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Abstract: Despite the agronomical and environmental advantages of the cultivation of 

legumes, their production is limited by various environmental constraints such as water or 

nutrient limitation, frost or heat stress and soil salinity, which may be the result of 

pedoclimatic conditions, intensive use of agricultural lands, decline in soil fertility and 

environmental degradation. The development of more sustainable agroecosystems that  

are resilient to environmental constraints will therefore require better understanding of the 

key mechanisms underlying plant tolerance to abiotic constraints. This review provides 
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highlights of legume tolerance to abiotic constraints with a focus on soil nutrient 

deficiencies, drought, and salinity. More specifically, recent advances in the physiological 

and molecular levels of the adaptation of grain and forage legumes to abiotic constraints 

are discussed. Such adaptation involves complex multigene controlled-traits which also 

involve multiple sub-traits that are likely regulated under the control of a number of 

candidate genes. This multi-genetic control of tolerance traits might also be multifunctional, 

with extended action in response to a number of abiotic constraints. Thus, concrete efforts 

are required to breed for multifunctional candidate genes in order to boost plant stability 

under various abiotic constraints. 
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1. Introduction 

The many ecosystem services (biologically fixed nitrogen, soil fertility improvement, health-promoting 

sources of protein, N-rich green-manure; diversified agriculture etc.) that grain and forage legumes 

provide are often compromised by their sensitivity to stressful conditions causing low yield stability. 

Moreover, at least 50% of the production of major crops, including legume, is estimated to be lost  

due to increased frequency of abiotic constraints such as heat, cold, drought, salinity, and low soil  

fertility [1]. In addition to increased soil salinity, low nutrient (notably phosphorus, P) and water 

availability are among the most important abiotic constraints affecting legume productivity, especially 

in arid and semi-arid regions [2–6]. 

Under these stressful conditions, the occurrence and interactions of molecular and physiological 

changes at different levels (transcriptomic, metabolomic, cellular, and biochemical) make plant responses 

highly complex, and even more so as when plants experience both abiotic and biotic constraints. 

Consequently, plant responses to constraints often involve intricate networks of adaptive, defensive or 

protective responses. To shed light on legumes’ adaptive responses to abiotic constraints, this review 

covers biochemical and molecular processes involved in legumes tolerance associated to P limitation, 

drought and salinity. A better understanding of these processes will be valuable input for strategies to 

improve the symbiotic nitrogen fixation (SNF) and enhance sustainable cropping systems. 

Given their importance for promoting sustainable agriculture, legumes’ sensitivity and adaptive 

responses to environmental constraints need to be more deeply explored. This will help in developing 

more effective strategies to improve stress tolerance and subsequently sustainable crop production in 

increasingly degraded ecosystems. This review aims to highlight the biochemical and molecular 

mechanisms involved in legumes tolerance to abiotic constraints. Recent knowledge on grain and 

forage legumes will be explored focusing on the below-ground (roots, nodules, rhizosphere) soil–root 

interface in order to understand the mechanisms involved in mitigating factors such as drought, salinity 

and nutrient deficiency (with emphasis on P deficiency). 



Int. J. Mol. Sci. 2015, 16 18978 

 

 

2. Legumes with Nutrient Deficiencies: Case of P-Deficiency and Examples of Adaptive Strategies 

Legumes have higher P requirements than non-legumes, especially in situ ations where legume 

nitrogen nutrition depends on the symbiosis with N2-fixing rhizobia [7–9]. This high P requirement 

increases the sensitivity of legumes to P-deficiency, a major limiting factor for legume production 

particularly in acidic and calcareous soils. Under P-deficiency, numerous transcriptional, biochemical, 

physiological, and morphological responses are triggered to stimulate either the root’s extracellular 

abilities to acquire rhizosphere soil P or to optimize its intracellular use efficiency and allocation 

through all plant organs [10–12]. Enhanced activity of acid phosphatases (APase) to acquire and 

remobilize inorganic P (Pi) from organic compounds is one of the most important strategies for 

improving overall crop P nutrition. The release of APase to the rhizosphere is a typical P-starvation 

response in higher plants, including N2-fixing legumes such as Glycine max (soybean) and Lupinus albus 

(white lupin) [13–15]. In these legumes, APase activity increased steadily during both root and nodule 

development and reached a peak in the mature stage, suggesting that this enzyme is a key component 

for functional nodules [16,17]. The solubility of P has also been reported to be enhanced in both 

alkaline and acid soils due to the release of protons associated with the exudation of organic acids such 

as citrate, malate, and oxalate [18–20]. 

2.1. Acid Phosphatases: Expression and Activity 

In many legumes, the root hairs are not only supplying water, nutrients and exudates, but also  

play an important role as the primary site for rhizobial infection, leading to the formation of N2  

fixing nodules. Studies on G. max, Medicago truncatula (medic) and Lotus japonicus (trefoil) reported 

that nodules, much like flowers, pods and seeds, contain high levels of tissue-specific genes [21–23]. 

In G. max, a large number of tissue-specific purple acid phosphatase (GmPAP) genes have been found 

in both nodule and flower tissues, and these genes were highly inducible under P deficiency [24].  

Li et al. [24] provided the first evidence that, in addition to their role in P acquisition/recycling in  

plant tissues, members of the GmPAP gene family are involved in symbiotic interactions with rhizobia 

or arbuscular mycorrhizal fungi under low P availability. For instance, the PAPs “GmPAP16” and 

“GmPAP30” had the highest tissue-specific expression in nodules in comparison with other plant 

tissues [22,23]. Moreover, a putative APase (NodulinPvNOD33) in mature nodules of Phaseolus 

vulgaris (common bean) was induced during nodule development and is possibly involved in carbon 

metabolism [25]. Also, it has been found that increased acid phosphatase activities in nodules, roots, 

and rhizosphere soil of P. vulgaris was positively correlated with enhancement of P utilization and 

homeostasis as a strategy to tolerate P-deficiency [26–29]. 

Among the diversity of phosphatases, phytase is the only enzyme that has the specific capacity to 

degrade phytate (C6H18O24P6), yielding a series of lower phosphate esters of myo-inositol and Pi [30,31]. 

