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Abstract: Gastric cancer (GC) has significant morbidity and mortality worldwide and especially in
China. Its molecular pathogenesis has not been thoroughly elaborated. The acknowledged biomarkers
for diagnosis, prognosis, recurrence monitoring and treatment are lacking. Proteins from matched
pairs of human GC and adjacent tissues were analyzed by a coupled label-free Mass Spectrometry (MS)
approach, followed by functional annotation with software analysis. Nano-LC-MS/MS, quantitative
real-time polymerase chain reaction (qRT-PCR), western blot and immunohistochemistry were used to
validate dysregulated proteins. One hundred forty-six dysregulated proteins with more than twofold
expressions were quantified, 22 of which were first reported to be relevant with GC. Most of them
were involved in cancers and gastrointestinal disease. The expression of a panel of four upregulated
nucleic acid binding proteins, heterogeneous nuclear ribonucleoprotein hnRNPA2B1, hnRNPD,
hnRNPL and Y-box binding protein 1 (YBX-1) were validated by Nano-LC-MS/MS, qRT-PCR,
western blot and immunohistochemistry assays in ten GC patients’ tissues. They were located
in the keynotes of a predicted interaction network and might play important roles in abnormal cell
growth. The label-free quantitative proteomic approach provides a deeper understanding and novel
insight into GC-related molecular changes and possible mechanisms. It also provides some potential
biomarkers for clinical diagnosis.

Keywords: gastric cancer; LC-MS/MS; Label-free quantitative proteomics; heterogeneous nuclear
ribonucleoprotein; Y-box binding protein 1

1. Introduction

Gastric cancer (GC) has long been recognized as among the world’s major malignancies, ranked
fifth in incidence and third in mortality since 2012 [1–3]. In China, approximately 405,000 new cases
and 325,000 deaths from GC have been reported, making it the second most prevalent disease and the
third in cancer-related deaths [2].

GC is a complex and multi-factorial process disease, resulting from the interaction between genetic
and environmental factors that potentially deregulate cell oncogenic signaling pathways to promote
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GC development [4,5]. Early onset GC is difficult to diagnose due to the histological and genetic
heterogeneity of the disease. Most patients are asymptomatic in the initial stages, making it difficult to
control the malignancy rate through early detection and motivational therapy. GC patients are often
diagnosed after the disease has progressed to the advanced stage where the long term outlook is very
poor (5-year survival rate of 10%–20%) [3,6,7]. Common methods for detecting GC are endoscopy and
biopsy, which are both time-consuming and invasive, and can only identify the disease at a relatively
late stage [8]. Moreover, these traditional detection methods are costly and not suitable for large-scale
preventive screening [9]. Treatment of GC includes surgery, chemotherapy and radiotherapy, however
the effects are limited. In recent years, the development of molecular targeted therapy has led to a
revolutionary breakthrough in clinical therapy and become the hope of cancer treatment [6]. Several
molecular signaling pathways related to cell proliferation, invasion, angiogenesis and metastasis have
been identified and evaluated as candidates for targeted treatment. Despite promising pre-clinical
data, the majority of targeted agents failed to improve outcome, and therapeutic advances in GC
lag well behind other challenging organ malignancies [6]. Effective targeted therapy depends on
identifying cancer driving molecules and key signaling pathways. Thus, a better understanding of
gastric carcinogenesis through proteomic and genetic studies can provide important novel insights into
development and progression of GC, and can be utilized to improve early diagnostic screening and
provide effective drug intervention targets [10]. However, these advancement can only be achieved
through the use of new technologies and methods.

The use of omics technologies is quite suitable to characterize molecular pathogenic mechanisms
and signaling networks, and identify disease biomarkers, involving multi-factor and genetic factors [11].
Proteomics can resolve molecular details of proteome variation in tissues from different human organs,
increasing our knowledge about human biology and disease, reflecting more accurately on the dynamic
state of biological fluid, organelle, cell, tissue, organ, system, or the whole organism, and yielding
better disease markers for diagnosis and therapy monitoring [12,13]. Therefore, establishing in-depth
proteomics profiles of various biospecimens obtained from cancer patients are expected to increase
our understanding of tumor pathogenesis, improve therapy monitoring, and identify novel targets for
cancer treatment [14]. In recent years, mass spectrometry-depend proteomic techniques, including
2D-DIGE (fluorescence 2-dimensional difference gel electrophoresis), iTRAQ (isobaric tags for relative
and absolute quantification), ICAT (isotope-coded affinity tag), SILAC (stable isotope labeling with
amino in cell culture), AQUA (absolute quantification) and label-free quantitative proteomics have
become more advanced and are now being applied to quantitatively analyze proteins differences in
various disease [12].

