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Abstract: The emergence of antibiotic-resistant strains in facultative anaerobic Gram-positive 

coccal bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), is a global 

health issue. Typically, MRSA strains are found associated with institutions like hospitals 

but recent data suggest that they are becoming more prevalent in community-acquired 

infections. It is thought that the incidence and prevalence of bacterial infections will 

continue to increase as (a) more frequent use of broad-spectrum antibiotics and 

immunosuppressive medications; (b) increased number of invasive medical procedures; 

and (c) higher incidence of neutropenia and HIV infections. Therefore, more optimal 

treatments, such as photodynamic therapy (PDT), are warranted. PDT requires the 

interaction of light, a photosensitizing agent, and molecular oxygen to induce cytotoxic 

effects. In this study, we investigated the efficacy and characterized the mechanism of 

cytotoxicity induced by photodynamic therapy sensitized by silicon phthalocyanine (Pc) 4 

on (a) methicillin-sensitive Staphylococcus aureus (MSSA) (ATCC 25923); (b) community 

acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) (ATCC 43300); and  
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(c) hospital acquired methicillin-resistant Staphylococcus aureus (HA-MRSA) (PFGE type 

300). Our data include confocal image analysis, which confirmed that Pc 4 is taken up by 

all S. aureus strains, and viable cell recovery assay, which showed that concentrations as 

low as 1.0 μM Pc 4 incubated for 3 h at 37 °C followed by light at 2.0 J/cm2 can reduce 

cell survival by 2–5 logs. These results are encouraging, but before PDT can be utilized as 

an alternative treatment for eradicating resistant strains, we must first characterize the 

mechanism of cell death that Pc 4-based PDT employs in eliminating these pathogens. 
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1. Introduction 

The rapid replication of bacteria in combination with the occurrence of mutations that improve bacterial 

survival in the presence of antibiotics results in highly resistant bacterial strains. Methicillin-resistant 

Staphylococcus aureus (MRSA) is the most common pathogen of hospital-associated infections in the 

United States [1]. In 2011, the Centers for Disease Control and Prevention (CDC) reported that MRSA 

caused 80,000 infections and more than 11,000 deaths in the United States alone [2]. Additionally, 

clinicians have observed a gradual increase in MRSA infections in health care facilities [3]. 

Specifically, the rise of community associated methicillin resistant Staphylcocus aureus (CA-MRSA) 

is especially alarming as these infections occur in healthy individuals [4] and have been reported in 

large number [5]. 

Despite recent reports that have demonstrated an increase in the minimum inhibitory concentrations 

(MICs) for vancomycin, implying that the normal doses may no longer reach its fullest potential [6,7], 

vancomycin remains the current chosen treatment for MRSA [8]. Consequently, MRSA has evolved 

strains with a lower susceptibility or complete resistant to vancomycin [9–11]. In addition, resistance 

also occurred with another commonly used antibiotic, Linezoid [12,13]. Thus, alternative approaches 

have been actively investigated. For instance, the antimicrobial effects of photodynamic therapy (PDT) 

have been shown to be a promising modality to combat the recalcitrant bacterial infections [14]. 

PDT entails the interaction of light, a photosensitizing drug, and molecular oxygen to induce  

a biological response [15]. Originally known for its anticancer modalities, PDT is now expanded to  

treat non-malignant diseases that include age-related macular degeneration of the retina, which is 

characterized by uncontrollable growth of vascular tissue, and dermatopathological conditions, such as 

psoriasis [16]. Diseases that are associated with cellular hyperproliferation are excellent candidates  

for PDT as evidenced by cancer, and more recently in noncancerous, as well as dermatological 

conditions applications. Photosensitizers are known to preferentially accumulate in cells that are 

actively dividing and pathogenic agents grow at much faster rate than the mammalian cells [17]. 