Phytate, or phytic acid, is a major constituent and stable form of soil organic P (comprises up to  

60%–80% of the soil total P) and seeds (major storage form of P that may account up to 65%–85% of 

seed total P) [30,32,33]. Seed P remobilization by phytase has been shown to positively influence  

the establishment and development of the rhizobial symbiosis [34,35]. Utilizing reverse transcription 

polymerase chain reaction (RT-PCR), Lazali et al. [29] characterized the in situ localization of phytase 
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transcript, which showed high expression in P. vulgaris seeds (Figure 1D). This study demonstrated 

that the most intensive phytase gene expression was located in the embryo and cotyledons, while lower 

expression was found in radicles. This seedling phytase gene has also been reported to exhibit  

high homology (90%) with GmPAP02 while nodule phytase cDNA displayed 94% homology with 

GmPhy07 [29]. However, phytase enzyme activity seemed to be tissue-specific and likely to vary from 

seeds to nodules as seed phytase activity was almost 10 times higher than in nodules [29]. Similarly,  

Li et al. [24] found the phosphatase genes, “GmPAP14”, to be specifically expressed in the seeds while 

Libault et al. [22] and Severin et al. [23] have found them to be highly expressed in roots. The sub-cellular 

localization of APase transcripts, especially phytase, has led to co-localization with mineral nutrients 

(Mg, Ca, K, Fe, Zn and Co) in both P. vulgaris seeds [36–38] and nodules (for Pi, Fe and K) of the  

N2 fixing legume Virgilia divaricate [39]. Based on these findings, it is likely that the low 

concentration of Pi (co-localized with Fe) in the infected zone of V. divaricate nodules [39] under  

P limitation would be linked to the higher nodule APase activity. 

The clustered-root (or proteoid roots) legumes L. albus and L. angustifolius were also described to 

efficiently use soil phytate by promoting the rhizosphere microorganisms such as Burkholderia species 

that express high phytate utilization ability [20,40]. In rhizosphere soil, bacteria (except rhizobia) 

belonging to Pseudomonas sp. [41], Enterobacter sp. [42], and Bacillus sp. [43] have all been reported 

to exhibit phytase activities with high potential to catabolize phytate as a P source. Localization of 

APase candidate genes using the in situ RT-PCR technique has allowed visualization of the expression 

of β propeller phytase gene (BPP; bacterial phytase from the genus Bacillus) on the mucilage of  

P. vulagris root tips (Figure 1E) inoculated with B. subtilis and supplied with phytate [44]. A BPP 

transcript was also detected in cells inside the roots (Figure 1F), which suggests that B. subtilis  

may either exude its phytase enzyme in the P. vulgaris endo-rhizosphere or act as an endophytic  

BPP-harboring bacterium [44]. 

Furthermore, recent analyses of several APases have shown that the localization of tissue-specific 

cDNA of phosphoenolpyruvate phosphatase (Figure 1A) and trehalose 6-P phosphatase (Figure 1B) 

were mainly expressed in infected cells and nodule cortex of P. vulgaris [27,28]. These studies 

provided the first evidence that phosphoenolpyruvate phosphatase and trehalose 6-P phosphatase were 

differentially expressed among nodule tissues of two recombinant inbred lines of P. vulgaris (RIL 115 

and RIL147), and suggested the abundance of their transcripts in infected cells at the vicinity of  

inner- and in outer-cortex cells to be involved in the adaptation to P-deficiency. This overexpression 

under P-deficiency was coupled with increased enzyme activity, improved symbiotic efficiency and 

increased N2 fixation and seems to play an important role in tolerance to low P availability [26,27]. 

Coincident with these findings, abundance of phytase cDNA was significantly overexpressed in  

P. vulgaris nodules (Figure 1C) of the P-efficient RIL115 compared to the P-inefficient RIL147 [45]. 

In nodules of both RILs, the abundance of phytase transcripts was higher in the outer cortex than in 

infected cells [45]. This result highlights an important intra-nodular phytase distribution and suggests  

a functional role in supplying adequate amount of Pi for nodule functioning [45]. These results are in 

agreement with Li et al. [24] on the overexpression of a large number of GmPAP genes in P-deficient 

nodules of G. max. These GmPAP genes were markedly increased (66%) under P-deficiency as 

compared to the Oryza sativa (rice) OsPAP (48%) and Arabidopsis thaliana AtPAP (14%) genes [46–48]. 
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Moreover, several studies have revealed that APases existed in the symbiosome membrane of G. max 

and were possibly involved in P homeostasis within the nodules [16,49]. 

 

Figure 1. In situ RT-PCR of acid phosphatases transcripts (localization and distribution) in 

cross sections of nodules and roots of P. vulgaris grown under P-deficiency (low P,  

75 µM·P·plant−1). (A) Phosphoenolpyruvate phosphatase (500 μm); (B) trehalose 6-P 

phosphatase (500 μm); (C) phytase transcript (100 μm); (D) phytase transcript in radicle 

(500 μm) of germinated seeds (A–D under P-deficiency); (E) beta propeller phytase (BPP) 

transcripts in root tip mucilage (500 μm); and (F) cross section of root tips (200 μm) of  

P. vulgaris inoculated with Bacillus subtilis under phytate supply. Controls under  

P-sufficiency (high P, 250 µM·P·plant−1) correspond to (A’) (500 μm) and (B’) (10 μm) 

for phosphoenolpyruvate phosphatase and (C’) 200 μm for nodule phytase. Abbreviations:  

In nodules: E, Endedormis; IC, inner cortex; InC, infected cells; OC, outer cortex;  

IZ, infected zone; VT, vascular trace parenchyma; In seeds: OL, outer layers; M, mucilage; 

P, parenchyma. Images (A’–C’,A,B); (C,D); and (E,F) provided by Bargaz A, Lazali M, 

and Maougal T.R, respectively. 
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2.2. Organic Acid Exudation 

With a high affinity for divalent and trivalent cations, negatively charged organic acids displace  

P from insoluble complexes and improve its availability for plant uptake in acid or alkaline soils [50]. 

Malate exudation is simultaneously coupled with proton release, and the stimulation or repression of 

the gene encoding an ATPase involved in proton release (plasma-membrane-bound ATPase) also 

regulates citrate release, indicating a link between citrate exudation and proton efflux [51]. Exudation 

of organic acids in the rhizosphere is likely to be accompanied by improved availability and uptake of 

P as well as di- and tri-valent cations [18,52]. This release of organic acids in the rhizosphere is known 

to be substantial in several lupine species. For example, the cumulative citrate exudation from the 

cluster roots of L. albus was equivalent to 23% of the total plant dry weight [18,53]. Besides the 

documented benefit of carboxylate exudation under P-deficiency, the magnitude of this exudation in 

white lupine has also been reported to be highly important with iron deficiency [54]. Likewise, it was 

postulated that the P-deficiency-induced carboxylates in white lupine might increase the availability of 

other micronutrients such as copper and zinc, although their deficiency (especially zinc) does not 

stimulate cluster-root formation or carboxylate release [55,56]. 