Label-free quantitative proteomics has broad superiorities in discovery of biomarkers or drug
targets and has gained more popularity in recent years [15,16]. There is no need for any isotopic
or chemical labeling, so it does not require extra experimental steps and the limitation caused by
the labeling can be omitted [15,17]. Label-free approach has the largest dynamic range and the
highest proteome coverage for identification. Comparative quantification of label-free approach
can be performed across many complex samples simultaneously, especially ideal for investigating
proteins relatively low in abundance [16]. Since the introduction of label-free proteomics, a broad
variety of studies interested in understanding molecular mechanisms and pathways, and discovery of
biomarkers or drug targets of diverse diseases have been performed [16,18].

Although many studies in the field of proteomics have been used to screen dysregulated proteins
and to identify potential biomarkers or drug targets in various complex samples of GC [19,20], label-free
proteomics has been applied to few GC cases. In this study, our objective was to investigate GC-related
differential proteins in the proteome of patients’ tissues to find any potential molecular and signaling
networks, to reveal potential carcinogenic mechanisms, and to evaluate any specific biomarkers for
GC diagnosis and treatment by a coupled label-free MS approach.
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2. Results

2.1. Overall Protein Changes Identified by Label-Free Quantitative Strategy

To quantitatively compare GC tissue proteome, proteins were extracted from surgically resected
fresh cancer and adjacent tissues of three patients, randomly selected from ten patient samples.
After in-solution tryptic digestion, each of three samples were run in triplicate by LC-MS/MS,
and a total of 3639 and 3543 proteins were identified by Proteome Discoverer 1.4 in three pairs
of GC and adjacent tissues, respectively (Figure 1A and Table S1, Supplementary Material). After
evaluating MS data quality, all three samples were analyzed with Progenesis LC-MS software,
using an algorithm based on the pair-wise features detection at LC-MS level. 726, 662 and 662
dysregulated proteins (ě2-fold) were quantified in three GC patients (Figure 1B and Table S1,
Supplementary Material), while 146 dysregulated proteins were reliably quantified after limited
selection in these proteins. Of 146 proteins, 81 proteins were downregulated, 65 proteins were
upregulated (adjacent/tumor ratio ě2-fold or ď0.5-fold, p-value < 0.05) and 22 proteins were first
found to be related with GC (Table S1, Supplementary Material).
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provides insight into regulatory mechanism and biological functions based on published studies 
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Figure 1. Venn diagrams of total identified proteins and dysregulated proteins. (A) Total proteins
identified from three cases in tumor or adjacent tissues respectively. One thousand seven hundred
forty-four proteins identified appear in both tumor and adjacent tissues; (B) The number of proteins
with more than twofold differential expression in three cases, respectively, and the number of proteins
shared in two or three cases.
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Figure 2. The hierarchical heatmap of 146 dysregulated proteins analyzed by Ingenuity Pathway
Analysis (IPA). The major boxes represent specific family or category of related functions. The smaller
squares within the major boxes represent the number of proteins. Each individual square represent a
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(blue). Darker colors indicate higher absolute Z-scores.

2.2. Functional Annotation of Proteins between GC and Adjacent Tissues

To reveal any possible function of the 146 dysregulated proteins, in silico analysis was performed.
Ingenuity Pathway Analysis (IPA) aids in the integration of complex omics data and provides insight
into regulatory mechanism and biological functions based on published studies [21]. The heatmap
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of “disease and function” of 146 dysregulated proteins by IPA was shown in Figure 2, most of these
proteins were involved in cancers (117/146, 80.14%) and gastrointestinal disease (99/146, 67.80%)
(Table 1 and Table S2 (Supplementary Material)). Their main functions concern cellular growth and
proliferation, nucleic acid metabolism, small molecule biochemistry, cell death and survival, cellular
movement (Table 2 and Table S2 (Supplementary Material)).

Table 1. Dysregulated proteins and related disorders analyzed by IPA.

Disease and
Disorder No. of Molecules p-Value Protein Names

Cancer 117 2.62 ˆ 10´11–2.63 ˆ 10´3
ANPEP, ANXA1, ATP2A2, ATP4A, CBX3,
HNRNPA2B1, HNRNPC, HNRNPL, HSP90AB1,
ILF2, NPM1, RAN, SNRPF, VIM, YBX1, . . .

Gastrointestinal
Disease 99 2.62 ˆ 10´11–2.98 ˆ 10´3

ANPEP, ANXA1, FN1, HNRNPA2B1, HNRNPC,
HNRNPL, HPX, NPM1, RAN, SFN, SNRPF,
TAGLN, VIM, WARS, YBX1, . . .

Table 2. Molecular and cellular function of dysregulated proteins analyzed by IPA.

Function No. of Molecules p-Value Protein Names

Cellular Growth
and Proliferation 78 4.95 ˆ 10´13–2.42 ˆ 10´3

ACAT1, HNRNPA2B1, HNRNPC, HNRNPD,
HNRNPL, HNRNPR, HPX, HRG, HSP90AB1,
HSPB1, LF2, NPM1, RAN, VIM, YBX1, . . .

