the structure-based model). While there is this outstanding 

uncertainty, the increased values of Tref/Tf predicted by the modified structure-based models (n = 8 or 10) 

represent significant improvements over earlier implementations of these models. That is, in addition 

to providing an accurate description of folding mechanisms and the scale of native fluctuations, when 

the proper variation of the model is utilized, it can also recover a balance between local fluctuations 

and global stability that is consistent with experimental measurements.  

It is important to note that this analysis is focused on two model proteins, CI2 and SH3. By 

providing in-depth analysis of two well-studied proteins, which represent two distinct folding motifs, these 

calculations suggest there may be a degree of generalizability to other proteins. In subsequent studies,  

it will be interesting to determine to what extent the relationship between folding and functional 

dynamics is preserved across protein families.  

2.5. tRNA Fluctuations Are Robust to Variations in the Model 

Similar to the dynamics of proteins, simulations of tRNATyr and tRNAIle show that the dominant 

motions are robust to the details of the model. To describe the fluctuations of tRNA molecules,  

we calculated the principal components (PCs) of the spatial atomic fluctuations for each tRNA  

species. [47] To quantify the impact of model details on the predicted dynamics, we compared the 

directions and scales of the motions for different values of n. To do so, we calculated the inner product 

(i.e., the normalized projection) of the i-th principal component calculated from structure-based models 

with n = 6 and n = 10. The inner product can range from zero to one, where one indicates that the 

directions of motion are parallel and zero indicates that the motions are orthogonal. We found that for 

the first 10 PCs (i.e., the 10 largest scale motions), the inner product exceeds 0.8 (Figure 6C,D).  

This confirms that the character of the dominant motions is not dependent on the precise functional form 

of the contact interactions. Rather, these collective motions are the result of the architecture of the 

tRNA molecule.  

2.6. Common and Distinct Properties of Different tRNA Species 

tRNA molecules undergo many functional and processing steps that require the molecules to be 

very dynamic, including binding synthetases [48], binding elongation factors [49] and moving through 

the ribosome during elongation [50]. This range of roles suggests that many evolutionary pressures 

have contributed to the distinct shape and dynamics of each type of tRNA. To enable this versatility, each 

molecule has a unique sequence that can include an extended variable loop, as well as post-transcriptional 

modification [51,52]. While the overall fold of all tRNAs is similar, sequence extensions in the 

variable loop contribute to the size and charge of each molecule, which may alter the intrinsic 

dynamics by increasing/decreasing flexibility near the tRNA elbow region. 
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Figure 6. tRNA fluctuations are robust to changes in the model. The scale of the average 

RMSF at a specific temperature is generally consistent (within 10%) as the model (n) is 

changed. The robustness of the scale of the fluctuations is observed for both (A) tRNATyr 

and (B) tRNAIle. The directions of motion about the crystal structures are also robust to the 

model. The inner product of the i-th principal component (PC) when n = 6 and when n = 10 

was calculated for both (C) tRNATyr and (D) tRNAIle. For the first 10 PCs, the inner 

product exceeds 0.9 for almost every PC of both tRNAs. The distribution of fluctuations, 

as measured by the RMSF of each residue, is similar between the two tRNAs (E,F).  

In both tRNAs, the CCA end and the anticodon region are the most mobile. The most 

significant difference is that the variable loop is highly dynamic in tRNAIle, which is absent 

in tRNATyr. 

To elucidate possible tRNA species-specific fluctuations, we compared the simulated dynamics of 

tRNATyr and tRNAIle. As already discussed, the scale of the tRNA structural fluctuations is largely 

unaffected by the details of the model. However, comparison of the dynamics of the tRNA molecules 

reveals notable differences and similarities. First, we compared the RMSF of each residue for both 

tRNA species (Figure 6E,F). With the exception of the variable loop, the two tRNA molecules have 
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similar RMSF profiles. Specifically, the most dynamic regions of the tRNA are the anticodon (AC), 

acceptor stem (AS) and CCA tail. From crystallographic structures and cryo-electron reconstructions 

of tRNA at various points during elongation [50,53–60], one may rationalize the biological need  

for a flexible AC region. Specifically, during elongation, each tRNA recognizes an mRNA  

sequence, interconverts between the deformed A/T configuration and a classical A/A configuration 

during accommodation and also transitions between numerous intermediate configurations during 

translocation [61,62]. At each step, the AC region can adopt distinctly bent configurations [50,53]. 