In legumes, specific forms of malate dehydrogenase (MDH) and phosphoenolpyruvate carboxylase 

(PEPC) genes have been reported to be highly expressed in root-nodules (5- to 15-fold as compared to 

other tissues), and have an important role in supporting bacteroid respiration and nodule N2 fixation 

activity [57,58]. A study by Tesfaye et al. [59] has shown that enhanced organic acid exudation 

resulted in an improved tolerance to Al toxicity and enhanced P uptake of transformed Medicago sativa 

(lucerne, alfalfa) plants with nodule-enhanced forms of malate dehydrogenase (neMDH) cDNA. This 

study has reported a 1.6-fold increase in root tip MDH enzyme activity along with a significant 

increase in root exudation of several organic acids (i.e., citrate, oxalate, malate, succinate, and acetate) 

as compared to non-transformed M. sativa [59]. Similarly, recent findings by Liang et al. [60] have 

suggested that G. max adaptation to both P-deficiency and Al toxicity is likely due to higher root 

malate exudation. The expression of GmALMT, a G. max malate transporter gene, in roots of the  

P-efficient G. max “HN89” has been found to be pH dependent, and mainly enhanced by P and  

Al availability. Several studies have also suggested that malate exudation could potentially be  

a response to acidic soil conditions, Al toxicity or P limitation [61–63]. In non-legumes, other ALMT 

genes have been characterized to play important roles in guard cell anion channels for organic anion 

transport and regulation of cytosolic malate homeostasis such as AtALMT9, AtALMT12 in the vacuole 

of A. thaliana [64] as well as the opening/closure of stomatal complexes in Hordeum vulgare (barley) 

leaves (HvALMT1) [65,66]. Exuded carboxylates can be catabolized by rhizosphere microorganisms, 

thereby limiting the benefit of carboxylate-mediated solubilization of P and some micronutrients [67,68]. 

It has been shown that beneficial rhizosphere microorganisms may stimulate the exudation of carboxylates, 

as in the case of sorghum root malate exudation that was induced by efficient colonization of N2 fixing 

free-living bacteria [67,69]. As a potential strategy to avoid microbial breakdown of released  

organic acids, L. albus can exude flavonoids, which have an antimicrobial activity against fungal  

pathogens [68,70]. For instance, isoflavone prenyltransferase activity resulting from expression of the 

isoflavonoid prenyltransferase gene “LaPT1” in L. albus roots has been shown to be antimicrobial [71] 

and play a key role in limiting the microbial breakdown of citrate [68,72]. Root-secreted malic acid 
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was also reported in non-legume plants such as A. thaliana and described to promote beneficial 

rhizosphere soil bacteria such as B. subtilis, which showed higher root colonization in response to 

shoot infection by pathogenic bacteria [73]. 

2.3. Phosphorus Use Efficiency Involves Complex Quantitative Traits 

Tolerance to P-deficiency, via enhanced P acquisition or internal use efficiency, is expressed as 

continuous (quantitative) phenotypes, i.e., under control of multiple genes. Adaptive phenotypes or 

responses such as stimulation of phosphatase activity and organic acid exudation or modified root 

architecture (root length, root hair density, branching and length) are thus expressed in numerous traits. 

Genetic control of the traits may be revealed through molecular markers approaches such as quantitative 

trait loci (QTLs) analysis [74,75]. Several studies have shown the importance of root architecture 

(basal and adventitious roots, length and root hair density), organic acids and H+ exudation for  

P acquisition using QTL analysis [74–77]. In this context, QTLs have been identified for P acquisition 

or P use efficiency in, e.g., G. max [78], O. sativa [79], P. vulgaris [76,80], Triticum aestivum (wheat) [81] 

and Zea mays (maize, corn) [82]. However, it seems difficult to identify the candidate genes that are 

implicated in P use efficiency in most identified QTLs, as P acquisition/ use efficiency is most likely 

under the control of multiple genes [83]. 

Searching and selection for root trait QTL markers associated with higher shallow rooting at  

the nutrient-rich topsoil layers might enhance P acquisition, given that P availability is greater in upper 

as compared to deeper soil layers. Shallow-rooted genotypes of P. vulgaris with more gravitropic 

plasticity were indeed associated with higher plant growth and P uptake under low P conditions in  

the field [77]. A study by Liao et al. [77] mapped 16 QTLs controlling numerous shallow-root traits 

that were associated with higher P acquisition efficiency under low P conditions. A further study 

indicated that basal root growth has a central role to improve P acquisition in P. vulgaris, based on the 

link found between more than 20 QTLs of basal root growth/development and the QTLs for P uptake 

efficiency in field-grown P. vulgaris [74]. In comparison to non-legume plants, Reymond et al. [84] 

found three QTLs that explained most of the variation associated with primary root length response to 

low P availability in a RIL population of A. thaliana. Advanced studies by Zhang et al. [85] have 

shown an acid phosphatase-encoding gene, “GmACP1”, to be located within the major QTL qPE8  

(a highly significant region on chromosome 8) which is involved in P use efficiency in G. max. 

Likewise, the expression quantitative trait loci (eQTL) mapping for Pi transporter GmPT1 (on the 

chromosome 10 “Gm10 (LG-O)) was associated with seed yield, PUE and photosynthetic rate in  

G. max [86]. This study also described that GmPT1 was markedly expressed under long-term  

P starvation in older leaves and highly induced in meristematic tissues of leaves and lateral roots.  

The specific expression of GmPT1 suggests a key role in the remobilization of Pi within G. max plants, 

and a similar role has previously been reported in H. vulgaris and A. thaliana whose low-affinity  

Pi transporters, HvPht1;6 and AtPht1;5, were overexpressed under P-deficiency [87,88]. Furthermore, 

a study by Yan et al. [76] identified QTLs associated with root hair and organic acid exudation in  

a RIL population derived from the cross of two contrasting P. vulgaris genotypes, DOR364  

and G19833. In this study, 19 QTLs associated with root hair, acid exudation and P-uptake traits  

were detected and at least three loci (Tae4.1, Hex4.1 and Hex10.1) were associated with P uptake.  
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The continued advancement of knowledge about QTLs associated with efficient P acquisition and/or 

use in N2-fixing legumes will improve our understanding of the genetic control of these traits, and opens 

up possibilities for P-efficient legume genotypes via e.g., marker-assisted breeding and selection. 