Nucleic Acid
Metabolism 25 7.36 ˆ 10´12-1.83 ˆ 10´3

ACAA2, ATP2A2, ATP4A, ATP4B, CS, CYCS,
EIF4A3, HMGCL, PNP, PPA1, SET,SOD1, TYMP,
VCP, VDAC1, . . .

Small Molecule
Biochemistry 36 7.36 ˆ 10´12–3.02 ˆ 10´3

ANXA1, ATP2A2, ATP4A, ATP4B, CMPK1,
CYCS, EIF4A3, MT-ATP6, PNP, PPA1, SET, SOD1,
TYMP, VCP, VDAC1, . . .

Cell Death and
Survival 74 1.98 ˆ 10´10–2.53 ˆ 10´3

ACAT1, CCT2, CFH, CP, CTNNB1, CYCS,
DPYSL3, EZR, F13A1, FGG, FN1, HNRNPC,
NPM1, VIM, YBX1, . . .

Cellular
Movement 52 5.38 ˆ 10´9–2.97 ˆ 10´3

ACTN4, ANXA1, CNN1, CTNNB1, DPYSL3,
FN1, HNRNPA2B1, HNRNPL, HRG, HSP90AB1,
NPM1, SFN, VIM, WARS, YBX1, . . .

Protein Analysis Through Evolutionary Relationships (PANTHER) is a comprehensive database
used to analyze protein family, gene ontology and pathways for proteins with different abundances
between adjacent and tumor tissues [22]. PANTHER analysis showed that 146 dysregulated proteins
could be categorized into 25 protein classes in which nucleic acid binding proteins comprised the largest
group (8.9%) (Figure 3A). According to the Meta-analysis, these proteins were most associated with
metabolic (25.5%), and cellular (17.0%) processes, among others (Figure 3B). This study also revealed
that molecular functions of these proteins were mostly concerned with catalytic (34.5%) and binding
(22.6%) activity (Figure 3C). We performed additional analysis using the Database for Annotation,
Visualization and Integrated Discovery (DAVID) in order to further shed light on functional annotation
of these dysregulated proteins. DAVID contains an integrated biological knowledgebase and extracts
biological meaning from large gene/protein lists at systematically [23]. The results in Table S3 show
that 146 differentially express proteins possessed various molecular functions and biological process.
Further examination of the group of 65 upregulated proteins, DAVID revealed that their main functions
is RNA and protein binding, pointed to biological processes of RNA splicing and processing, as well
as metabolic processes (Figure 3D,E and Table S3, Supplementary Material).

To obtain credible signaling pathways where dysregulated proteins may participate, STRING and
Reactome were selected to find enriched pathways together with PANTHER and DAVID. STRING
is a global scale database that annotates protein interactions and associations at various levels [24].
Reactome is an expert-authored, peer-reviewed knowledgebase of human reactions and pathways
that functions as a data mining resource and electronic textbook [25]. Comprehensive analysis by
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four publicly available pathway tools revealed many enriched pathways take part in GC, for example
metabolic pathways, gene expression, the citric acid (TCA) cycle and respiratory electron transport,
mitochondrial dysfunction, oxidative phosphorylation, mRNA splicing (Figure 3F and Table S4,
Supplementary Material).
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Figure 3. The functional annotation of dysregulated proteins was analyzed by Protein Analysis
Through Evolutionary Relationships (PANTHER), Database for Annotation, Visualization and
Integrated Discovery (DAVID), STRING and Reactome. (A) Protein Classes; (B) Biological Process; and
(C) Molecular Function of 146 dysregulated proteins were summarized in a pie chart by PANTHER;
(D) Molecular function; and (E) Biological process based on the 65 upregulated proteins were
depicted in a bar graph by DAVID; (F) Pathway analysis of 146 dysregulated proteins was indicated
by PANTHER, DAVID, STRING and Reactome. For each category, the percentage or p-value of
dysregulated proteins is indicated.