Accordingly, flexibility centered at the AC may facilitate these conformational rearrangements. 

Similarly, the flexibility of the AS and CCA regions is necessary for tRNA to bind synthetases, 

elongation factor Tu and ribosomal binding sites.  

The most significant difference in the RMSF profiles of the two tRNA molecules is centered at the 

variable loop (VL) residues of tRNAIle. This region is structurally significant, since it represents a nine 

residue-long insertion at position 47, relative to the sequence of tRNATyr. The fluctuations of the 

variable loop are comparable in scale to the fluctuations of the AC, AS and CCA tail. Since 

fluctuations in the AC, AS and CCA end have clear functional relevance, it is possible that the 

dynamic nature of the VL may also fulfill previously unidentified biological roles. To compare the 

characteristics of the dominant motions of the tRNA molecules, we visualized the first PCs and plotted 

the amplitude of motion of each residue along each PC (Figure 7). Here, we focus on the first several 

PCs, since they describe the largest scale motions. Inspection of the first PC illustrates that the  

motions are qualitatively similar, where both tRNA species undergo bending motions (Figure 7C,D). 

Specifically, this type of rearrangement is characterized by large correlated displacements of the AS/CCA 

and AC regions. Previous computational studies predicted similar motions and showed that these 

intrinsic tRNA fluctuations are often along directions consistent with conformational rearrangements 

during elongation [63,64]. Interestingly, large-scale motion of the VL is implicated in the second and 

third PCs. Further, the motion of the VL along the third PC is correlated with rearrangements in the 

AS, but not the AC. Since the intrinsic fluctuations of tRNA molecules facilitate functionally-relevant 

conformational changes inside of the ribosome [64], the observed correlation between VL and AS 

movements suggests that the VL may also be an active contributor to elongation dynamics. While 

simulations of tRNA in complex with the ribosome would be required to identify the precise role during 

elongation, the correlation between VL and AS suggests that there will be pronounced differences in 

the elongation dynamics of different tRNA species. 
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Figure 7. Principal component (PC) analysis reveals the correlated dynamics of the tRNA 

variable loop and acceptor stem (AS). To elucidate the tRNA-specific dynamics associated 

with the presence of a long variable loop, we compared the native-basin fluctuations of 

tRNATyr (left) and tRNAIle (right). The mean squared fluctuations (MSF) of each residue 

along PC i is shown for the first three PCs (1, blue; 2, red; 3, green) for (A) tRNATyr and  

(B) tRNAIle. In tRNATyr, all three PCs describe the motion of the anticodon (AC) region. 

For tRNAIle, the first PC describes the motion of the AC region, whereas the second and 

third PCs describe a combination of AC, AS and variable loop (VL) motions. Of particular 

interest is the fact that the third mode shows clear correlated movement of the AS and VL, 

suggesting that the VL may be actively engaged during elongation-related conformational 

rearrangements. The relative movement of each residue in each mode is depicted by arrows 

for the first PC (C,D) and the third PC (E,F). The first PC is visibly similar for the two 

tRNA molecules. For the third PC, the directions of the motion of the AS region are similar. 

However, in tRNATyr, the AS motion is correlated with the movement of the AC, and in 

tRNAIle, the AS motion is correlated with the movement of the VL. Structural figures were 

prepared using VMD [65]. 
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3. Experimental Section 

3.1. Structure-Based Models 

To help establish a theoretical model that can bridge folding and functional dynamics, we explored 

a class of simplified models. Using these models, we assessed which aspects of the predicted dynamics 

are robust to minor changes in the model. The only modification that we considered was the functional 

form of the stabilizing native interactions (Figure 1B). In this model, any two atoms that are in contact 

in the native configuration are treated as stabilizing. It is important to note that the energetics in this 

model represent effective energies. That is, the atomic interactions formed in the native configuration are 

effectively stabilized, since the potential of mean force necessarily has a minimum at that interatomic 

distance. While the position of the minimum is well defined, there is some degree of flexibility in the 

functional form of the interaction [66]. In our original implementation of this model [7], we employed 

a potential energy function of the form: 