Although photosensitizers are also known to accumulate in normal healthy cells, the photodynamic 

effect can be targeted specifically to unwanted cells by anatomically confining the delivery of the light 

source. Therefore, the overall toxicity or adverse effects to the host can be reduced [18]. 
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2. Results 

2.1. Pc 4 Uptake by S. Aureus 

To substantiate the PDT effect in S. aureus, we examined the uptake of phthalocyanine (Pc) 4 by 

confocal microscopy. As shown in Figure 1, the vast majority of Pc 4 fluorescence could be seen on 

the cell wall as well as in the cytoplasm of the HA-MRSA after 3 h of incubation. Similar Pc 4 uptake 

was also found in both MSSA and CA-MRSA (data not shown). 

 

Figure 1. Phthalocyanine (Pc) 4 uptake in S. aureus. Bacteria were loaded with either 1.0 μM 

Pc 4 (top panels) or (vehicle control) N',N'-dimethylformamide (DMF) (bottom panels) 

overnight. Pc 4 (pseudo red) fluorescence appears to be taken up efficiently in HA-MRSA and 

equally comparing to the other two strains, MSSA and CA-MRSA (data not shown), within 

3 h of incubation. Scale bars, 200 μm. 

2.2. Toxicity Studies 

Colony Formation Unit (CFU) reduction—having established that Pc 4 can be taken up by  

S. aureus, we next determined a dose of Pc 4-PDT that would efficiently kill cells. All three strains of 

S. aureus were loaded with 0.1 to 1.0 µM Pc 4 for at least 3 h, then photoirradiated and plated. With  

a constant fluence (2.0 J/cm2), CFU data showed a dose response effect to increasing concentrations  

of Pc 4. Interestingly, at 1.0 µM Pc 4 treatment almost completely eliminated all strains ability to form 

colonies (Figures 2 and 3). 

XTT (2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxyanilide) assay—using its 

cytotoxic dose, we then assessed the ability of Pc 4-PDT affecting the metabolic activities of the three 

strains of S. aureus. Following Pc 4-PDT, a decrease in absorbance, as demonstrated by a loss of 
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water-soluble orange formazan derivative in the XTT assays, was indicative of metabolic impairment. 

As shown in Figure 3, metabolic activity was attenuated by ~50% within 4 h, compared to controls 

following photoirradiation of Pc 4-loaded MSSA, HA-MRSA and CA-MRSA. 

 
(A) 

 
(B) 

(C) 

Figure 2. Cont. 
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(D) 

Figure 2. Pc 4-PDT kills S. aureus and inhibits colony formation. Bacteria cultures at 

equal concentrations were treated with various Pc 4 concentrations (100, 250, 500, 750, and 

1000 nM) and incubated for 3 h and then followed by photoirradiation (see Experimental 

Section). The percentage of surviving cells from the PDT-treated cultures (MSSA, HA-MRSA 

and CA-MRSA) was normalized against cultures exposed to Pc 4 or light alone (A); The three 

strains are significantly affected by one single dose of Pc 4-PDT (1.0 µM and 2.0 J/cm2)  

as indicated by counting colony formation assays (B–D). Values represent the mean from 

at least three independent experiments. Error bars indicate S.E. For all Pc 4-PDT-treated 

cultures vs. untreated cells, either light alone or Pc 4 alone, p < 0.005. 

 

Figure 3. Cytotoxic effects, as measured by XTT, of Pc 4-PDT in MSSA, HA-MRSA and 

CA-MRSA. Equal quantities of three S. aureus culture strains were treated overnight with  

1.0 μM Pc 4 and then were irradiated with 2.0 J/cm2 of 670–675 nm light. One hour 

following irradiation of Pc 4-loaded S. aureus, cultures were assayed for XTT reduction. 

H2O2 was used for a positive control. Values represent mean ± S.E. from at least three 

independent experiments. For all Pc 4-PDT-treated cultures, p < 0.005 vs. light alone control. 
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2.3. ROS Generation Immediately Following Pc 4-PDT 

We demonstrated the formation of ROS with MSSA, HA-MRSA and CA-MRSA following  

Pc 4-PDT. To monitor the intracellular ROS production, we performed a dose-response study (Pc 4 at 

a concentration of 1.0 µM and fluence ranging from 0, 7, 1.4, and 2.0 J/cm2) by flow cytometry.  