STRING predicted protein-protein interaction of 146 dysregulated proteins showed that most
of them could interact with each other and formed strong networks with three dynamic clusters.
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The first cluster was mostly populated with nucleic acid binding proteins, such as heterogeneous
nuclear ribonucleoproteins (hnRNPs) of hnRNPL, hnRNPR, hnRNPA2B1, hnRNPD and hnRNPC,
Y-box binding protein 1 (YBX-1) and nucleophosmin (NPM1). The second cluster was made up of
metabolic proteins, for example ATP synthase (ATP5H, ATP5L, ATP5A, ATP5D, ATP5I, MT-ATP6),
citrate synthase (CS), NADH dehydrogenase [ubiquinone] 1, superoxide dismutase (SOD). The final
cluster identified contained extracellular matrix proteins, such as collagens (COL6A1, COL1A2,
COL3A1, COL12A1, COL15A1, COL14A1), fibrillin-1 (FBN1), desmin (DES) and vimentin (VIM)
(Figure 4A).We selected 65 upregulated proteins in tumor tissues to further analyze protein-protein
interaction as downregulated proteins may not be suitable for potential biomarkers [26]. The results
showed that upregulated proteins could also form an interactive network (Figure 4B). In the central
network, nucleic acid binding proteins were dispersed and located in the keynotes of network, for
example NPM1, YBX-1, hnRNPA2B1, hnRNPD, GTP-binding nuclear protein Ran (RAN), small nuclear
ribonucleoprotein F (SNRPF). Additionally, proteins in this cluster extend out to connect with some
important functional proteins, such as proliferating cell nuclear antigen (PCNA), VIM, 14-3-3 protein
sigma (SFN).
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Figure 4. Protein-protein interactions (Evidence Mode) of dysregulated proteins were predicted by
STRING. (A) Protein-protein interaction network formed with 146 dysregulated proteins. The three
possible systematic dynamic clusters were indicated in red circles; (B) The network predicted 65
upregulated proteins. Some important proteins dispersed and located in the keynotes were marked
with a red box. Different line colors represent the types of evidence for the association.

2.3. Validation of Dysregulated hnRNPA2B1, hnRNPD, hnRNPL and YBX-1 by Nano-LC-MS/MS, qRT-PCR
and Western Blot

Taken together, a number of evidence suggests that activated nucleic acid binding proteins
might play a vital role in cell growth, proliferation and metastasis in GC pathogenesis. To verify the
activation of these kinds of proteins, Nano-LC-MS/MS, qRT-PCR and western blot were employed to
validate the differential expression of hnRNPA2B1, hnRNPD, hnRNPL and YBX-1 in ten pooled or
individual GC patients’ tissue samples. By Nano-LC-MS/MS analysis based on relative abundances
of Peptide-Spectrum Match (PSMs), significant up-regulations of hnRNPA2B1, hnRNPD, hnRNPL
and YBX-1 were confirmed (Tables S5 and S6, Supplementary Materila) [27]. QRT-PCR and western
blot both demonstrated a significant up-regulation of three hnRNPs and YBX-1 transcription and
translation in the most of the ten GC tissues compared with adjacent tissues, with only 1–2 cases
being the exception (Figure 5A–C). These results also demonstrated that qRT-PCR, western blot and a
coupled label-free MS approach have consistency in mRNA and protein abundance quantification.
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Figure 5. Expression levels of hnRNPs and YBX-1 in GC and adjacent tissues. (A) qRT-PCR (n = 10)
results showing the mRNA expression of hnRNPs and YBX-1. The ratio below the dotted line
represented down-expression in GC tissues; otherwise represented up-expression in GC tissues;
(B) Western blots (n = 10) of hnRNPs and YBX-1. N represent adjacent tissue and T represent
tumor tissue; (C) Grayscale scanning of western blots bands. The ratio was compared to β-actin
and statistically analyzed. Significance of differences between GC and adjacent tissues are displayed
by ** p-value < 0.01 or * p-value < 0.05.

2.4. Expression and Distribution Detection of hnRNPA2B1, hnRNPD, hnRNPL and YBX-1
by Immunohistochemistry

Proteins highly abundant in tumors might be detectable with better reproducibility by
immunohistochemistry (IHC), which can also reveal the distribution status of particular proteins
in cells and tissues. With specific antibodies hybridization, IHC results showed a stronger and higher
density positive nuclei staining for all three hnRNPs and YBX-1 in GC tissues than in adjacent normal
tissues (Figure 6). Cancer cells undergoing cell proliferation have larger and multiple nuclei (arrows
shown) compared to normal cells. Furthermore, by observing protein expression and distribution, the
slides stained with hnRNPA2B1, hnRNPD and YBX-1 antibodies displayed a weak (1+) to moderate
(2+) glandular epithelium cell cytoplasm and nucleus staining in adjacent tissues, whereas there were
only strong (3+) nucleus staining in tumor tissues were found. HnRNPL did not appear in cytoplasms.
Immunohistochemistry not only confirmed the expression of four upregulated proteins in accordance
with qRT-PCR and western blot results, but also revealed nucleo-cytoplasmic shuttling of hnRNPA2B1,
hnRNPD and YBX-1.
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Figure 6. Representative immunohistochemical staining for sectioned formalin fixed GC and adjacent
tissues. Specific antibodies of Anti-hnRNPA2B1 (Santa Cruz, TX, USA), Anti-hnRNPD (Proteintech,
Chicago, IL, USA), Anti-hnRNPL (Santa Cruz) and Anti-YBX-1 (Santa Cruz) were hybridized
respectively. IHC results showed that the morphology of tubular glands disappeared in cancer
sections when compared to adjacent tissues. Cancer sections have stronger and higher density nuclei
staining, high ratios of nucleus/cytoplasmic area, different shaped nuclei including megakaryocytes
and polykaryocytes (arrows). Weak cytoplasmic staining were only seen in hnRNPA2B1, hnRNPD and
YBX-1 hybridized normal sections. The magnification is 400ˆ; scale bar: 20 µm.