3. N2-Fixing Legume and Micronutrient Deficiencies 

In addition to the essential mineral nutrients required for normal growth and development of plants, 

mineral nutrition is critical in legumes for the successful establishment and functioning of symbiotic 

root nodules. Iron (Fe), Boron (B) and Molybdenum (Mo) seem to be the most important 

micronutrients in N2 fixing legumes. For instance, Fe is required for the synthesis of iron-containing 

proteins in the host plant and a key constituent of leghemoglobin and nitrogenase, therefore playing  

a vital role in the SNF [89–91]. The rate of N2 fixation in P. vulgaris nodules was reported to be 

positively correlated with increasing nodule Fe concentrations [92]. In addition, Fe is also required for 

the synthesis of cytochromes, ferredoxin, and hydrogenase [93–96]. Boron was also found to be crucial 

to several stages of legume root nodule development such as the establishment of the symbiosis in 

term of nodule structure and function [97,98], bacterial–plant molecular signaling, rhizobial infection, 

and maturation of the N2-fixing symbiosomes [98,99]. In legumes, Mo acts as a cofactor for the nitrogenase 

enzymes [100] and is crucial for the synthesis of proteins associated with N metabolism [101]. Several 

soil factors influence solubility and availability of micronutrients, notably pH, cation exchange 

capacity, organic matter, CaCO3 content, soil texture and moisture. Under adverse soil conditions, 

legume plants need to develop different strategies in order to withstand the stress and optimize their 

use of limited essential nutrients. 

3.1. Tolerance Mechanisms Associated with Fe Deficiency 

In soils, Fe exists mainly in chemical associations with hydrogen oxide, phosphate, and various 

deposited compounds [102]. Total Fe concentrations in soil might vary from 1%–20%, but soil Fe is 

often present in insoluble forms, and Fe availability often does not correspond to the optimal 

concentration for plants even though optimal plant intracellular Fe concentration is only around 

0.005% [103]. In nodulated legumes, Fe deficiency is very common in alkaline soils, and its negative 

effects have been reported in Cicer arietinum (chickpea) [104], P. vulgaris [105], Arachis hypogea 

(peanut) [94], and Lupinus spp. [106]. The legume–rhizobia symbiosis is particularly sensitive to Fe 

deficiency as it may not only limit host-plant growth but also root nodule bacterial survival and 

growth, nodule formation and function [107,108]. To cope with Fe-deficiency, two main strategies 

have been developed by plants to mobilize and acquire Fe from soil; (i) the “Strategy I” involving 

morphological and physiological responses by plant roots; and (ii) the “Strategy II” involving the 

exudation of phytosiderophores. 

“Strategy I” implies numerous morphological and physiological changes initiated under  

Fe-deficient conditions and include sub-apical swelling with the proliferation of root hairs, 

development of transfer cells, induction of ferric chelate reductase activity, acidification of the 

rhizosphere, organic acid release [109], and up-regulation of Fe(II) transporters [110]. The transfer cells 

have been shown to occur in roots of many Fe-efficient plant species, and are most likely the sites of Fe 

deficiency-induced root responses of the Strategy I [111–114]. It has also been shown that transfer 
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cells may be induced either in the rhizodermis or in the hypo-dermis, and are characterized by wall 

ingrowths in order to increase the membrane surface area, as well as the stimulation of ion uptake sites, 

H+-ATPases, sucrose and amino acid transporters [114–117]. 

Enhancement of Fe uptake was associated with induction of both H+ secretion and the activity of  

Fe(III) reductase in the rhizosphere of Fe-deficient G. max [118]. A study by Slatni et al. [119] reveals 

that the induction of root Fe(III) reductase activity is necessary for Fe uptake and can be coupled to the 

rhizosphere acidification capacity linked to the H+-ATPase activity. Morphologically, an increase in 

root hair length under low Fe concentrations increases Fe uptake efficiency and is considered to be  

a growth strategy by many plant species in order to survive under Fe-limited conditions. This increase 

in root hair length and number of transfer cells is found to be positively correlated with the amount of 

detectable H+-ATPases [120]. 

“Strategy II” is more specific to Fe deficiency with the involvement of highly specific uptake 

systems for Fe(III)–phytosiderophores [121]. Diverse types of siderophores are produced by different 

rhizobial species. Rhizobium leguminosarum is known to synthesize a cyclic trihydroxamate type 

siderophore (vicibactin) and Sinorhizobium meliloti produces rhizobactin 1021, a dihydroxamatesiderophore, 

under Fe deficiency [122]. Catecholatesiderophores are synthesized by rhizobia from the Vigna unguiculata 

group [123] while salicylic and dihydroxybenzoic acids are produced by Rhizobium ciceri isolated 

from C. arietinum nodules [124]. In addition, Fe-deficiency adaptations belonging to these two strategies 

were reported to be mainly regulated by ethylene and/or auxin signaling [120], with ethylene mainly 

associated with Fe-deficiency response in strategy I plants. Similarly, a number of phytohormones are 

found to likely be involved in the regulation of Fe deficiency responses, including ethylene [125,126], 

cytokinins [127], and brassinosteroids [128]. 

In order to protect its symbiotic organs against low Fe availability, the N2-fixing legumes likely 

need to develop mechanisms involving both the acquisition and utilization of Fe. Concerning the 

utilization of Fe, several studies suggest that enhanced allocation of Fe to nodules and the improved  

Fe use efficiency for nodule growth and N2 fixation were the basis for the tolerance of P. vulgaris 

cultivars to Fe deficiency [92,129]. 

3.2. Boron and Molybdenum 

Boron availability in soil decreases under alkaline conditions (especially with calcium carbonate 

that acts as an important B adsorbing surface), where intracellular B concentrations might fall  

below 10 ppm in young leaves, indicating that the plant suffers from B deficiency [97,98]. Early 

rhizobia-root interactions, infection, cell invasion [98], symbiosome development [99,130], and nodule 

organogenesis [131] are all greatly affected by B deficiency. B deficiency leads to a high reduction in 

nodule number and nitrogenase activity [132], caused by the repression of nod gene activity of root 

exudates from B-deficient legumes [98]. Since this micronutrient is not required for rhizobial growth, 

the strong effect of B on legume–rhizobia symbioses has always been related to the structure and 

stability of plant-derived components crucial for nodule development [133]. Under conditions of  

B-deficiency, enhanced translocation of B from the root system to leaves usually takes place, and 

genotypic differences in B re-translocation usually reflects a tolerance mechanism to B deprivation. 

Searching for mechanisms related to B-deficiency tolerance in non-legume plants, Kobayashi et al. [134] 
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identified 13 genes whose expressions were up-regulated in low-B-acclimated N. tabacum BY-2 cells, 

using cDNA differential subtraction. The induction of these genes that mainly encode the oxidative 

stress-responsive enzymes (such as glutamine synthetase, class tau glutathione S-transferase, and 

glucosyltransferase) point out the effect of B-deficiency to induce cell oxidative damage that was 

presumably caused by impaired cell wall structure [134]. 