Our data consistently demonstrated that a higher Pc 4-PDT dose correlated with a greater DCF 

fluorescence or ROS level in all MSSA, HA-MRSA and CA-MRSA (Figure 4). As a positive control, 

we used H2O2 (53.27 mM) to show the enhanced level of ROS in all strains of S. aureus. Red light 

alone had no effect on DCF fluorescence (data not shown). 

 

Figure 4. To monitor ROS generation by confocal microscopy and flow cytometry,  

Pc 4-treated S. aureus strains were loaded with 2',7'-dichlorofluorescin, as described in 

“Materials and Methods”. The generation of ROS based upon DCF fluorescence can be 

quantified by flow cytometry. For each sample, 100,000 events were collected on an 

Accuri C6 flow cytometer at 0, 6, 12, and 17 min during the light treatment, which yielded 

the following fluences 0, 7, 1.4, and 2.0 J/cm2, respectively. For a positive control, H2O2 

was used. Results are expressed as mean ± S.E.M. from three independent experiments. 

3. Discussions 

PDT has been known for its versatility in treating various medical conditions, ranging from  

age-related macular degeneration to psoriasis to malignant cancers [19]. In recent years, PDT has also 

been attracting considerable attention for its antimicrobial properties [20]. PDT is based on the 

utilization of photosensitizers, which can accumulate in specifically selected tissues or cells. In the 

present of molecular oxygen, the photosensitizers can be activated by light with an appropriate 

wavelength that leads to the formation of singlet oxygen and free radicals for the cytotoxic effects [15]. 

It has been reported that PDT using different photosensitizers, such as hematoporphyrin, photofrin, 

5-aminolaevulinic acid (ALA) and phthalocyanine, can lead to cytotoxicity in S. aureus [21]. The 

silicon phthalocyanine (Pc) 4, which is currently undergoing two separate clinical trials, for cutaneous  

T cell lymphoma and psoriasis, has also been shown to have antimicrobial effects in yeast-like  

fungi pathogens, such as C. albicans and T. rubrum in vitro [22,23]. Although a currently  
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FDA-approved photosensitizer, ALA, has demonstrated an antifungal effect in T. rubrum in vitro,  

its limitation is the need for bioconversion to PpIX [24] prior to irradiation. Unlike ALA, Pc 4 does not 

require the bioconversion step. In other words, upon treatment, its photocytotoxicity effect occurs as 

soon as Pc 4 is exposed to 670–675-nm light. 

In the current study, we demonstrated that Pc 4 is found taken up by all strains of S. aureus by 

confocal microscopy. In addition, ROS formation and metabolic impairment is detected immediately 

following Pc 4-PDT, which subsequently leads to cell death. In summary, data from this study indicate 

that Pc 4-PDT has potential antimicrobial effects in multiple strains of MRSA by disrupting overall 

metabolic activity and resulting in cytotoxicity. Based upon these findings, the development of Pc  

4-PDT as a potential clinical antimicrobial therapy, or as an adjunctive therapy with a currently 

approved antibiotic agent, warrants further exploration. 

4. Experimental Section 

4.1. Bacteria 

Staphylcoccus aureus strains MSSA (ATCC 25923, Manassas, VA, USA), CA-MRSA (ATCC 

43300) and HA-MRSA (PFGE type 300) were used in this study. Bacteria was streaked onto BBL™ 

Trypticase™ Soy Agar with 5% Sheep Blood (TSA II) (BD Biosciences, Franklin Lakes, NJ, USA) 

and incubated overnight at 37 °C. Bacterial growth was collected with a sterile loop and suspended in 

1× PBS. The OD600 for the solution was determined using a spectrophotometer (Spectronic Genesys 5; 

Analytical Instruments, Golden Valley, MN, USA). The OD600 for all experiments was 0.4. 

Calculation of the OD was done according to the formula (Available online: http://2011.igem.org/ 

wiki/images/0/0c/OD600_100.pdf): 

(Current OD 1)
600X= Current volume 

0.4

−
×  (1)

where X is the volume of 1× PBS to be added to bacterial suspension. 