3. Discussion

Since the introduction of label-free proteomics, a broad variety of studies aiming for discovery of
biomarkers or drug targets for diseases have been performed [16]. However, this method has been
seldom used in GC studies. In 2012, by using shotgun proteomic approach and label-free quantitation
analysis, Aquino et al. revealed tissue-type proteins were very distinct from each other in control,
cancer and resection margin biopsies, only 11, 22, and 29 proteins (p-value ď 0.05) were quantified
in cancer vs. control, resection margin vs. cancer and resection margin vs. control, respectively [28].
Moreover, resection margin biopsies proteins may be related to tumor nourishment and metastasis [28].
In 2013, by using a combinatorial approach of Con-A affinity chromatography, SDS-PAGE, LC/MS/MS
and label-free comparative glycoproteomic quantification strategy, Uen et al. found 17 differentially
expressed glycoproteins with 10 upregulated and 7 downregulated in plasma from GC patients versus
healthy volunteers [29]. In 2015, by using SDS-PAGE and a coupled label-free MS approach, Qiao et al.
identified 297, 419, and 265 dysregulated proteins with ě2 folds in SGC-7901, MGC-803 and HGC-27
cells respectively when compared with GES-1 cells, and provided evidence showing that filamin
C is a tumor suppressor, inhibiting cancer cells metastasis [30]. In our study, by using filter-aided
sample preparation (FASP) method followed by a coupled label-free MS approach on whole protein
extract from surgically resected GC patients’ fresh tumor and matched adjacent tissues, we identified
and quantified a higher number of dysregulated proteins. In three independent cases with matched
samples, a total of 3639 and 3543 proteins in cancer and adjacent tissues were identified. For better
quantification, each of three case samples was performed in triplicates on LC-MS/MS and statistical
analysis was carried out. A total of 146 dysregulated proteins with more than twofold differential
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expression were quantified between tumor and adjacent tissues, 81 of which were downregulated,
while the other 65 proteins were upregulated in tumor tissues.

Further analysis indicated that many of these 146 proteins have been aligned with previous
studies, such as chloride intracellular channel 1 (CLIC1) [31], SFN [32,33], ATP5A1, carbonic anhydrase
2 (CA2), elongation factor 1-β (EEF1B2), tropomyosin alpha-4 chain (TPM4), PCNA [33], profilin
1 (PFN1), chromobox protein homolog 3 (CBX3) [34], ATP5H [33,34], filamin C [30], calponin-1
(CNN1) [35], heat shock protein β-1(HSPB1) [35]. These proteins have been reported to be associated
with poor prognosis, metastasis, aggressiveness, proliferation, migration and invasion, and may be
used as diagnostic biomarkers in GC. Meanwhile our data has shown, for the first time, that 22 of 146
dysregulated proteins are related with GC, for example hnRNPD, hnRNPR, ATP5D and EMILIN1.
These results not only validate the credibility and effectiveness of our data, but also suggest label-free
technique is high throughput approach for identifying proteins with the largest dynamic range and
the highest proteome coverage.

Although proteomics approaches focusing on the differences between tumor and adjacent tissues
can reveal a number of proteins relevant to tumor, functional annotations of carcinogenesis require
bioinformatics and biostatistical tools for analysis, which have become indispensable to handle and to
interpret the vast amount of data. In our study, IPA, PANTHER, STRING, DAVID and Reactome were
comprehensively used to exploit and explain any possible information related to GC carcinogenesis.
By elucidating, 117 and 99 molecules of 146 dysregulated proteins were classified to be related with
cancer and gastrointestinal disease development, respectively. Their functions concerning cellular
growth and proliferation, nucleic acid metabolism, small molecule biochemistry, cell death and
survival, cellular movement were all relative to cancer pathogenesis. Moreover, nucleic acid binding
proteins (8.9%) were the most abundant group identified to be predominantly catalytic in nature
(34.5%) and greatly involved in metabolic processes (25.5%). Kocevar et al. has partially confirmed our
hypothesis by identifying 30 different proteins involved in metabolism, development, death, response
to stress, cell cycle, cell communication, transport, and cell motility processes in GC [34]. Signal
pathway prediction revealed that metabolic pathways, gene expression, oxidative phosphorylation,
mitochondrial dysfunction, mRNA splicing were involved in GC carcinogenesis. Protein-protein
interaction prediction uncovered an integrated network with three protein clusters. The clusters
showed a recruitment of proteins with functional synergy, such as nucleic acid binding associated
proteins, metabolizing associated proteins and extracellular matrix associated proteins. It was clear
that all these proteins could somehow interact with each other so as to control the cells fate together.
In the network consisting of 65 upregulated proteins, a series of hnRNPA2B1, hnRNPD, hnRNPL,
hnRNPR together with other nucleic acid binding proteins, such as YBX-1, NPM1, RAN, SNRPF,
were gathered in the center of the network, and functionally reacted with some confirmed GC-related
proteins such as SFN with carcinogenesis and poor prognosis of GC [32,33], PCNA with abnormal cell
proliferation [33], VIM with epithelial-mesenchymal transition in tumor [36] These data remind us
that activation of the group of nucleic acid binding proteins might push stomach cells into entering an
abnormal proliferation cycle.

To confirm our findings and hypothesis that nucleic acid binding proteins may form a network
center and may play a vital role in abnormal cell proliferation during GC development, four
upregulated molecules of hnRNPA2B1, hnRNPD, hnRNPL and YBX-1 from the center of the network
in Figure 4 were selected to perform further experiments by Nano-LC-MS/MS, qRT-PCR, western
blot and immunohistochemistry. The results are consistent with the findings by the coupled label-free
MS approach, strongly supporting differential expression of four molecules between GC and adjacent
tissues in ten matched case samples.

HnRNPs are a set of primarily nuclear proteins that bind to nascent transcripts with important
roles in multiple aspects of nucleic acid metabolism, including the packaging of nascent transcripts,
alternative splicing and translational regulation. Their potential roles in tumor development
and progression including the inhibition of apoptosis, angiogenesis and cell invasion have been
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reported [37]. Aberrant expression of hnRNPs in cancers have been detected, for example hnRNPA2B1
in breast, pancreatic and gastric cancer, hnRNPB1 in lung cancer, esophagus cancer, leukemia and
lymphoma, hnRNPC1/C2 in lung cancer, hnRNPA2B2 in thyroid cancer and hnRNPM4 in lung
cancer [38]. In our study, hnRNPA2B1, hnRNPD, hnRNPL and hnRNPR expression were found to
be increased in GC tissues, but hnRNPC expression was decreased. Among these proteins, hnRNPD
and hnRNPR were first reported to be relevant with GC. In immunohistochemistry, we observed
that hnRNPA2B1 and hnRNPD expression have nucleo-cytoplasmic shuttling phenomenon. Elevated
expression of hnRNPA2B1 in GC has been reported [39], which is keeping in line with our results.
Translocation of hnRNPA2B1 with c-myc, c-fos, p53, and Rb from nucleolus to cytoplasm during tumor
cells differentiation [40]. HnRNPA2B1 could act as a novel regulator of oncogenic K-ras, modulating
PI3K/AKT/mTOR signal pathway in K-ras-dependent pancreatic ductal adenocarcinoma cells [41,42].
HnRNPD could enhance the expression of c-myc, c-fos and c-jun, and regulated liver cancer cell
proliferation in transgenic mice [43]. Thyroid carcinoma may recruit cytoplasmic hnRNPD to disturb
the stability of mRNAs encoding cyclin-dependent kinase inhibitors, leading to uncontrolled growth
and progression of tumor cells [44]. As illustrated above, many reports have shown that hnRNPs may
be involved in proliferation and metastasis in GC development.

YBX-1 is a multi-functional protein that participates in a wide variety of DNA/RNA-dependent
events, and acts as a versatile oncoprotein with an important role in carcinogenesis [45]. In our study,
the expression of YBX-1 was upregulated and the distribution of its nucleo-cytoplasmic shuttling
was indicated in GC tissues. Previous research reported that YBX-1 was predominantly localized in
cytoplasm, particularly in the perinuclear region in benign cells [45]. Environmental stresses, such as
adenovirus infection, hyperthermia, oxidative stress, UV irradiation or DNA-damaging drugs, could
induce YBX-1 relocation from cytoplasm to nucleus [45]. YBX-1 can activate E2F, PI3K/Akt/mTOR and
Ras/Raf/MEK/ERK pathways to promote cancer cell proliferation [46]. YBX-1 expression correlated
significantly with lymph node status and perforation and as a potential prognostic biomarker in
intestinal-type GC [47]. YBX-1 can promote GC development in both cancer cells and cancer vascular
cells [48]. Nuclear YBX-1 expression was significantly associated with Her2 expression, poor prognosis
and metastasis in GC patients [49]. In brief, YBX-1 may become a potential biomarker and target
molecule in GC therapy.

There are some limitations in our study that need to be addressed. Firstly, the 146 dysregulated
proteins were screened from only three GC patients between cancer and adjacent tissues, therefore it
is needed to confirm these dysregulated proteins among multiple specimens to avoid heterogeneity
and remove artificial differences owning to differential proteins losses during protein or peptide
preparation. Second, the sample size still needed to be expanded, particularly for qRT-PCR, western
blot and immunohistochemistry analysis. Tissue microarray should be employed to validate the results
and candidate molecules.

4. Experimental Section

4.1. Clinical Tissue Samples

Ten cases of GC and adjacent normal tissues were collected from GC patients who underwent
gastric resection at the Department of Digestive Diseases, Xijing Hospital Affiliated to Fourth Military
Medical University between November 2012 and January 2013. GC patients were male, ages from 40 to
70 years old, with primary and low to moderate differentiated gastric adenocarcinoma. Radiotherapy,
chemotherapy, and immunotherapy were not performed before surgery. Cancer tissues were taken
from the core area of tumor, avoiding inclusion of necrotic and adjacent non-cancerous tissues. Adjacent
tissues were prepared from non-cancerous regions at least 5 cm apart from the core area of tumor.
All samples were verified by two pathologists after surgery. Clinical pathologic characteristics are
described in Table S7 (Supplementary Material). Tissue samples were obtained with informed patient
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consent and approved by the Medical Ethics and Human Clinical Trial Committee of Xijing Hospital
(Approval No.: XJYYLL-2015694 and Approval Date: 4 March 2015).

4.2. Protein Preparation

Whole proteins were extracted from tissues as previously reported [17]. Matched GC and adjacent
fresh tissues were excised immediately following gastrectomy, cut into small blocks, and rinsed
with ice-cold PBS. About 100 mg GC or adjacent tissues were homogenized in RIPA lysis buffer
(Pierce, Thermo Scientific, Waltham, MA, USA) containing protease inhibitor cocktail (Roche, Basel,
Switzerland). Tissue lysates were centrifuged at 15,000ˆ g for 20 min at 4 ˝C, and supernatants were
collected. After protein concentration was determined by BCA (bicinchoninic acid) protein assay kit
(Pierce, Thermo Scientific, Germany), protein aliquots were stored at ´80 ˝C.

4.3. In-Solution Tryptic Digestion

Proteins from three pairs of GC and adjacent tissues were processed in-solution digestion
respectively as previously described [17,26]. The samples were dialyzed with ammonium bicarbonate,
reduced with DL-Dithiothreitol (DTT, Sigma-Aldrich, St. Louis, MO, USA), and alkylated with
iodoacetamide (IAA, Sigma-Aldrich). Trypsin (Sigma-Aldrich) digestion was performed at 37 ˝C for
24 h, and C18 spin columns (Millipore, Waltham, MA, USA) were used to purify the peptides. Peptides
were dried in SpeedVac and stored at ´80 ˝C until analysis.

4.4. SDS-PAGE and in-Gel Tryptic Digestion

About 100 µg protein were run on 12% sodium dodecyl sulfate polyacrylamide gel electrophoresis
(SDS-PAGE). Proteins from 10 samples of GC or adjacent tissue lysates were pooled to avoid
heterogeneity. After coomassie blue staining, the protein bands were cut into 10 equal shares from the
gel, processed in-gel digestion with trypsin using the standard protocol [50]. After trypsin digestion,
Ziptip C18 micropipette tips (Millipore) were used to purify the peptides prior to adding 0.1% formic
acid for Nano-LC-MS/MS analysis.

4.5. Nano-LC-MS/MS Analysis

The method was performed as previously described [26,50]. In brief, peptides of three individually
or ten pooled tryptic samples were fractionated by high pressure liquid chromatography (HPLC,
Thermo EASY-nLC System, Waltham, MA, USA) respectively: buffer A (0.1% (v/v) formic acid in
Milli-Q water) and buffer B (0.1% formic acid in 100% acetonitrile). Peptides were eluted from
the column at a constant flow rate of 300 nL¨min´1 with a linear gradient of buffer B from 5%
to 35% over 120 min. Then following full scan with LTQ Velos Pro tandem mass spectrometer
(Thermo Fisher Scientific, Waltham, MA, USA): LTQ MS/MS depended scans with collision-induced
dissociation (CID) mode. Each of the three tryptic samples must be loaded three times with the
same methods. MS/MS data were analyzed with Proteome Discoverer 1.4 (Mascot and SEQUEST,
Waltham, MA, USA) according to manufacturer’s instruction and searched against human uniprot
protein database (UniProtKB [51] 3 November 2014, 140,992 sequences) for protein identification.
Peptide mass tolerance was set to 0.8 Da, fragment mass tolerance was set to 10 ppm and a maximum
of two missed cleavages was followed. Variable modification was oxidation of methionine, static
modification was carbamidomethylation of cysteine. Protein identification was considered valid if at
least one peptide and the p-value <0.05, the proteins not satisfying these defined criteria were rejected,
the threshold for accepting MS/MS spectra was false discovery rate (FDR) 0.05.