Molybdenum is a trace element found in soil at very low concentrations, usually around  

1–36 ppm [114,135], and even if the critical Mo concentration for plants is usually below 0.2 ppm, 

deficiency of this micronutrient is a widespread agricultural problem, especially in acid soils [114].  

In legumes, Mo is required for the synthesis of proteins associated with nitrogen metabolism [100], 

and Mo acts as a cofactor for the nitrogenase enzymes [101]. In general, it has been shown that Mo 

availability for plant growth decreases with decreasing soil pH (nine-fold lower in G. max shoots from 

pH 7 to pH 5), a soil factor that leads to decreased plant Mo concentration and thus reduced N2-fixing 

activity [114,136,137]. Maintaining an adequate Mo concentration in nodules under Mo-limiting 

conditions may be a strategy for optimal nitrogenase activity, but may also be valuable for plant 

growth and yield if the aboveground allocation of Mo was not affected. Furthermore, changes in root 

morphology, including an increase in the absorption area of the total root surface, root length and 

number, can mediate the adaptation of plants to soil Mo-deficiency. According to Nie et al. [138],  

a genotype may be Mo efficient or inefficient due to one or more of the following mechanisms: higher 

Mo root uptake abilities from soil, the manner in which Mo is transferred, and its assimilation within 

the plant. For a given species, the mechanism responsible for Mo efficiency may differ between 

genotypes and with the extent of deficiency. 

4. Drought Tolerance in N2 Fixing Legumes 

4.1. Overview on the Impact of Drought on Legumes 

Drought affects both legumes and the symbiotic rhizobia, which ultimately limit the SNF. However, 

this effect may depend on the relative influence of each symbiotic partner on the regulation of SNF. 

Initiation, development and activity of nodules were reported to be more sensitive to drought than 

general root and shoot metabolism. In addition, drought constraint imposed during vegetative growth 

seems to be more detrimental to nodulation and nitrogen fixation than if imposed during the reproduction 

stage [139]. Infection and nodulation can be reduced or even suppressed by water deficit due to 

modifications of rhizobial cells and decreased number of infection threads formed inside root  

hairs [140]. It has also been shown that, during flowering or the grain-filling period, water shortage has 

a dramatically negative impact on the final legume seed yield [141,142]. Water uptake/use and its 

temporal pattern are crucial for crops grown with a limited amount of water in the soil profile because 

crop reproductive success depends largely on a sustained water use into the reproductive growth  

stage [143,144]. 

Plants use various mechanisms to cope with drought constraint. Extensive root development may 

lead to drought avoidance by enhanced extraction of soil water, and was related to maintaining seed 

yield despite drought during the terminal growth stages in several grain legumes [145,146]. At the root 

level, proteome analysis at different stages of drought stress revealed that proteins associated with cell 
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signaling (lectins and oxidoreductases) were significantly up-regulated during drought stress [147]. 

Proteins that degrade or detoxify reactive oxygen species (ROS) play important roles in protecting 

essential plant functions against drought-induced oxidative damage [148], maintaining intracellular 

redox homeostasis or mediating redox signaling for induction of specific stress responses [149]. 

Besides, key enzymes of sulphur metabolism and proteins associated with root structure (tubulin) were 

reported to be down-regulated by drought stress while the expression of enzymes associated with root 

morphology (actin) was up-regulated [147]. The alteration in the expression of these proteins was 

assumed to have a positive correlation with the root architectural modifications, which in turn may 

have an indirect effect on the overall plant photosynthetic process, due to the alterations in the net 

water conductance [150]. 

Plant–water homeostasis is also regulated by a group of proteins called aquaporins. These proteins, 

which include nodulin-26-like intrinsic proteins initially identified in symbiosomes of legumes, are 

specialized in water transport and therefore may play a critical role in plant adaptation to water deficit 

through water uptake [151]. Aquaporins also function to modulate abiotic constraints-induced signaling. 

Their versatile functions have made aquaporins suitable candidates for development of transgenic 

plants with increased tolerance to different abiotic constraints, including drought [152]. 

4.2. Overview of the Regulation of SNF under Drought 

The regulation of SNF under drought was reported to be governed by various factors including 

internal oxygen availability, carbon flux within nodules and N-feedback regulation [18,153–157]. Despite 

recent progress in the field, the molecular mechanisms responsible for these physiological responses 

and their interactions are not yet fully understood. 

A number of studies have shown that SNF can be locally regulated under drought stress in  

soybean [157,158], Pisum sativum [159] and M. truncatula [153]. Using a split-root system that allows 

differentiation between local and systemic responses, Gil-Quintana et al. [153] analyzed the variations 

in the content of amino acids and ureides in different plant organs, and measured the levels of ureide 

metabolism enzymatic activities in nodules of drought-stressed G. max. Their results support the 

hypothesis of a local regulation of SNF. In addition, ureide accumulation may be a more widespread 

response to water deficit not necessarily related to the regulation of SNF, since nitrate-fed G. max 

plants showed some level of accumulation when exposed to drought [160]. Recent studies have shown 

that the ureide accumulation depend more on the plant developmental stage than on the growth 

conditions [161].On the other hand, drought-induced declines of nitrogenase activity has been reported 

to be caused by N-feedback inhibition of SNF [156,157], which was related to the accumulation of 

ureides in leaves [162,163] and nodules [157,158] of G. max under different water-deficit treatments. 

In addition to ureides, other N compounds like asparagine and aspartic acid were also proposed to 

trigger the inhibition of SNF [157,164]. The drought-induced accumulation of N compounds was 

associated with reduced transpiration rates due to lower xylem translocation rates as a consequence of 

the decreased transpiration [165]. However, recent report showed that the accumulation of ureides and 

reduction of transpiration rates are not correlated under drought constraint [153]. Another origin of this 

accumulation reside in the decrease of the shoot N demand which has also been shown when inorganic 

N is applied to N2-fixing legumes [166]. Therefore, the ureides’ accumulation does not seem to occur 
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specifically under drought stress. The third possible origin of ureides’ accumulation could be through 

alterations in the metabolism of ureides [167]. However, ureide catabolism was reported by  

Gil-Quintana et al. [153] to be more affected than the de novo synthesis under stressful conditions. 

These authors have suggested that the observed accumulation of ureides in nodules may be more 

related to a decline in the activity of degradation rather than to increased biosynthesis. 

From a proteome point of view, proteins related to plant metabolism showed a general trend of 

down-regulation while bacteroid cells were up-regulating protein biosynthesis, probably as an adaptation 

to the water deficit imposed [168]. Significant changes were reported for the functional group 

glycolysis/TCA cycle which includes enzymes such as sucrose synthase, fructose-bisphosphate 

aldolase, phosphoenolpyruvate carboxylase, and malate dehydrogenase [153]. Several metabolic 

pathways, such as sucrose synthase and glutamine synthetase [154,168], were reported to coincide 

with the decline in SNF rates. Chalcone isomerase (CHI), a key enzyme in flavonoid biosynthesis 

known to influence the process of nodulation, was significantly down-regulated by drought, and  

the expression patterns of CHI were reported to be positively correlated with the concomitant changes 

in the biomass of root nodules [147]. 

Regarding the transcriptional regulation of SNF, the reduction of nitrogenase activity under drought 

constraints was associated with a reduced expression of the nifK gene [169]. According to a recent 

study by Furlan et al. [170], transcript levels of glutathione reductase increased in response to drought 

with a subsequent increased enzyme activity. Likewise, marker transcripts responsive to drought, 

abscisic acid and H2O2 were up-regulated. However, superoxide dismutase and glutathione  

S-transferase activities were unchanged, despite up-regulated gene transcription while increased 

activity of ascorbate peroxidase (APX) did not seem to be related to changes in cytosolic APX 

transcript levels [170]. Furthermore, inoculation of P. vulgaris plants with a R. etli strain having 

enhanced expression of the cytochrome cbb3 oxidase in bacteroids was reported to reduce the sensitivity 

of P. vulgaris–R. etli symbiosis to drought and can modulate carbon metabolism in nodules [171].  

This was related to the high respiratory capacity of the bacteroids given the role of both the high 

oxygen affinity and the overexpression of cbb3 oxidase in fulfilling high-energy demand for efficient 

SNF [171,172]. 

5. Salinity Tolerance in N2 Fixing Legumes 

Salinity negatively affects the legume–rhizobium symbiosis through osmotic and/or ionic effects 

that inhibit several physiological and biochemical processes and limit host plant growth, nodulation  

as well as the survival and proliferation of rhizobia [173–175]. The prevention from damages caused 

by salt stress and their repair are necessary for cell survival and plant development. Legumes’ ability to 

tolerate saline conditions is associated with changes in many physiological and molecular processes, 

including sequestering of sodium ion (Na+), accumulation of osmoprotector solutes, induction of 

antioxidative stress responses and hormone biosynthesis [174–178]. Understanding legume responses 

to salinity requires a strong knowledge on all salinity stress-related agro-biological mechanisms as well 

as determination of existing connections between mechanisms at different levels (morphologic, 

physiologic, molecular, etc.) and different organs such as nodules of the N2-fixing legumes. Also,  

the connection with functional genomics, particularly with the recent advances in genomics and 
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bioinformatics, could lead to the identification of candidate genes as tools to elucidate most mechanisms 

involved in the efficiency of legume–rhizobium symbiosis under such environmental constraints. 

5.1. Intracellular Sequestration of Sodium 

Plants, as well as legume–rhizobium symbiosis, detect salt stress through the ionic (Na+) and 

osmotic signals. The excess in Na+ may be detected by the transmembrane proteins or the Na+ receptor 

proteins [179]. The excess in Na+ and Cl− causes changes of protein structures and membrane 

depolarization which can lead to the perception of the ionic toxicity. In legumes, osmotic adjustment 

can be achieved by Na+ sequestration in nodules, and more so as when free amino acid accumulation 

and carbohydrate allocation to nodules are also achieved [180]. These authors found that Na+ sequestration 

(besides other mechanisms) in nodules of a salt-treated M. truncatula was associated with tolerance to 

salt stress. Conversely, Krouma et al. [181] reported that Na+ accumulation in nodules and leaves of  

C. arietinum was associated with sensitivity to salinity, while an increased Na+ accumulation in roots 

may contribute to the osmotic adjustment and tolerance to salt stress. Under saline conditions, vacuolar 

sequestration of Na+ is an important and profitable strategy for osmotic adjustment at the same time 

that may reduce the cytosolic Na+ concentration. The Na+/H+ antiporters of plasma membrane that 

pump Na+ ions from root cells toward leaves is likely the first line of defense in order to prevent  

the accumulation of Na+ in the cytosol [179]. The vacuolar Na+/H+ antiporters use the proton gradient 

generated by the vacuolar H+/adenosine triphosphatase (H+/ATPase) and H+/pyrophosphatase 

(H+/PPase) for Na+ sequestration into the vacuole. The activation of the tonoplastic H+/ATPase and 

H+/PPase under salt stress, and the coordination between Na+/H+, H+/ATPase and H+/PPase antiporters 

are therefore likely to be crucial for salt stress tolerance [182]. 

5.2. Biosynthesis of Osmoprotectants 

Salt-tolerant legumes realize the osmotic adjustment by involving a fine-tuned coordination 

between physiological mechanisms whose importance appears to vary between roots, nodules and 

shoots [173,183]. One of the adaptive salinity-tolerance strategies, that maintain the ionic and 

intracellular osmotic homeostasis, is the accumulation of osmolytes (or osmoprotectant), mainly 

amino-acids (proline, glycine betaine) and sugars [173]. 

Several studies have shown a significant accumulation of proline in both shoot and nodules of  

M. sativa that induced tolerance to salt stress [173,184,185]. Differential expression of the proline 

metabolism genes in G. max was investigated under salinity, showing that the expression of the  

Δ1-pyrroline-5-carboxylate synthetase (GmP5CS) gene depends on the intensity of salt stress [186]. 

Over-expression of P5CS in a transgenic M. truncatula (with P5CS gene from Vigna aconitifolia)  

led to proline accumulation in shoots, roots and nodules with positive impacts on osmotolerance, plant 

growth and nitrogen fixation [187]. Improving nitrogenase activity in this transgenic M. truncatula  

as compared to the correspondent wild type could be attributed to the higher proline accumulation  

in nodules that would exert a protective effect to both nodule metabolism and N2-fixing activity [187]. 

Similar results were found in P. vulgaris that up-regulated the expression of PvP5CS in leaves under 

salinity [188]. Overall, proline acts as an osmoticum and its cytoplasmic accumulation neutralizes the 

ionic and osmotic effects of salt accumulation in the vacuole [187,189]. This amino acid also plays 



Int. J. Mol. Sci. 2015, 16 18989 

 

 

important roles in maintaining the cytosol-vacuole pressure and pH well controlled [190] as well as the 

stability of membranes [191]. 

Stimulation of biosynthesis and accumulation of betaines (nitrogenous osmolytes) such as proline 

(Pro)–betaine and glycine (Gly)–betaine is a valuable strategy to maintain turgor pressure necessary 

for continued growth under salinity constraint, both in legumes and non-legumes [185,192,193].  

Pro–betaine is the main osmoprotectant identified in M. sativa [185]. Both increased accumulation and 

compartmentalization of Pro–betaine and proline highlighted a tolerance trait in a salt-stressed  

M. sativa, especially in nodules where large peri-bacteroid spaces (attributed to an increased turgor 

pressure) might be due to the elevated Pro–betaine and proline in the cytosol and bacteroids [185].  

In Sinorhizobium meliloti, the rhizobium species forming symbioses with Medicago spp., previous 

works have demonstrated the important role of Pro– and Gly–betaines for inducing nodulation  

genes [194] and osmotic stress resistance [195,196]. In the N2-fixing S. meliloti, Boscari et al. [197] 

identified and characterized the BetS gene which encodes the Gly–betaine/Pro–betaine transporter 

required under early osmotic adjustment. The S. meliloti BetS activity appears to be Na+-driven, while 

its inactivation results in loss of osmoprotection after an osmotic stress [197]. 

Sugars may contribute to over 50% in the osmotic adjustment of glycophytes subject to salinity 

conditions [191]. The accumulation of carbohydrates in leguminous plants in response to salinity has 

been documented in P. vulgaris and P. acutifolius [198] as well as in M. sativa [173]. Their main 

functions are in the osmo-protection, osmotic adjustment, carbon storage and sequestration of free 

radicals [191]. The signal generated by signal transduction cascades, starting with sensor proteins that 

sense the plant cell sugar status, involve mitogen-activated protein kinases, protein phosphatases, Ca2+ 

and calmodulins, resulting in appropriate gene expression [199]. Numbers of genes are either induced 

or repressed depending upon the status of soluble sugars [200]. 

5.3. Responses of Antioxidant-Gene Enzymes 

Like drought stress, salt stress also causes the formation of ROS such as hydrogen peroxide (H2O2), 

superoxide (O2
−) and the free radicals. These ROS cause oxidative damage to various cellular 

components, including membrane lipids, proteins and nucleic acids [201]. To overcome oxidative 

stress and damages caused by salinity, plants have developed antioxidant non-enzymatic and 

enzymatic systems [202]. Non-enzymatic processes include binding or scavenging of radicals by  

β-carotenes, ascorbic acid, α-tocopherol and reduced glutathione. Enzymatic processes are biological 

reactions involving several enzymes such as superoxide dismutase, guaiacol peroxidase, ascorbate 

peroxidase, catalase, polyphenol oxidase and glutathione reductase [176,203–205]. Superoxide 

dismutase (SOD) is considered as the first enzymatic system defense against ROS, being responsible 

for the dismutation of O2
− to H2O2 and O2. Catalase and peroxidases catalyze the conversion of H2O2 

to water and O2 [206]. 

In M. sativa, increased activity of antioxidant enzymes has been considered as an adaptation 

mechanism to salt stress [203]. Expression of antioxidant genes were also correlated with antioxidant 

enzymatic activities in salt-treated roots of M. truncatula genotypes [207]. Arab and Ehsanpour [208] 

noted that treatment of M. sativa seeds with ascorbic acid increased the level of salt tolerance. 

Maintaining a high antioxidant activity is positively correlated with decreased lipid peroxidation, stability 
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of nodule’s cell membranes and thereafter maintaining a high nodule biomass. Mahmoudi et al. [209] 

highlighted the higher expression of Fe-SOD and Mn-SOD genes found in the saline-tolerant Lactuca 

sativa “Verte de Cobham” as an important salt-tolerance trait. Likewise, an increased activity of SOD 

was detected in salt-stressed nodules of P. vulgaris, and reported to be highly involved in tolerance to 

salinity constraints [210]. Similarly, high peroxidase activity was noted in C. arietinum-rhizobium 

symbiosis that was the most tolerant to salt stress [211]. Nodule cortex/parenchyma of salt-stressed  

C. arietinum exhibited high expression level of antioxidant genes, as for the ascorbate peroxidase 

“APX2” [212] (Figure 2A,B). These findings suggest a key role for antioxidant genes’ expression,  

not only for an adequate intra-nodular antioxidant defence, but also for nodule respiration during  

N2 fixation. This study [212] also indicates a powerful scavenging of the potentially harmful hydrogen 

peroxide (H2O2), thus preventing oxidative damage in nodules. 

 

Figure 2. In situ RT-PCR localization of ascorbate peroxidase (APX2, (A,B), 200 μm) and 

Protein Phosphatase 2C (PP2C, (C,D), 500 μm) transcripts in cross sections of C. arietinum 

nodules under salinity constraint. Negative controls without reverse transcription (non-RT) 

are shown in (A’) (200 μm) for APX2 and (C’) (500 μm) for PP2C. Abbreviations: IZ 

(infected zone), NP (Nodule parenchyma), E (nodule endodermis) and NC (nodule cortex), 

VT (vascular trace). Images (A,B) used from Molina et al. [212] under the terms of  

the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0). 

Images (A’,C’,C,D) are provided by Zaman-Allah M. 
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5.4. Acid Phosphatases under Salinity 

Acid phosphatases activity under salinity was shown not to have such a universal response as for 

low P conditions. Farissi et al. [174] reported an increased APase activity in M. sativa roots under 

increasing salinity. However, studies by Faghire et al. [178] and Zaman-Allah et al. (unpublished data) 

showed slight changes between salt-treated and control nodules of P. vulgaris and C. arietinum in 

terms of intra-nodular APase expression. The expression of a gene coding for the protein phosphatase 

PP2C-type showed clear differential expression among tissues of C. arietinum nodules but did not 

provide clear differences in response to salinity (Figure 2C,D). However, these slight differences  

do not exclude that PP2C may react against salinity effects given that members of the  

phosphoprotein-phosphatases family are known to be involved in the regulation of several signaling 

pathways, including oxidative stress for phosphotyrosine-phosphatases [213]. 

On the other hand, an impaired activity of APase such as the inositol-1,4,5-trisphosphate  

5-phosphatase was reported in salt-grown roots of M. sativa [214]. This low activity was associated 

with intracellular accumulation of the inositol-1,4,5-trisphosphate (IP3) which would act as a soluble 

secondary messenger molecule implicated in the mobilization of intracellular Ca2+ [214]. In addition, 

the IP3-induced cytoplasmic Ca2+ was reported to be involved in signaling pathways and activation of 

stress responses [215–217]. In nodules of various legume species, accumulation of trehalose  

(a major carbohydrate synthesized from a rapid conversion of trehalose 6-P to trehalose by trehalose  

6-P phosphatase) was associated with tolerance to numerous abiotic constraints such as salinity [218–222]. 

Streeter et al. [220,222] suggested that trehalose plays a central role in SNF since trehalose appears in 

nodules at the onset of N2 fixation. In addition, trehalose is thought to be involved in intercellular-spaces 

occlusion of the nodule cortex with glycoproteins or water [223–225]. Trehalose may thus be implied 

as an osmoticum for the change in morphology of inner-cortex cells, as previously suggested as  

a mechanism for osmoregulation of the nodule permeability to oxygen [9,226]. 

5.5. Phytohormones in Regulation of Salinity Tolerance 

The response of plants to environmental constraints is regulated by phytohormones and plant 

growth regulators such as abscisic acid (ABA), salicylic acid, and a group of polyamines [227].  

For instance, ABA has been shown to play a major role in plant signaling and tolerance to a variety of 

stresses, including drought, cold, and salinity [228–230]. In legumes, several studies have reported that 

alleviating the damages inflicted under salinity co-occurred with increased ABA contents in various 

tissues such as nodules of P. vulgaris [231], M. ciliaris [232] and M. sativa [227]. It has also been 

shown that both salinity and ABA application significantly increased ABA content in salt-stressed  

M. sativa nodules with positive consequences on plant growth and SNF [227]. These authors also 

found that increasing ABA application under salinity have induced the activity of several nodular 

antioxidant enzymes such as superoxide dismutase, catalase, and glutathione reductase. Similar results 

were reported in P. vulgaris that has markedly reduced the amounts of malondialdehyde and hydrogen 

peroxide in response to the combined application of gibberllic and ascorbic acids [233]. 

Although numerous genes and signaling pathways have been characterized and the roles of several 

plant hormones have been extensively studied in stress responses in plants, the underlying molecular 



Int. J. Mol. Sci. 2015, 16 18992 

 

 

mechanisms are largely unknown. This is, primarily, because of the complex interactions between 

multiple signaling pathways [234]. Chinnusamy et al. [235], Xiong et al. [236], and Zhu [199] all 

reported that salinity-induced activation of many abscisic acid biosynthetic genes, such as zeaxanthin 

oxidase, 9-cis-epoxycarotenoid dioxygenase, abscisic acid-aldehyde oxidase, and molybdenum 

cofactor sulfurase, appear to be regulated through a calcium-dependent phosphorylation pathway.  

In the same sense, a molecular link between auxin signaling and salt stress has been established by 

Jung and Park [237]. These authors suggest that a membrane bound transcription factor (NTM2) 

incorporates auxin signal in seed germination which modulates seed germination under salinity stress. 

6. Concluding Remarks 

The recent knowledge reported in this review highlights legumes’ potential to cope with the most 

abundant abiotic constraints worldwide, through key mechanisms including constitutive and stress-induced 

responses. Advanced knowledge at the morphological, physiological and molecular level has enabled 

breeding for candidate genes and genetic engineering for legume crops that are better adapted to 

stressful conditions. In spite of this, the extent of the stress tolerance in plants largely depends on 

factors that vary among genotypes and environmental conditions, as well as the complexity and 

severity of the imposed stress. The last factor also includes the situation where multiple abiotic 

constraints occur at the same time, which highlights the important challenges that research in plant 

breeding need to address in order to develop legumes with tolerance to multiple constraints. 

Coincident with most knowledge on abiotic factors and their effects on plant performance, there is 

an increasing awareness and interest for exploration of biotic factors with synergistic and complementary 

interactions for the benefit of both plants and soil microorganisms. For instance, in drought-stressed 

legumes, a positive relationship has been found between efficient rhizobial symbiosis and osmotic 

stress tolerance, indicating that efficient nodulation confers plant drought tolerance in terms of growth, 

improvement of plant water status and alleviation of oxidative stress [238]. Increased P-deficiency 

tolerance and its use efficiency may occur through naturally-formed mycorrhizal symbioses or through 

genetically-modified crops. The latter is exemplified by the induced-organic acids’ exudation in plants 

that have been transformed for efficient P uptake, which was shown to be a particularly valuable trait if 

accompanied by the ability to release compounds that prevent any further microbial breakdown of 

organic acids in the rhizosphere [68,239]. Enhanced P availability may also improve tolerance to toxic 

elements, as indicated by the findings that P and Cd treated roots of Trifolium sp. produced 

polyphosphate which chelated Cd in the mycorrhizal hyphae of Rhizophagus irregularis, with 

improved fitness for both the plant and fungal partners of the symbiosis [240]. Also, positive effects on 

osmotic adjustment under drought and salinity stress have often been associated with ectomycorrhizal 

colonization [241]. However, while these highly valuable mycorrhizae biotechnological applications 

are well known for tree improvement, significant progress is still lacking in the use of mycorrhizae for 

improving legumes performance under environmental constraints. 

Another interesting approach is the design and use of novel diversity-based cropping systems 

considering legumes as a main component in order to increase both above- and below-ground 

functional diversity. Diversified cropping through increasing intra- and inter-specific diversity will in 

many cases have positive impacts on resilience to abiotic and biotic stress [242–244], resource use 
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efficiency, soil fertility, and yield stability [245,246]. Therefore, more concerted and holistic efforts at 

the cropping system level, including breeding for stress tolerance, choosing appropriate varieties under 

the given environmental conditions and combining traits in mixed crops to sustain yields under 

stressful conditions, should be promoted. However, increasing crop diversity would make it difficult  

to reveal traits in complex belowground interactions that include microbial communities, root 

architecture and plasticity, nodule development and distribution. Therefore, advanced studies are 

needed to understand the mechanisms of induced rhizosphere heterogeneity in diversified crops, 

aiming to optimize the trait complementarity among roots, nodules and rhizosphere properties for 

improved stress tolerance. 

By presenting the current state of the art for the most important abiotic stress factors and responses 

in legume and their SNF, we hope that this review will serve as a resource of knowledge for further 

improvements of crop production under environmental constraints. Plant production in suboptimal 

conditions often imposes a combination of several abiotic and biotic stress factors. In this context, we 

highlight two central strategies for the future advancement of knowledge and innovation, targeting the 

multiple challenges of legume production under environmental constraints: (1) identifying legume 

genotypes and symbiotic combinations that combine multiple stress tolerance traits, and applying these 

in practice; (2) improving the understanding of above- and below-ground interactions in diversified 

crops, for the development of cropping systems that optimize complementary or facilitating mechanisms, 

thereby improving yield stability. 
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