௖ܸ௢௡௧௔௖௧ = ଵଶݎܣ − ଺ (1)ݎܤ

where A and B are assigned values, such that the minimum potential energy is at a distance σ (i.e., the 

native distance of the atom pair), and the depth is −ε (Figure 1B). Native contacts were determined 

using the Shadow algorithm [67]. The Shadow algorithm defines an atom pair as a native contact if 

they are separated by less than 6 Å in the native configuration, they do not have a third atom in 

between them (shadowing a radius of 1 Å) and the atoms are separated in sequence by at least 3  

(in proteins) or 1 (in RNA) residues. Bond lengths and angles are described by harmonic interactions. 

This ensures that the chemical structure is maintained. Dihedral angles are assigned four-body  

cosine interaction terms. A full description of the model can be found elsewhere [20]. Atomic models 

were obtained from the PDB database: CI2 (1YPA) [68], SH3 (1FMK) [69], tRNAIle(1H3E) [70], 

tRNATyr(1FFY) [71].  

All simulations that employed structure-based models were performed using the GROMACS 

software package [72,73], and input files were generated using the structure-based model web  

tool [74]. Since structure-based models are not part of the GROMACS distribution, the required .top 

(force field) and .gro (initial coordinate) files were generated by the smog-server web tool [75]. These 

input files are formatted for use with GROMACS v4, allowing one to integrate the equations of motion 

and utilize all simulation protocols and sampling techniques supported by GROMACS.  

Generally speaking, many organisms live at temperatures ranging from 300 and 400 K, and folding 

temperatures of biomolecules are often between 350 and 450 K. Thus, one can estimate that an organism 

will function at a temperature that is roughly 70%–80% of the folding temperature of its constituent 

molecules. As discussed in the Results section, the original structure-based model yields a larger 

separation in relative temperatures.  

Since the original model underestimates the ratio of functional temperatures [76] and folding 

temperatures, we were motivated to explore variations of the model that could reduce the folding 

temperature. Specifically, we considered SMOG models, where the native contacts were described by 

a potential energy of the form:  
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௖ܸ௢௡௧௔௖௧ = ଵଶݎ௡ܣ − ௡ݎ௡ܤ  (2)

For a given simulation, a specific value of n was employed (n = 6, 7, 8, 9, 10). Consistent with the 

earlier implementation of the model, An and Bn are set such that the position and depth of each 

interaction (σ, ε) are independent of the choice of n, which ensures that the potential energy of the 

folded configuration is unaltered by this modification. However, the width of the energetic minimum 

decreases with increasing n (Figure 1B), which is expected to alter the configurational entropy of the 

folded ensemble. Specifically, an increase in n should lead to a decrease in configurational entropy, 

which destabilizes the protein and reduces the folding temperature. In addition, increasing n may also 

reduce the scale of native-basin fluctuations at a given temperature, though this effect is found to be 

minimal. Together, these changes should bring the two temperature scales more close together, which 

would represent an improved level of agreement with experiments. 

3.2. Structure-Based Model Simulation and Analysis Details 

3.2.1. Folding Simulations 

To sample the full folding/unfolding space, we performed numerous unbiased constant temperature 

simulations of each protein. Temperatures were chosen such that at low temperatures, the proteins 

remain folded and at high temperatures, the proteins remain unfolded. Around the folding temperature, 

the proteins were observed to spontaneously fold and unfold repeatedly. A time step of 0.002  

(reduced units) was used. Each simulation was performed for 1 × 109–4 × 109 time steps. A constant 

temperature was maintained through the use of Langevin dynamics. To characterize the folding 

mechanism, a single long folding simulation was performed for each parameter set, at the 

corresponding folding temperature. 

3.2.2. Contact Analysis and Transition Path Analysis 

To quantify the folding events, we probed the fraction of native contacts formed, as a function of 

time Q(t). A contact between two residues was considered formed if any of the atomic interactions 

were within 1.5-times the native distance, consistent with earlier definitions of Q(t) [7]. To describe the 

folding mechanism, we used Q(t) from a long simulation at the folding temperature of the protein. We 

also used Q(t) to calculate the probability of being on a transition path, as a function of Q: P(TP|Q). In 

order to calculate P(TP|Q), we first identified all transition events. A transition event was defined as 

occurring when Q(t) adopted a value of Qunfolded and then reached Qfolded before returning to Qunfolded. 

Qunfolded and Qfolded were defined as the values of Q for which the free energy has minima corresponding 

to the unfolded and folded ensembles. Thermodynamic quantities (free energies and the specific heat) 

were evaluated using the Weighted Histogram Analysis Method algorithm [77,78]. With the transition 

events identified, P(TP|Q) was defined as the number of sampled configurations at a given value of Q 

that were part of a transition event, divided by the total number of times the system adopted the value 

Q. The number of folding/unfolding events observed for CI2 were 168 (n = 6), 69 (n = 7), 19 (n = 8), 

16 (n = 9) and 5 (n = 10). For SH3, the number of folding/unfolding events observed were 28 (n = 6), 
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10 (n = 7) and 7 (n = 8). Due to the slower kinetics with increasing n, fewer events were observed for 

larger values of n, limiting the evaluation of P(TP|Q) to smaller values of n. 

3.3. All-Atom Explicit-Solvent Simulations 

To identify the scale of structural fluctuations at 300 K, we performed all-atom explicit-solvent 

molecular dynamics (MD) simulations of CI2  and the SH3 domain of c-Src Kinase. MD simulations 

were performed with the GROMACS-v4.6.1 software package [72,73]. The CHARMM27 force  

field [44,45] and TIP3P water model [79] were used. Each protein was solvated in a triclinic box with 

a 10 Å buffer on all sides. Counter ions (either Cl− or Na+) were introduced to neutralize the charge of 

the system. Energy minimization was performed using the steepest descent and conjugate gradient 

algorithms. Equilibration simulations were performed using constant number-volume-temperature 

(NVT, 2 ns) and constant number-pressure-temperature (NPT, 10 ns) ensembles. During both 

equilibration phases, harmonic position restraints were imposed on all non-hydrogen atoms. To ensure 

constant temperature, the Nose–Hoover thermostat [80,81] was employed with a relaxation time of  

0.5 ps. The Parrinello–Rahman barostat [82] was used to ensure constant pressure (1 bar), with a relaxation 

time of 2.5 ps and compressibility of 4.5 × 10−5/bar. Using the Verlet integration scheme [83] and 

periodic boundary conditions, we performed the NPT production runs for 2 µs, with a time step of 2 fs. 

Bond constraints were imposed though use of the Linear Constraint Solver (LINCS) algorithm [84]. 

The cutoff distances for both van der Waals and Coulomb interactions were set to 10 Å. Long-range 

electrostatic interactions were evaluated using the particle mesh Ewald (PME) method [85], with  

a Fourier spacing of 1.2 Å, an interpolation order of 4 and a tolerance of 1 × 10−5. The first 100 ns of 

each simulation were considered equilibration and were not considered in the data analysis. 

4. Concluding Remarks 

As we continue to develop our understanding of biological assemblies, including RNP machines,  

an exciting theme is that biomolecular disorder is central to functional dynamics. This indicates that 

there is a precise balance between biomolecular stability and conformational fluctuations. In the 

current study, we have presented advances towards establishing a class of theoretical models that  

can properly describe the balance between biomolecular folding dynamics, stability and folded-state 

dynamics. We additionally applied these models to study native-state fluctuations in tRNA molecules, 

which revealed that the fluctuations are largely robust to changes in the energetic model. This suggests 

that the secondary and tertiary structure is a major determinant of biomolecular fluctuations. We 

further applied this model to multiple tRNA species, which demonstrated the active role that the 

extended variable loop may have during functional rearrangements of tRNA molecules. Together, the 

robustness of tRNA dynamics and the accurate description of the stability and folding dynamics of 

proteins demonstrate that this model may now be used to provide more reliable predictions of disorder 

during conformational rearrangements in large-scale biomolecular assemblies.  
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