4.2. Pc 4-Photodynamic Treatment Conditions 

Pc 4 in its powder form was dissolved in a vehicle of N',N'-dimethylformamide (DMF, 

ThermoFisher, Waltham, MA, USA) to 0.5 mM and stored at 4 °C in the dark. Bacteria cultures were 

incubated with Pc 4 concentrations ranging from 0.1 to 1.0 μM in 1× PBS containing 10% fetal bovine 

serum (FBS) for at least 3 h at 37 °C in the dark and subsequently irradiated with red light using  

a light-emitting diode array (EFOS, Mississauga, ON, Canada) at a fluence ranging from 1.0 to 2.0 J/cm2 

(1.0 mW/cm2, λmax(Ex)~670–675 nm) at room temperature. 

4.3. Confocal Microscopy 

To visualize the uptake of Pc 4, bacteria in 1× PBS supplemented with 10% FBS were loaded with  

1 μM Pc 4 and incubated for at least 3 h. All images were acquired using an UltraView VoX  

spinning-disc confocal system (PerkinElmer, Waltham, MA, USA) mounted on a Leica DMI6000B 

microscope (Leica Microsystems, Inc., Bannockburn, IL, USA) equipped with an HCX PL APO _100x/1.4 
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oil immersion objective. Confocal images of Pc 4 fluorescence were collected using solid-state diode 

640-nm and with a 650-nm emission filter. 

4.4. Viable Cell Recovery Assay 

ChromAgar plates were made according to manufacturer instructions (Chromagar, Paris, France) 

with the addition of 8 µg/mL of cefoxitin to select for MRSA and exclude MSSA. S. aurueus strains 

were treated with various concentrations of Pc 4 (100 nM, 250 nM, 500 nM, 750 nM and 1 µM) and 

incubated for 3 h. Chlorohexidine was used as a positive control as it is often used in health care 

facilities to eradicate MRSA. Chlorhexidine digluconate was added to samples so that the final 

concentration was 2% by volume and incubated concurrently with Pc 4 for 2 h. After light treatment, 

samples were pipetted into 96 well plate and serially diluted 10-fold in PBS to 10−6 of the original 

concentration. Dilutions were then drop-plated onto ChromAgar allowed to rest for 30 min so the 

liquid could settle into the agar, and incubated for 24 h at 37 °C before counting by eyes. 

4.5. Metabolic XTT Assay 

Metabolic activity was assayed using the colorless sodium salt of XTT (2,3-bis[2-Methoxy-4-nitro-

5-sulfophenyl]-2H-tetrazolium-5-carboxyanilide inner salt) (Sigma-Aldrich, St. Louis, MO, USA), 

which is converted by mitochondrial dehydrogenases of viable cells. Ninety-six-well plates were 

pipetted with 100 μL of S. aureus suspension in PBS at OD600 of 0.5, 12.5 μg/mL XTT and 1 µM 

menadione were added to PBS in a separate conical tube. 100 µL of the XTT/Menadione solution was 

added to wells with S. aureus suspended in PBS and incubated in 37 °C incubator for 3 h. After 

incubation, the plate was spun down 4000 RPM for 5 min. One hundred microliters of the supernatant 

XTT solution was collected and transferred to another 96 well plate. Absorbance values were 

measured with a Versamax microplate reader (Molecular Devices, Sunnyvale, CA, USA) set to  

492 nm wavelength. 

4.6. Flow Cytometry 

To quantitatively measure reactive oxygen species (ROS) formation [25], CA-MRSA, HA-MRSA, 

and MSSA were treated with 1 µm Pc 4 for 3 h in 1× PBS with 10% FBS. Then the bacteria was 

resuspended in flow buffer which contained 5% FBS and 2 mM EDTA in 1x PBS and stained with  

50 µM DCFDA (2',7'-dichlorodihydrofluorescein diacetate) (Invitrogen, Carlsbad, CA, USA) and 

incubated on ice for 90 min. Events were recorded using an Accuri C6 flow cytometer (BD, Franklin 

Lakes, NJ, USA) at 0, 6, 12, and 17 min during the light treatment which correspond to 0, 7, 1.4, and 

2.0 J/cm2 fluences, respectively. 
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