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Abstract: Recently, the importance of the gut-liver-adipose tissue axis has become evident.
Nonalcoholic fatty liver disease (NAFLD) is the hepatic disease of a systemic metabolic disorder that
radiates from energy-surplus induced adiposopathy. The gut microbiota has tremendous influences
in our whole-body metabolism, and is crucial for our well-being and health. Microorganisms precede
humans in more than 400 million years and our guest flora evolved with us in order to help us face
aggressor microorganisms, to help us maximize the energy that can be extracted from nutrients, and
to produce essential nutrients/vitamins that we are not equipped to produce. However, our gut
microbiota can be disturbed, dysbiota, and become itself a source of stress and injury. Dysbiota may
adversely impact metabolism and immune responses favoring obesity and obesity-related disorders
such as insulin resistance/diabetes mellitus and NAFLD. In this review, we will summarize the
latest evidence of the role of microbiota/dysbiota in diet-induced obesity and NAFLD, as well as the
potential therapeutic role of targeting the microbiota in this set.
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1. Introduction

Nonalcoholic fatty liver disease (NAFLD) refers to the ectopic accumulation of fat in the liver. In
its primary form, NAFLD is the hepatic manifestation of metabolic dysfunction associated with energy
surplus-induced adiposopathy. The term adiposopathy has only recently been introduced in the
medical lexicon and translates the adipose tissue dysfunction that occurs, in susceptible individuals,
as a consequence of chronic positive caloric balance and sedentary lifestyle [1]. The true significance of
hepatic steatosis as a contributing player in obesity-induced dysmetabolism and global metabolic and
cardiovascular health is still unclear [2]. Regarding liver health, although most patients will present
stable, non-progressive disease, the high prevalence of this condition explains why NAFLD is the
number one cause of chronic liver disease in Western world and will predictably be the number one
cause of end-stage liver disease in the near future [3].

Little more than a decade ago, a major breakthrough linked the gut microbiota to the pathogenesis
of obesity and NAFLD [4]. Since then, medical research in the field has flourished exponentially.
However, huge gaps in knowledge still preclude us to have effective therapeutic strategies for obesity
and NAFLD that act through modulation of gut microbiota.

The gut microbiota comprises 10 to 100 trillion microbes. The gut microbiota is composed
by bacteria, archea, virus, and fungi, being dominated by four main phyla of bacteria: Firmicutes,
Bacterioidetes, Actinobacteria, and Proteobacteria, which represent more than 95% [5,6]. The collective
genome of the gut microbiota, referred to as a microbiome, contains at least 100 times more genes than
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the human genome [6]. Those extra genes are crucial to maintain our homeostasis. In fact, the gut
microbiome is enriched in several genes important for glycans and aminoacids metabolism, xenobiotics
metabolism, methanogenesis, and biosynthesis of vitamins [6]. This explains why the gut microbiota
contributes to host nutrition, bone mineral density, modulation of the immune system, xenobiotics
metabolism, intestinal cell development and proliferation, and protection against pathogens [7].

One important question still not fully answered is if there is a core microbiota common to humans.
In fact, although culture-based studies suggest that healthy humans would share the same gut bacterial
species, culture-independent studies showed that each individual harbors a unique collection of
bacterial strains and species [7,8]. Not only gut microbiota is specific to individual, it is also highly
resilient, promptly returning to baseline after perturbation [7,9–11]. However, recovery may be
impaired with recurrent perturbation [12]. Interestingly, despite the unique individual gut microbiota,
humans share similar functional gene profiles, implying a core functional microbiome [8].

The composition of the gut microbiota is regulated by (a) external factors such as vaginal versus
cesarean section delivery, breast feeding, antibiotics, pre/probiotics, diet, hygienic habits, and random
chance resulting in a colonization cascade; (b) interaction with the host such as genetics, Paneth cell
function, mucus composition, secretion of antimicrobial peptides; and (c) interaction between microbes,
which can result in competition or cooperation [5,13,14].

In this review, we will summarize the latest research on the interplay between diet, gut microbiota,
obesity, and fatty liver disease. We will also discuss the evidence of microbiota-targeting approaches
in the treatment of NAFLD.

2. Microbiota and Obesity

The first clue on the role of the microbiota in the pathogenesis of obesity came from
Backhed et al. [4] studies. They compared body weight gain in germ free mice and conventionally
raised mice, and found that the latter gained more weight, with increased adipose tissue and body fat
percentage, which could not be explained by different diet intake. Importantly, metabolic status was
worse in conventionally raised mice, with higher leptin levels, lower insulin sensitivity and greater
fat accumulation in the liver. Further supporting the concept that body weight was regulated by gut
microbiota, transplantation of microbiota harvested from conventionally raised mice into germ free
mice resulted in an increase in body weight and decrease in insulin sensitivity [4]. Moreover, the same
group showed that, not only germ-free mice were leaner than conventionally raised mice, they were
also resistant to western-type high-fat diet induced obesity [15]. Lastly, studies on animal models
showed us that not all microbiota has the same effect on metabolism, and raised the possibility of an
obesity-specific microbiota. In fact, transplantation of microbiota harvested by either genetically-obese
ob/ob mice [16] or high-fat diet induced obese mice [17] into germ free mice mimicked the obese
insulin resistant phenotype. Supporting the animal data, a small human study in male patients with
the metabolic syndrome submitted to autologous or allogenic (from a lean donor) intestinal microbiota
via duodenal tube, showed improvement in insulin sensitivity when the donor was lean [18].

Since then, several groups tried to characterize the obese-associated microbiota. Studies in either
genetically or diet-induced obese mice showed differences in the microbiota when comparing with
lean mice. Obese mice consistently showed a decrease in Bacterioidetes and an increase in Firmicutes
(particularly from the class Millicutes) [19–21]. This increase in Firmicutes associated with an increase
in enzymes able to breakdown indigestible polysaccharides from diet and producing short chain fatty
acids (SCFA) [19]. Obese mice also presented an increase in methanogenic Archea, which associates
with a lower hydrogen partial pressure and optimization of bacterial fermentation [19].

Studies in human obesity showed lower microbial diversity and similar differences in the intestinal
microbiota as suggested by animal studies [22–24].

In summary, there is an obesity-associated gut microbiota, and obesity can be infectiously
transmitted by transplant of that microbiome, suggesting that it is the microbiota itself that promotes
obesity. Supporting this concept, a prospective study in children showed that the risk of being
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overweight at seven years old could be predicted by the composition of gut microbiota at six months
old, which associated with lower prevalence of Bifidobacterium and higher of Staphylococcus aureus [25].

Obese mice waste less energy in the stools as compared to lean mice, and as little as a 20% decrease
in fecal Bacterioidetes associates with 150 Kcal decrease in energy harvest from the diet [26]. The
microbiota can modulate body weight through several mechanisms. One such mechanism is the
differential fermentation of indigestible carbohydrates in SCFA: butyrate, propionate, and acetate [27].
Overall, colonic-derived SCFA account for 10% of harvested energy from the diet, with acetate being
the main source of energy [28]. Butyrate and propionate are considered anti-obesogenic, and acetate
mainly obesogenic. Interestingly, while acetate and propionate are mainly produced by the phylum
Bacterioidetes, butyrate is mainly produced by Firmicutes (the most important belonging to clostridial
lusters IV and XIVa: Faecalibacterium prausnitzii, Eubacterium rectale, and Rosuberia intestinalis) [29,30].
Butyrate is a major source of energy for colonocytes, increasing intestinal health and potentially
decreasing gut permeability and preventing metabolic endotoxemia [31]. Butyrate also seems to
positively affect insulin sensitivity through stimulation of the release of the incretins glucagon-like
peptide-1 (GLP-1) and gastric inhibitory polypeptide (GIP) [32]. Both butyrate and propionate can
increase the expression of the anorexigenic adipokine leptin [33]. Other beneficial effects of propionate
are inhibition of resistin expression by the adipose tissue [34] and inhibition of cholesterol synthesis
through inhibition of acetyl-CoA synthetase and via buffering fatty acids to gluconeogenesis in
detriment of cholesterol synthesis [27]. On the other hand, acetate is the most substantially absorbed
SCFA, and is a substrate for lipogenesis and cholesterol synthesis in the liver and adipose tissue [27].
Finally, SCFA bind to specific receptors in the gut, liver, and adipose tissue, GRP43 and GRP41, which
seem to have anti-inflammatory and metabolic actions that protect from obesity [28]. Interestingly,
supplementation of oral butyrate in mice fed a Western diet, partially prevented liver steatosis and
inflammation, while having no effect on obesity [35].

Gut microbiota can also decrease the intestinal expression of the adipose tissue lipoprotein lipase
inhibitor fasting induced adipose factor (Fiaf), also known as angiopoietin-like factor IV (ANGPTL4).
The net result is increased uptake of fatty acids in the adipose tissue and liver, favoring expansion
of the adipose tissue and hepatic steatosis. Microbiota also prevents the beneficial action of Fiaf
in the expression of peroxisome proliferator-activated receptor (PPAR)-1α coactivator (PGC) and
fatty acids oxidation [15,36]. Other mechanisms by which gut microbiota promote obesity are an
increase in mucosal gut blood flow enhancing nutrients absorption [37]; inhibition of adenosine
monophosphate-activated protein kinase AMPK in the liver and muscle, and consequently inhibiting
peripheral fatty acids oxidation and insulin resistance [15]; and modulation of the pattern of conjugated
bile acids and its function in lipid absorption [38].

Obesity itself may also change the microbiota, independently of the diet. For example, leptin,
an adipokine whose levels are increased in obesity, has a direct role regulating the gut microbiota
composition, through the modulation of antimicrobial peptides secretion by Paneth cells in the gut [39].
As such, a vicious circle between microbiota and adiposity promotes further worsening of obesity.

3. Microbiota and Nonalcoholic Fatty Liver Disease (NAFLD)/Nonalcoholic Steatohepatitis (NASH)

NAFLD strongly associates with obesity. The aggregate data suggests that the gut microbiota
may play a significant role in the pathogenesis of obesity, as such it would be logical to think that the
gut microbiota also plays a role in the development of NAFLD and its progressive form, nonalcoholic
steatohepatitis (NASH). Indeed, that seems to be the case. Transplanting harvested microbiota from
conventionally raised mice to germ free mice, besides increasing body weight, it also increases the
fat content in the liver [4]. Furthermore, treatment with antibiotics protected from hepatic steatosis
in different dietary and genetic obese rodent models [40,41]. However, the association between gut
microbiota and NAFLD goes beyond the association with obesity.

Several studies in animal models and patients with NAFLD or NASH showed an association
with small bowel overgrowth and increased intestinal permeability [42–49]. Brun et al. [45], compared
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two strains of genetically obese mice, leptin deficient ob/ob and leptin-resistant db/db, with lean
control mice. They found that obese mice had increased intestinal permeability with lower intestinal
resistance and profound changes in the cytoskeleton of cells in the intestinal mucosa. In association
with increased gut permeability, obese mice, as compared to lean mice, had higher circulating levels
of inflammatory cytokines and portal endotoxemia. Finally, hepatic stellate cells from obese mice
expressed higher levels of the lipopolysaccharide (LPS) co-receptor CD14, and responded with a
more inflammatory and fibrogenic phenotype after stimulation with LPS [45]. Furthermore, a study
compared NAFLD patients with healthy subjects, and found that patients with NAFLD had an
increased susceptibility to develop increased intestinal permeability after a minor challenge with low
dose aspirin [46]. Concordant with those observations, obesity and NAFLD associates with metabolic
endotoxemia, i.e., increased blood levels of lipopolysaccharide (LPS), a component of the wall of
Gram-negative bacteria that binds to specific receptors, toll like receptor-4 (TLR-4), and can promote
hepatic and systemic inflammation [47,49,50]. Verdam et al. [51] also showed an increase in plasma
antibodies against LPS in patients with NASH as compared to healthy controls, which progressively
increased with increased severity of liver disease. The role of LPS is highlighted by the study by
Cani et al. [50] in which LPS injections in mice simulated the effects of a high-fat diet, in terms of
weight gain, insulin resistance, and development of NAFLD. Furthermore, mice deficient in TLR-4 are
not only protected from LPS-induced obesity and NAFLD, but also from high-fat diet-induced obesity
and NAFLD [50], as well as NAFLD and NASH in different rodent models [47,52–54].

Perturbations in the metabolism of bile acids seem to have a prominent role in the pathogenesis of
NAFLD [55]. Bile acids are not only critical in the absorption of fat, they are also signaling molecules
with actions in their own metabolism, as well as energy, lipoproteins, and glucose metabolism, through
its receptors farsenoid X receptor FXR and TGR5. There is a known mutual influence between bile
acids and gut microbiota. Bile acids have potent antimicrobial properties [56]. On the other hand, the
gut microbiota increases the diversity of bile acids through the deconjugation, dehydrogenation, and
dehydroxylation of primary bile acids. In fact, conventionally raised mice, as compared to germ free
mice presented a decrease in tauro-conjugates (which are potent FXR antagonists and hence positive
regulators of bile acids synthesis), while maintaining levels of the more toxic cholic acid [57].

Recently, two studies elegantly demonstrated that NAFLD could be a transmissible disease,
through gut microbiota. Le Roy et al. [58] fed mice with high fat diet for 16 weeks, and while most of
the animals developed NAFLD, insulin resistance, and systemic inflammation (dubbed responders),
some mice did not develop NAFLD or insulin resistance (dubbed non-responders). When they
transplanted germ free mice with microbiota harvested from those animals, they obtained a metabolic
and liver phenotype only if the donors were responders. Furthermore, mice with a genetic deficiency
of the inflammasome in the gut exhibited a perturbed gut-innate immunity and an abnormal gut
microbiota with increased Bacterioidetes (particularly from the family Porphyromondaceae) and
decreased Firmicutes. Those mice developed worse liver damage when fed NASH-inducing diets,
with increased steatosis, inflammation, and aminotransferases levels, as compared to their wild type
counterparts. Interestingly, co-housing those transgenic mice with wild type mice turned the latter
more sensitive to the diet-inducing NASH, effect that was abrogated by concomitant treatment with
antibiotics [59]. Lastly, de Minicis et al. [60] modulated gut microbiota through high-fat diet (which
induced an increase in Proteobacteria), before submitting mice to bile duct ligation. Those mice
developed worse fibrosis than chow diet fed mice. They simulated the increased susceptibility to
fibrosis by transplanting gut microbiota from high-fat diet fed mice, which was even worse when they
selectively transplanted Gram-negative bacteria.

The gut microbiota also seems to have a role in NAFLD-associated hepatocarcinogenesis.
Yoshimoto et al. [61] showed that, in different animal models of obesity, dysbiota associates with
increased deoxycholic acid reaching the liver through the enterohepatic circulation. This bile acid was
able to produce a senescence phenotype in hepatic stellate cells that induced a secretory profile able to
promote inflammation and tumorigenesis.
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Several studies in adult patients, have tried to evaluate if the presence of NAFLD associates
with a specific dysbiota [62–67] (Table 1). Those are small studies, with different populations and
controls and often without histological diagnosis. Furthermore, statistical significance was achieved in
different categories in the taxonomic hierarchy. Though NAFLD/NASH seems to share some of the
microbiota specificities associated with obesity, at the phylum level, only one study found NASH to be
associated with a decreased percentage of Bacterioidetes [63]. The two studies that compared patients
with NAFLD with healthy controls found an increase of the genus Lactobacillus, and a decrease in the
family Ruminococcaceae in NAFLD patients [64,67]. Regarding the association with Lactobacillus, it is
surprising, since several species from this genus are frequently used as probiotics. Lactobacillus are
lactic acid bacteria that can inhibit pathogens, enhance the epithelial barrier function, and modulate
immune responses [68], actions that would seem protective in the pathogenesis of NAFLD/NASH.
However, Lactobacillus may associate with the production of volatile organic compounds such as acetate
and ethanol [69], which may be important in the pathogenesis of obesity and NAFLD [64]. In fact, the
genus Lactobacillus comprises over 180 species and a wide variety of organisms; while some can only
produce lactic acid from the fermentation of sugars (e.g., L. acidophilus and L. salivarius), other can also
produce ethanol (e.g., L. casei, L. brevis and L. plantarum). Again, the decrease of Ruminococcaceae
may also translate to a decrease in the production of SCFA such as butyrate, since many bacteria
from that family produce butyrate [70]. A decrease in butyrate-producing bacteria, such as the genus
Faecalibacterium [70] has also been associated with NASH, as compared to healthy controls [65]. As
compared to healthy subjects, patients with NAFLD also showed increased percentage of bacteria
from the genera Escherichia and pathogenic Streptococcus, both known to potentially induce persistent
inflammation in the intestinal mucosa, and to be associated with inflammatory bowel disease [71,72].
In accordance, patients with NAFLD exhibited higher expression of proinflammatory cytokines in the
intestinal mucosa [67]. Some Escherichia species also produce ethanol, which can further increase gut
permeability. In fact, children with NASH also displayed increased levels of Escherichia bacteria in
their stools [73].

Spencer et al. [62] evaluated an interaction between choline metabolism and microbiota in the
development of NAFLD. They studied 15 inpatient women and submitted them to depletion of
choline. They found that differences in two classes of bacteria (decrease in Gammaproteobacteria and
increase in Erysipelotrichi), in association with genetic polymorphisms in phosphatidylethanolamine
N-methyltransferase (PEMT, a key enzyme in the choline metabolism), could predict the susceptibility
to develop NAFLD with choline depletion. This is highly relevant, because the median choline intake
in the United States is half the recommended dose (recommended dose: 550 mg per day) [74]. Gut
microbiota can further promote choline depletion by hydrolyzing choline to trimethylamine, which
can be further metabolized in the liver into the toxic compound trimethylamine N-oxide (TMAO).
Interestingly, feeding mice with high fat diet is known to shift the gut microbiota into a choline
degradation profile [75].

In patients with NAFLD, the presence of NASH associated with an increase in the genus
Bacteroides [66]. This skew in favor of Bacteroides may translate to an increase in the toxic bile
deoxycholic acid, which is known to induce apoptosis in hepatocytes and to be increased in patients
with NASH [76,77]. Furthermore, Bacteroides has been associated with an increase in branched-chain
fatty acids derived from aminoacids fermentation, which have diabetogenic potential [78]. Lastly,
in patients with NAFLD, the presence of significant fibrosis also associated with increased content
of the genus Ruminococcus, which is difficult to interpret, since it is a highly heterogeneous genus
including both potentially beneficial and detrimental species [66]. Nevertheless, some species from
the Ruminococcus genus are pro-inflammatory and able to produce ethanol [79–81], two potential
pathogenic mechanisms in the progression of NAFLD.
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Table 1. Studies evaluating microbiota in human NAFLD/NASH.

Study Population Phyla Class Order Family Genera Species

Spencer, M.D.,
2011 [62]

15 women with a choline
deficient diet and risk for

NAFLD

Firmicutes Ò Erysipelotrichi

Proteobacteriaceae Ó Gammaproteobacteria

Mouzaki, H.,
2013 [63]

17 controls biopsy proven:
11 SS

22 NASH

Ó Bacterioidetes

Firmicutes Clostridia Clostridiales Clostridiaceae Clostridium Ò C. coccoide

Raman, H.,
2013 [64]

30 obese with NAFLD
30 healthy controls

Firmicutes
Bacilli Lactobacillales Lactobacillaceae Ò Lactobacillus

Clostridia Clostridiales
Ò Lachnospiraceae

Ò Robinsoniella
Ò Roseburia
Ò Dorea

Ó Ruminococceceae Ó Oscillibacter

Wong, V.W.S.,
2013 [65]

16 NASH
22 healthy controls

Bacterioidetes Bacterioidia Bacteroidales Ò Porphyromonadaceae Ò Parabacteroides

Ó Firmicutes Clostridia Ó Clostridiales Clostridiaceae Ó Faecalibacterium
Ó Anaesporobacter

Negativicutes Selenomonodales Veillonellaceae Ò Allisonela

Proteobacteria Gammaproteobacteria Ò Aeromonadales Ò Succinivibrionaceae

Boursier, J.,
2015 [66]

57 patients with NAFLD:
30 F0/F1
27 > F1

Bacterioidetes Bacterioidia Ò Bacterioidales
(NASH)

Firmicutes Clostridia Clostridiales Rumminococceceae Ò Ruminococcus (>F1)

Jiang, W.,
2015 [67]

53 NAFLD
32 healthy controls

Bacterioidetes Bacterioidia Bacteroidales
Ó Porphyromonadaceae Ó Odoribacter

Rikenellaceae Ó Alistipes

Prevotellaceae Ó Prevotella

Firmicutes

Bacilli Lactobacillales
Lactobacillaceae Ò Lactobacillus

Streptococcaceae Ò Streptococcus

Clostridia Clostridiales

Clostridiaceae Ò Clostridium

Ó Ruminococceceae Ó Oscillibacter

Ó Flavonitractor

Proteobacteriaceae Gammaproteobacteria Enterobacteriales Enterobactereaceae Ò Escherichia

Ó Lentisphaerae

In bold are the associations described. NAFLD, nonalcoholic fatty liver disease; NASH, nonalcoholic steatohepatitis, F0/F1, no or mild fibrosis, >F1, significant fibrosis. Arrows
indicate the differences in the studied group as compared to the control group.
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NAFLD and particularly NASH also seem to associate with specific changes in the oral microbiota.
Yoneda et al. [82] studied 150 patients with NAFLD (of those 102 with NASH) and 60 healthy controls,
and found that infection with Porphyromonas gingivalis (the major cause of periodontitis) tripled
the risk for NAFLD and quadrupled the risk for NASH, independent of ge and metabolic syndrome.
In 10 patients with NAFLD, treatment of periodontitis prompted an improvement in liver enzymes [82].
Furthermore, in patients with NASH, positive immunohistochemistry for P. gingivalis associated with
increased fibrosis [83]. In mice fed high-fat diet, infection with P. gingivalis associated with endotoxemia
and increased blood levels of proinflammatory cytokines, as well as worse liver disease, including
worse fibrosis [82,83].

In summary, gut microbiota can contribute to the development and progression of NAFLD via
several mechanisms: (a) modulation of energy homeostasis and energy harvested from diet with
associated obesity and dysmetabolism [4,26]; (b) modulation of intestinal permeability promoting
endotoxemia as well as other microbe products that promote systemic and hepatic inflammation [50];
(c) modulation of the choline metabolism (required for very low density lipoproteins VLDL synthesis
and export of lipids from the liver) [75]; (d) generation of endogenous ethanol as well as other
toxic products such as TMAO [73,84–86]; and (e) modulation of bile acids homeostasis and FXR
function [87,88] (Figure 1).
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4. Diet and Microbiota

Both the quality and quantity of our diet strongly modulate the gut microbiota. Different diets
associate with different compositions of the microbiota. De Fillipo et al.’s [89] work beautifully
translates this concept. They compared the fecal microbiota of European children (who ate a modern
Western diet) with children from a rural African village of Burkina Faso (which ate a high-fiber
diet, similar to the ancient diet soon after the birth of agriculture). Children from Burkina Faso
had a decreased Firmicutes/Bacterioidetes ratio, a higher percentage of bacteria from the genera
Prevotella and Xylanibacter (known to be equipped with enzymes in the degradation of indigestible
carbohydrates), and a decrease in the proinflammatory Enterobacteriaceae, Shigella and Escherichia.
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They also had higher amounts of SCFA in the stools. This study suggests that gut microbiota coevolved
with the polysaccharide rich diet in order to maximize energy intake from fibers [89].

How quickly can a change in the diet induce differences in the microbiome? In mice, we can induce
changes in the gut microbiome after just one single day on a different diet [17]. Studies in humans
also showed diet-driven changes in the intestinal microbiota occurring as early as in three to four
days [90]. In a clinical study, David et al. [91] were able to induce differences in microbiota, that would
be metabolically more fit to the type of diet administered, entirely animal or entirely plant products, in
just five days. Furthermore, volunteers placed on a three-day high or low-calorie diet, showed that even
this short-term increase in energy intake, associated with an increased Firmicutes/Bacterioidetes ratio,
correlated with a decrease in the proportion of energy loss in the stools [26]. Indeed, diets enriched
in fibers associate with an increase in the fecal loss of energy [92]. However, after stopping the diet,
microbiota quickly returned to the basal state, translating the high resilience of our gut flora. Similarly,
a dietary intervention in obese or overweight subjects, consisting of administering an energy-restricted
high protein diet during six weeks, increased the diversity of species in the gut, along with decreased
adiposity, which reverted to basal levels after the diet was stopped [93]. In contrast, long-term diets
were able to induce more profound changes in the microbiota than short-term ones [94].

Chronic high-fat diet feeding in mice is known to change gut microbiota with progressive increase
in Firmicutes and decrease in Bacterioidetes [20,21]. One important question regarding diet-induced
changes in the microbiota is whether it is the composition of the diet or the number of calories ingested
that has an effect on gut flora. Also, is diet or obesity itself the important factor for our gut health?
Several lines of evidence suggest that both quantity and quality of the diet modulate gut microbiota.
Mice deficient in resistin-like molecule β are resistant to high-fat diet induced obesity, however they
still shift their gut microbiota with a decrease in Bacterioidetes and increase in Firmicutes as well
as Proteobacteria, in response to those diets, in a similar way as their wild type counterparts [95].
This suggests that it is diet and not obesity, the critical factor determining the gut microbiota. On
the other hand, when genetically obese leptin resistant mice were pair-fed with wild type mice, they
still maintained the same differences in gut microbiota as genetically obese leptin resistant mice
fed ad libitum [39]. This suggests that leptin itself (and hence the obesity state) may modulate gut
microbiota independently of the diet.

Suggesting a critical effect on the composition of the diet, different formulations of high-fat
diet, with different percentages of saturated and polyunsaturated fatty acids, seem to have different
effects on the gut microbiota. