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Abstract: Low molecular weight heparin (LMWH)/protamine (P) nano/micro particles 

(N/MPs) (LMWH/P N/MPs) were applied as carriers for heparin-binding growth factors 

(GFs) and for adhesive cells including adipose-derived stromal cells (ADSCs) and bone 

marrow-derived mesenchymal stem cells (BMSCs). A mixture of LMWH and P yields  

a dispersion of N/MPs (100 nm–3 μm in diameter). LMWH/P N/MPs can be immobilized 

onto cell surfaces or extracellular matrix, control the release, activate GFs and protect 

various GFs. Furthermore, LMWH/P N/MPs can also bind to adhesive cell surfaces, inducing 

cells and LMWH/P N/MPs-aggregate formation. Those aggregates substantially promoted 

cellular viability, and induced vascularization and fibrous tissue formation in vivo. The 

LMWH/P N/MPs, in combination with ADSCs or BMSCs, are effective cell-carriers and  

are potential promising novel therapeutic agents for inducing vascularization and fibrous 

tissue formation in ischemic disease by transplantation of the ADSCs and LMWH/P 

N/MPs-aggregates. LMWH/P N/MPs can also bind to tissue culture plates and adsorb 
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exogenous GFs or GFs from those cells. The LMWH/P N/MPs-coated matrix in the presence 

of GFs may provide novel biomaterials that can control cellular activity such as growth and 

differentiation. Furthermore, three-dimensional (3D) cultures of cells including ADSCs 

and BMSCs using plasma-medium gel with LMWH/P N/MPs exhibited efficient cell 

proliferation. Thus, LMWH/P N/MPs are an adequate carrier both for GFs and for stromal 

cells such as ADSCs and BMSCs, and are a functional coating matrix for their cultures. 

Keywords: adipose-derived stromal cells; bone marrow-derived mesenchymal stem cells; 

nano/micro particles; coating matrix; cell delivery systems 

 

1. Introduction 

Drug repositioning is recognized as an effective strategy against the laborious and expensive  

de novo drug discovery as well as the difficult approval system of new drugs [1]. Recently low 

molecular weight heparin (Fragmin; LMWH) and protamine (P) have attracted attention as leading 

bionanomaterials in tissue engineering, cell-based therapy and regenerative medicine [1]. 

Basic protamine molecules complexed with acidic molecules such as heparin form complexes 

through ionic interactions [2]. We previously have reported the low molecular weight heparin/protamine 

nano/micro particles (LMWH/P N/MPs), which we originally prepared as polyelectrolyte complexes 

(PECs) [3,4]. LMWH/P N/MPs are specifically bound to fibroblast growth factor (FGF)-2 [3,4], 

hepatocyte growth factor (HGF) [5] and other heparin-binding growth factors (GFs) secreted from 

platelet-rich plasma (PRP) [6]. LMWH/P N/MPs can be retained onto cell surfaces and matrix in 

various tissues in vivo to control release, and can protect and activate GFs. Moreover, the GFs and 

LMWH/P N/MPs showed a substantial effect in inducing vascularization and fibrous tissue formations 

by stabilizing, activating and gradually releasing GFs from the GFs and LMWH/P N/MPs [6–8]. 

It was reported that LMWH/P N/MPs bind to various adhesive cell surfaces including ADSCs and 

BMSCs as well as tumor cells through specific interactions between LMWH/P N/MPs and cell surface 

heparin-binding proteins such as some integrins [9,10]. The interaction of the cells with LMWH/P 

N/MPs resulted in cells and LMWH/P N/MP-aggregate formation in a few hours. Those aggregates 

substantially promoted cellular viability in vitro. Injection of the aggregates induced vascularization and 

fibrous tissue formation in vivo [6,7]. Thus, LMWH/P N/MPs as cell carriers can enhance cell viability. 

As a coating matrix, LMWH/P N/MPs were efficiently bound to tissue culture plates. With the ability 

of LMWH/P N/MPs to retain GFs, they could be very useful in cell culture. Human microvascular 

endothelial cells and human dermal fibroblast cells adhered well to LMWH/P N/MPs-coated 

suspension culture plates [10] and grew rapidly in low fetal bovine serum (FBS; 1%–2%) medium 

supplemented with FGF-2. This protocol could allow use of low autologous serum (1%–2%) in 

culturing BMSCs and ADSCs [7]. Furthermore, CD34+ hematopoietic progenitor cells (CD34+ HCs) 

derived from mouse bone marrow exhibited a higher proliferation on LMWH/P N/MPs-coated plates 

in hematopoietic progenitor growth medium (HPGM) supplemented with appropriate cytokines than 

those on uncoated plates [8]. Furthermore, ADSCs and BMSCs can also be grown efficiently in  

three-dimensional (3D) culture using low human plasma (HP) (3%)-DMEM gel containing LMWH/P 
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N/MPs without animal serum [11,12]. Here, we describe LMWH/P N/MPs and their applications  

as GFs- and cell-carriers in tissue engineering, cell-based therapy and regenerative medicine, and as  

a coating matrix for cell cultures. 

2. Biomedical Applications of Low Molecular Weight Heparin/Protamine Nano/Micro Particles 

(LMWH/P N/MPs) 

2.1. Preparation and Function of Growth Factors (GFs) and LMWH/P N/MPs 

Polyelectrolyte complexes (PECs) are generated by electrostatic interactions between oppositely 

charged polyelectrolytes, that is, LMWH and P. When this interaction occurs at non-equivalent ratios, 

nonstoichiometric PECs are produced, causing each PEC particle to carry an excess charge [13,14]. 

Proteins interact with both synthetic and natural PECs [15,16]. Heparin and LMWH specifically interact 

with functional proteins with high affinity including GFs, cytokines, extracellular matrix components 

and adhesion molecules [17–19]. Thus, heparin may be useful as a therapeutic agent in various 

pathological conditions that involve functional proteins, however, high-dose heparin cannot be  

used because of the excessive risk of bleeding [20]. In contrast, LMWH (approximately 5000 Da) has 

pharmacological and practical advantages compared with heparin. The lower protein binding activity 

of LMWH produces a low, stable and predictable anticoagulant response, thereby bypassing the need 

for laboratory monitoring of drug levels to adjust the dosage [20]. In addition, one or two subcutaneous 

injections per day are sufficient to maintain therapeutic concentrations because of its longer plasma  

half-life [20]. On the other hand, P (protamine), a purified mixture of proteins obtained from fish sperm, 

neutralizes heparin and LMWH by forming a stable complex that lacks anticoagulant activity [21]. 

Protamine is also employed in clinical use to reverse the anticoagulant activity of heparin following 

cardiopulmonary bypass as well as in cases of heparin-induced bleeding [22]. 

We previously prepared water-insoluble N/MPs (100 nm–3 μm in diameter) by mixing LMWH  

(6.4 mg/mL) with P (10 mg/mL) at a ratio of 7:3 (v:v) (Figure 1). It was reported that LMWH/P N/MPs 

(100 nm–3 μm in diameter) have the ability to protect and to stimulate FGF-2 [3,4] and HGF activity [5]. 

GFs and LMWH/P N/MPs show a substantial effect to induce vascularization and fibrous tissue 

formation because of the gradual controlled release, protection and activation of GFs from GFs and 

LMWH/P N/MPs [3–5]. In another study, we used diluted LMWH (≤0.32 mg/mL) as an anion 

molecule and the diluted protamine (≤0.5 mg/mL) as a cation molecule to synthesize LMWH/P N/MPs 

(approximately 100 nm in diameter) (Figure 2A) [4]. LMWH/P N/MPs are unstable, and the particles 

irreversibly fuse and become larger (≥10 μm in diameter) during long-term storage (1 week or longer). 

Furthermore, after LMWH/P N/MPs are freeze-dried, cotton-like materials are produced, and these do 

not dissolve in water. The generated NPs could then be stabilized by adding dextran (Mw: 178–217 kDa) 

and remained soluble after lyophilization of dialyzed LMWH/P N/MP solution or their concentrations 

by centrifugation [4]. The 20-fold diluted LMWH/P N/MPs (≈0.3 mg/mL) were stable for at least  

30 days at room temperature, based on the changes of diameter of particles and their zeta-electric 

charges (Figure 2B) (data not published). In addition, FGF-2 and LMWH/P N/MPs [3,4] and HGF and 

LMWH/P N/MPs [5] were more mitogenic than each GF alone, because bound GF is more resistant to 

biodegradation and inactivation under physiological conditions. 
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Figure 1. (A) Preparation and appearance of low molecular weight heparin/protamine 

nano/micro particles (LMWH/P N/MPs); (B) Electron microscopic appearance of generated 

LMWH/P N/MPs. 

 

Figure 2. (A) Distribution of diameter of LMWH/P N/MPs; (B) Characterization of LMWH/P 

N/MPs and their stabilities. Stabilities of fibroblast growth factor (FGF)-2 and LMWH/P 

N/MPs were examined by measuring diameters of N/MPs and their zeta-electric charges. 
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2.2. Preparation of GFs in Platelet-Rich-Plasma (PRP) and LMWH/P N/MPs and Their Application 

PRP contains a high concentration of platelets. Various GFs and other bioactive proteins secreted 

from the α-granules of platelets stimulate tissue repair and regeneration processes [6,23,24]. Platelets 

contain and secrete more than 20 GFs, including platelet-derived growth factors (PDGFs), FGFs, HGF, 

transforming growth factors (TGFs) and vascular endothelial growth factors (VEGFs), almost all of 

which are known to bind to heparin and heparin-like molecules (heparinoids) with high affinity 

(Figure 3A). Recent studies suggested that GFs from PRP not only influence the viability of transferred 

cells but may also play bioactive roles in the regulation of proliferation and differentiation in adipocyte 

precursor cells [25]. Clinical studies also suggested the efficacy and safety of PRP in the stimulation of 

repair and regeneration processes during hard- and soft-tissue formation [23,24]. 

The GFs from PRP are stably bound to LMWH/P N/MPs in vivo. The GFs from PRP adsorbed onto 

LMWH/P N/MPs may gradually be diffused and released upon biodegradation of LMWH/P N/MPs. 

Bound GFs to LMWH/P N/MPs are more resistant to biodegradation and inactivation under physiological 

conditions. Indeed, LMWH/P N/MPs could effectively protect each GF against heat inactivation and 

trypsin degradation [3–5]. The in vivo effects of GFs from PRP and LMWH/P N/MPs have also been 

demonstrated in neovascularization and formation of granulation tissue using enhanced filtration of 

inflammatory cells in nude mice [6]. When GFs from PRP and LMWH/P N/MPs were subcutaneously 

injected into the backs of mice, significantly higher neovascularization and granulation tissue 

formations with enhanced filtration of inflammatory cells were observed compared to the mouse group 

injected with GFs from PRP alone [6] (Figure 3B). Compared to either GFs in PRP alone or LMWH/P 

N/MPs alone, locally administered GFs from PRP and LMWH/P N/MPs augmented the wound bed 

and substantially increased viability of rat dorsal paired pedicle skin flaps [26]. The improved flap 

survival was noted if GFs from PRP and LMWH/P N/MPs was administered two days before the flap 

elevation [26]. GFs from PRP and LMWH/P N/MPs may thus represent a promising new biomaterial 

for improving skin flaps, particularly in the field of reconstructive surgery. 
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Figure 3. (A) Growth factors (GFs) from platelet-rich plasma (PRP) and LMWH/P N/MPs 

significantly induce neovascularization and granulation tissue formations. (B) Histological 

examinations of the base of wounds treated with saline (control), GFs from PRP and 

LMWH/P N/MPs-treated skin. Each photograph for wounds on day 7 was representative of 

eight rats. The vertical arrows show the length of formed granulation tissue, and black 

triangles show generated small blood vassels. 

Clinical research (five injections, every two weeks) was performed using autologous GFs from  

PRP and LMWH/P N/MPs and GFs from PRP alone in 26 patients with ordinary baldness (including 

10 women) (Figure 4A,B) [27]. Participants received a single subcutaneous injection of 3 mL of PRP 

and D/P MPs (67% PRP with 2 mg/mL of LMWH/P N/MPs in saline) or PRP (67% with saline) into 

the skin of the scalp using a 25-G needle. When 0.33 mL of LMWH/P N/MPs in saline (6 mg/mL)  

was added to 0.67 mL of activated PRP, incubated at room temperature for two hours, and centrifuged 

to separate the GFs from PRP and LMWH/P N/MPs, there were significantly fewer GFs in the 

supernatants, indicating that significant parts of those GFs were absorbed onto LMWH/P N/MPs 

(Figure 4C). 

Hair regrowth and thickening following administration of GFs from PRP and LMWH/P N/MPs  

was observed in all patients compared with GFs from PRP alone and the control. GFs from PRP and 

LMWH/P N/MPs appeared to provide the most substantial change (Figure 4A,B) [27]. Because of the 

use of autologous materials, this method using GFs from PRP and LMWH/P N/MPs is simpler and 

cheaper, and has no side effects compared to conventional methods. 
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Figure 4. GFs from PRP and LMWH/P N/MPs treatment for ordinary baldness. (A) An 

appearances of hair before and after GFs from PRP and LMWH/P N/MPs-treatment  

(five injections for 12 weeks); (B) Hair cross-sections after administration of GFs from 

PRP and LMWH/P N/MPs (■), GFs from PRP alone (□), and saline alone (control: ○);  

(C) Binding of GFs onto LMWH/P N/MPs. 

2.3. LMWH/P N/MPs as ADSCs- and BMSCs-Carriers 

Tissue engineering or stem cell-based therapies require autologous multipotent stem cells such as 

ADSCs and BMSCs. Both cell types possess multipotentiality [28–30], as they differentiate in culture or 

after implantation in vivo into osteoblasts [31,32], chondrocytes [33,34], adipocytes [35], myotubes [36,37], 

and neuronal cells [38,39]. Several reports indicate that the transplantation of ADSC-cultured 

constructs into athymic mice stimulates angiogenesis, wound repair, and re-epithelialization significantly 

better, when compared with fibroblast-cultured constructs [9,40,41]. Thus, the use of ADSCs and 

BMSCs is a promising tissue engineering strategy. 

However, the therapeutic efficacy of stem cell therapy is often limited by poor performance in 

engraftment—probably because of the rapid disappearance of grafted cells from the injection site [42,43]. 

Therefore, for applications of ADSCs and BMSCs, adequate cell-carriers seem to be necessary. Low 

molecular weight heparin (LMWH) and protamine (P) have been repurposed as a cell-carrier in tissue 

engineering, cell-based therapy and regenerative medicine [7,9]. 
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It was reported that LMWH/P N/MPs bind to cell surfaces of ADSCs and BMSCs through specific 

interactions between LMWH/P N/MPs and cell surface heparin-binding proteins such as some integrins. 

The interaction of the cells with LMWH/P N/MPs resulted in cells and LMWH/P N/MPs-aggregate 

formation. Those aggregates substantially promoted cellular viability in vitro. Injection of the aggregates 

induced vascularization and fibrous tissue formation in vivo [9]. 

LMWH/P N/MPs as cell-carriers can substantially enhance cell viability, including human 

microvascular endothelial cells (hMVECs), human dermal fibroblasts (hDFCs) and ADSCs [10].  

In particular, ADSCs have the potential to differentiate into skin, bone, cartilage, fat, myocardium, 

skeletal muscle and neurons [30,32]. ADSCs can easily be harvested with lower donor site morbidity 

compared with other pluripotent stem cell sources. Furthermore, ADSCs can easily attach and proliferate 

in culture, and therefore, are available on a large scale even for autologous grafting in small animals 

such as rodents [7,10,11]. However, using ADSCs for therapeutic angiogenesis and vasculogenesis 

requires cell-carriers to act as injectable vehicles necessary for transplantation of ADSCs. It was 

observed that LMWH/P N/MPs could bind to the surface of the cells as mentioned above. The 

interaction of these cells with LMWH/P N/MPs induced ADSCs and LMWH/P N/MPs-aggregate 

formation, and substantially maintained cell viability during at least three days in cell suspensions 

compared to that of control (Figure 5A). The ADSCs and LMWH/P N/MPs-aggregates adhered and 

grew on suspension culture plates, and the aggregates similarly grew on type I collagen-coated plates. 

Furthermore, cultured ADSCs secreted a significant amounts of angiogenic GFs such as FGF-2, HGF, 

PDGF and VEGF. These secreted GFs could have been retained within the ADSCs and LMWH/P 

N/MPs-aggregates. When the ADSC and LMWH/P N/MPs-aggregates were subcutaneously injected 

into the backs of nude mice, a significant increase in neovascularization and fibrous tissue formation 

was observed near the injected site from three days to two weeks [6,9]. By using fluorescent (DiI) 

labeling of ADSCs from db/db mice and autologous transplantation, we investigated the fates of 

autologous ADSCs seeded into healing-impaired wounds, the differentiation of autologous ADSCs, 

and the interactions between seeded autologous ADSCs and their environment. The results suggested 

that the majority of seeded autologous ADSCs were incorporated into the regenerated granulation and 

epithelial tissues [44]. In addition, some of the seeded ADSCs may incorporate into blood vessels as 

indicated by CD31-immunostaining (Figure 5B). Taken together, these data indicate that ADSCs and 

LMWH/P N/MPs-aggregates are useful biomaterials for angiogenesis and wound repair cellular 

therapy. Thus, interaction of adhesive cells with LMWH/P N/MPs induced ADSCs and LMWH/P 

N/MPs-aggregate formation, and substantially promoted cell viability in cell suspensions in vitro,  

and injections of the aggregates significantly enhanced vascularization and fibrous tissue formations  

in vivo [6,9]. However, ADSCs and LMWH/P N/MPs-aggregates could not be injected intravenously 

because of serious risk of thrombosis. 
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Figure 5. Mechanism of formation of cells and LMWH/P N/MPs-aggregates and  

in vivo activities. (A) Formation of ADSCs&LMWH/P N/MPs; (B) Immunostained and 

Dil-labeled tissue. 

The LMWH/P N/MPs also bind to the surface of tumor cells (e.g., 3LL, B16 and Huh7), promote 

cell-to-cell interaction, and increase the aggregation of the tumor cells with the LMWH/P N/MPs. 

Those tumor cells and LMWH/P N/MPs-aggregates substantially promote cell survival and proliferation 

of the tumor cells in vitro as well as reliably induce tumor formation and rapid tumor growth  

in vivo [44]. Those results indicated that LMWH/P N/MPs constitute an effective biomaterial that 

functions as a tumor cell carrier in vivo. The application of LMWH/P N/MPs as a tumor cell carrier 

offers a more reliable model in both allograft and xenograft transplantation for cancer research [45,46]. 

2.4. Cell Cultures with Low Serum Using LMWH/P N/MPs-Coated Plates 

Heparinoids bind various heparin-binding growth factors (GFs) and cytokines including FGFs, 

HGF, VEGF, heparin-binding epidermal growth factor (HBEGF), PDGF, TGF-β, granulocyte/ 

macrophage-colony stimulating factor (GM-CSF), interleukins (i.e., IL-1, IL-2, IL-3, IL-4, IL-6, IL-7 

and IL-8), interferon γ and macrophage inflammatory protein-1 [17–19]. We have already reported  

that FGF-1, HGF, HBEGF, TGF-β, human stem cell factor (SCF), recombinant human thrombopoietin 

(Tpo) and recombinant human Flt-3-ligand (Flt-3) could be efficiently immobilized on the LMWH/P 

N/MPs-coated plates [8,10]. Thus, LMWH/P N/MPs-coating matrix provides an excellent biomaterial 

to immobilize and retain GFs and cytokines for superior growth of various types of cells with low 
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(1%–2%) serum (either fetal bovine serum (FBS) or human serum (HS)) medium. The LMWH/P N/MPs 

generate a stable paste-like coating through complete drying. It is probable that polypeptides, such as 

FGF-2, IL-3 and GM-CSF, once bound to the LMWH/P N/MPs-coated plates, are gradually released 

from the coated surface in vitro with a half-life of four to six days [8,10]. Furthermore, LMWH/P 

N/MPs-coating could optimally stimulate growth of hMVECs and hDFCs in low HS (1%–2%)-DMEM 

with FGF-2 and growth of hematopoietic cell line (TF-1) with IL-3 and GM-CSF [10,11]. Furthermore, 

ADSCs and BMSCs proliferated in DMEM using low-concentration serum (2% HS or FBS) on FGF-2 

immobilized LMWH/P N/MPs-coated plates (Figure 6) [7]. 

 

Figure 6. Expansion of adipose-derived stromal cells (ADSCs) with LMWH/P NPs-coated 

plates and human serum (HS). ADSCs effectively expanded with low HS (2%) and FGF-2 

(5 ng/mL) instead of high FBS (10%) on LMWH/P N/MP-coated plates. 

Cell-based therapies such as tissue engineering will benefit from a source of autologous multipotent 

stem cells including BMSCs and ADSCs. There are two stem cell lineages in bone marrow cell 

populations, i.e., hematopoietic cells (HCs) and BMSCs. The BMSCs and ADSCs are multipotential, 

indicating that in culture [1–3] or after in vivo implantation these cells can differentiate into a variety 

of cell types including osteoblasts, chondrocytes and adipocytes etc. 

Most protocols for the in vitro expansion of BMSCs or ADSCs include high concentrations  

(10%–20%) of animal serum such as fetal bovine serum (FBS) as a nutritional supplement. Some 
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methods for cell cultures involve multiple doses of FBS, which raises concerns over possible 

contamination as well as immunological reactions caused by medium-derived FBS proteins or sialic 

acid derivatives [47,48]. Patients may experience problems when undergoing autologous cell-based 

therapies if a serum other than an autologous serum is used during the culturing of the cells. On the 

other hand, it would be difficult to obtain large amounts of autologous serum from the patient for 

large-scale autologous cell culture [7,49]. It should be noted that the cell growth of cultured BMSCs 

and ADSCs on LMWH/P N/MPs-coated plates in low FBS (1%–2%) medium with FGF-2 was 

significantly stimulated, and similar stimulation was observed in those cultured cells on LMWH/P 

N/MPs-coated plates with FGF-2 and 1%–2% human serum (HS) prepared from adult bloods instead 

of FBS. Thus, LMWH/P N/MPs may serve as a functional matrix for cultures of BMSCs and ADSCs. 

The safe and effective expansions of BMSCs and ADSCs represent a promising option for tissue 

engineering- and cell therapy-strategies. 

2.5. Proliferation of CD34+ Hematopoietic Progenitor Cells (CD34+ HCs) on  

LMWH/P N/MPs-Coated Plates 

Hematopoietic progenitor cells from bone marrow (HCs) proliferate and mature in semi-solid media 

when stimulated by exogenous hematopoietic cell growth factors (HCGFs) such as SCF, Tpo, Flt-3, 

IL-3 and GM-CSF [50–52]. HCs also expanded in association with bone marrow-derived stromal  

cells [7,48,53,54], although biologically active amounts of HCGFs cannot be detected in stromal 

culture supernatants [54]. It is possible that HCGFs are synthesized by the stromal cells but remain 

bound to the stromal cells and their extracellular matrix. In fact, it was demonstrated that both natural 

and recombinant HCGFs could be adsorbed by heparan sulfate, which is the major sulfated 

glycosaminoglycan of bone marrow stroma [51–54]. However, it was reported that serum-free media 

require large amounts of SCF, Tpo and Flt-3 to proliferate CD34+ HCs [8,49,54–56]. Although such 

media are commercially available (HPGM, Lonza Japan Corp. Tokyo, Japan), they are prohibitively 

expensive. In our previous study, we demonstrated that recombinant HCGFs were immobilized onto 

LMWH/P N/MPs-coated plates, and the immobilized cytokines were gradually released into the 

medium. Furthermore, these cytokines, once bound, can be presented in the biologically active form to 

HCs [8,50]. Furthermore, the much lower concentrations of the cytokines than those recommended by 

the manufacturer (Lonza Japan Corp.) were required for maximal expansion of CD34+ HCs on the 

LMWH/P N/MPs-coated plates [8,50]. Those findings may have important implications for the use of 

heparinoid as an artificial matrix for ex vivo expansion of CD34+ HCs with adequate cytokines. The 

LMWH/P N/MPs-coating matrix in the presence of much lower concentrations of SCF, Tpo and Flt-3 

is a convenient and safe material for superior expansion of CD34+ HCs using HPGM without any 

animal serum [8,50]. 

2.6. Three-Dimensional Expansion of ADSCs and BMSCs Using Plasma-Medium Gel with  

LMWH/P N/MPs 

Plasma-medium gel provides an extracellular matrix for the culture of different cell types by 

forming a massive capsule with semi-permeable properties that allows the diffusion of medium 

components into cells and elimination of waste. Both exogenous and endogenous GFs efficiently bind 
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to LMWH/P N/MPs, with their activities remaining stable. Human ADSCs and BMSCs can be grown 

in two-dimensional (2D) culture using low human serum (HS) (1%–2%) and Dulbecco’s modified 

Eagle’s medium (DMEM) with sufficient cytokines on LMWH/P N/MPs-coated tissue culture plates [7]. 

Furthermore, ADSCs and BMSCs can also be grown efficiently in three-dimensional (3D) culture 

using low human plasma (HP) (2%)-DMEM gel containing 0.1 mg/mL LMWH/P N/MPs without 

animal serum [11,12]. Furthermore, the phenotypes of both cell types were positive for CD44, CD90 

and CD105 (>80%) and negative for CD34 and CD45 (<1%) [12]. Thus, those cells were well 

maintained in 2D and 3D cultures after seven days. The 3D-proliferated ADSCs and BMSCs 

maintained their multipotent differentiation capacity, that is, they were able to differentiate into 

adipocytes and osteoblasts [12]. Those results demonstrated the superior proliferation of both cell 

types using the 3D culture system in low-concentration HP-DMEM gel with LMWH/P N/MPs and 

FGF-2. The 3D culture system for cultures of ADSCs or BMSCs is composed of low-concentration 

HP-medium gel with LMWH/P N/MPs and FGF-2. ADSCs grew better in 3D culture (Figure 7A) than 

in 2D culture (Figure 7B). Furthermore, the presented 3D culture methods required no animal serum, 

because the low concentration (2%) of autologous plasma was sufficient [12]. 

 

Figure 7. Three dimensional culture of ADSCs with HP-DMEM gel and LMWH/P NPs. 

(A) Three dimensional culture of ADSCs; (B) Two dimensional culture of ADSCs. 

2.7. Transplantation of Inbred Rat Adipose-Derived Stromal Cells (IR-ADSCs) Using Plasma Gel with 

LMWH/P N/MPs/FGF-2 

Various biomaterials have been used as cell carriers during cell implantations [57,58]. Those materials 

should fulfill several preconditions such as biocompatibility, biodegradability, low cytotoxicity and 
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high affinity for the biological surface [57,58]. The biomaterial tested in this study, inbred rat plasma 

(IRP)-DMEM gel with LMWH/P N/MPs, can carry many IR-ADSCs and also act as a cell carrier in 

which the cells can grow. It has been reported that many LMWH/P N/MPs can bind to surfaces of ADSCs, 

and the interaction of ADSCs with LMWH/P N/MPs induces ADSCs and LMWH/P N/MP-aggregate 

formation, and substantially maintains cell viability for at least three days in suspension-culture 

conditions [9]. In contrast, it appears that the interaction of IR-ADSCs in IRP-DMEM gel as a 3D 

matrix stimulates the growth of IR-ADSCs and generates a 3D network [11,12]. Furthermore, the 

growth factors secreted from IR-ADSCs as well as the growth factors derived from the IRP may be 

retained within the IRP-DMEM gel with LMWH/P N/MPs [58]. 

We have previously applied 3D-cultured IR-ADSCs derived from inbred male Fisher 344 rats using 

injectable low IRP (3%)-DMEM gel with LMWH/P N/MPs for cell transplantation (Figure 8A) [58]. 

Figure 8B showed the application of IR-ADSCs using IRP (6%)-DMEM gel with LMWH/P 

N/MPs/FGF-2 to full thickness skin excisions as healing-impaired wounds on the backs of STZ-induced 

diabetic rats [59]. The wound closures treated with IR-ADSCs using IRP-DMEM gel with LMWH/P 

N/MPs/FGF-2 were significantly enhanced on post-wounding [59]. The histological examination of 

wounds treated with IR-ADSCs using IRP-DMEM gel with LMWH/P N/MPs/FGF-2 demonstrated 

significantly advanced epithelialization, capillary formation and granulation tissue formation. Those 

results indicate that a portion of the transplanted IR-ADSCs using IRP-DMEM gel with LMWH/P 

N/MPs/FGF-2 had been taken up by the granulation tissues to promote wound healing [59]. Thus, 

those studies suggest that IR-ADSCs using IRP-DMEM gel with LMWH/P N/MPs is effective for 

repairing healing-impaired wounds such as those occurring in diabetes. 

 

Figure 8. Two methods (A,B) for ADSCs transplantations using IRP-DMEM gel with 

LMWH/P N/MPs/GF. 
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3. Conclusions 

Low molecular heparin (LMWH) and protamine (P) have been clinically utilized to control 

circulating heparin. LMWH and P have been recently repurposed in tissue engineering, cell-based 

therapy and regenerative medicine as LMWH/P N/MPs [1]. Firstly, LMWH/P N/MPs can function as 

carrier for GFs including FGF-2, HGF and GFs from PRP, which are retained locally, and control the 

release and protect them. GFs and LMWH/P N/MPs could induce vascularization and fibrous tissue 

formation in vivo. Secondly, cells and LMWH/P N/MPs-aggregates formation substantially promoted 

cell viability in vitro, and the cells and LMWH/P N/MPs-aggregates induced vascularization and 

fibrous tissue formation in vivo [9]. The LMWH/P N/MPs may be a promising new drug for cell-based 

therapy as superior cell-carriers. 

The methods presented allowed superior proliferation and differentiation of ADSCs and BMSCs by 

utilizing FGF-2 on LMWH/P N/MPs-coated plates in low concentration human serum (1%–2%) 

medium. The proliferated cells maintained their potential to differentiate into adipocytes and 

osteoblasts [7]. Furthermore, the LMWH/P N/MPs-coating matrix in the presence of lower 

concentrations of SCF, Tpo and Flt-3 were effective materials for the stable expansion of CD34+ HCs 

using HPGM without any animal serum [8]. Those results suggest a sufficient cell source, particularly 

for the preparation of large amounts of ADSCs, BMSCs or CD34+ HCs required for cell-based therapies 

in several clinical fields, including angiogenesis, dermatological and regenerative medicines. 

LMWH, P, GFs from autologous PRP and several recombinant GFs and cytokines are already in 

clinical use. Since autologous ADSCs, BMSCs or CD34+ HCs are available, the clinical safety of 

LMWH/P N/MPs as cell-carriers is promising. Furthermore, ADSCs, BMSCs or CD34+ HCs can be 

efficiently expanded as cell sources for regenerative medicines with the use of LMWH/P N/MPs-coated 

plates as a functional matrix without the need for feeder cells or animal serum. 

The superior proliferation of both ADSCs and BMSCs using the 3D culture system in  

low-concentration HP-DMEM gel with LMWH/P N/MPs and FGF-2 was also demonstrated. The 3D 

culture system for cultures of ADSCs or BMSCs is composed of low-concentration HP-medium gel 

with LMWH/P N/MPs and FGF-2. Those cells grew better in 3D culture than in 2D culture. The 3D 

culture methods presented required no animal serum, because the low concentration (3%) of 

autologous plasma was sufficient. Furthermore, we have successfully applied 3D-cultured IR-ADSCs 

using injectable low IRP (3%)-DMEM gel with LMWH/P N/MPs to in vivo cell transplantation 

treatment for repairing healing-impaired wounds such as those occurring in diabetes [58,59]. 
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