4.6. Label-Free Quantification

Label-free quantification of three matched samples was acquired and analyzed in Progenesis
LC-MS software (version 4.1, Milford, MA, USA) as previously described [50,52]. Mass spectrometer
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raw-files were transformed to .mzxml with ReAdw-program and imported into Progenesis LC-MS
software. The ion intensity maps of all six runs were examined for defects. One sample was set as the
reference, data processing was aligned, and peptide ions with charge state of +1 or >4 and difference
ratio of proteins (adjacent/cancer) are <2.0-fold or >0.5-fold were excluded. For quantification, the
unique peptides validated by MS (p-value < 0.05) were chosen and calculated by summing the
abundances of all peptides allocated to a specific protein. The software calculates ANOVA and
q-values, which were used to deduce differentiating peptides.

4.7. Bioinformatics Analysis

Limited selections were used to screen label-free quantitative data before our results were
necessary for differential analysis: proteins with the same peptides found in two or three patients
were considered; retrieve the credibility is ě95%, false positive is <5% in the database; difference ratio
of proteins is ě2.0-fold and p-value is ď0.05; identified proteins must be redundancy by all artificial.
Dysregulated proteins were subjected to bioinformatics analysis tools for enrichment categories of
functional annotation, networks and diseases-related proteins, for example PANTHER 9.0 [53], IPA [54],
STRING (version 9.1) [55], Reactome [56] and DAVID (Bioinformatics Resources 6.7) [57].

4.8. Validation of Dysregulated Proteins by qRT-PCR, Western Blot and Immunohistochemistry

Tissues were ground with mortar and total RNA was extracted with RNAfast 1000 (Pioneer
biotechnology, Xi’an, China), and reverse transcribed with PrimeScript™ RT Reagent kit with gDNA
Eraser (TaKaRa, Tokyo, Japan) according to the respective manufacturers’ instructions. Diluted aliquots
of reverse transcribed cDNAs were used as templates in qRT-PCR containing SYBR Green PCR Master
Mix (TaKaRa) with Applied Biosystems 7500 Fast Real-Time PCR system (Life technologies, Waltham,
MA, USA). Triplicate reactions were carried out for each sample to ensure reproducibility. Gene
expression was quantified using the comparative cycle threshold (Ct) method. Primers sets are listed
in Table S7 (Supplementary Material).

Proteins from adjacent and tumor tissues were separated on SDS-polyacrylamide gels were
transferred to PVDF membranes by electro blotting. Membranes were washed and blocked, then
were incubated with the specific primary antibodies (Table S7, Supplementary Material) at 4 ˝C
overnight. Membranes were washed with PBST and incubated with the respective HRP-conjugated
secondary antibody. Signals were visualized with the WesternBright™ Sirius Highest sensitivity
chemiluminescent HRP Substrate (Advansta, Menlo Park, CA, USA) and intensities recorded with a
ChemiDoc-It 510 Imager (UVP, Upland, CA, USA). Band intensities were quantified using the Image J
and normalized to total protein on the membrane.

Immunohistochemistry analysis was performed with GC and adjacent tissues fixed in 10%
formalin, embedded in paraffin, and sectioned at 3–4 microns. Tissue sections were deparaffinized,
hydrated, subjected to thermal treatment in Tris–EDTA in a pressure cooker at boiling for 20 min for
antigen retrieval, exposed to endogenous peroxidase blocking and incubated with primary antibodies
(Table S7, Supplementary Material) for 2 h at room temperature. The reaction was visualized with 3,
31-diaminobenzidine tetra hydrochloride (DAB, Zhongshan, China) as chromogen. Finally, sections
were counterstained with hematoxylin, dehydrated, mounted, and tissue slides were evaluated
under a microscope (Olympus IX71, Olympus Corporation, Tokyo, Japan). For evaluating protein
expression, the intensity of staining was scored as negative, weak, moderate, or strong (score 0, 1, 2, or
3, respectively) [26].

4.9. Data Analysis

SPSS 19.0 software (SPSS Inc., Armonk, NY, USA) was used for statistical analysis. p-value < 0.05
was considered statistically significant. Statistical analyses between two groups were performed using
a two-tailed Student’s t-test.
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5. Conclusions

In summary, we confidently identified 146 dysregulated proteins including 22 proteins first
reported on paired GC and adjacent tissues by a coupled label-free MS approach. Additionally, we
noted the majority of dysregulated proteins were involved in cancers and gastrointestinal disease.
Moreover, four possible key carcinogenesis molecules of hnRNPA2B1, hnRNPD, hnRNPL and YBX-1
were validated by Nano-LC-MS/MS, qRT-PCR, western blot and immunohistochemistry. They were
located in a predicted interaction network keynotes and their nucleo-cytoplasmic shuttling may play an
important role in gastric carcinogenesis. Although further studies are needed to validate their functional
roles and molecular mechanism, these findings provide an overview and deeper understanding about
GC-related molecular changes, and provide a group of potential diagnostic/prognostic biomarkers
and therapeutic molecular targets for clinical intervention of GC.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/17/
1/69/s1.
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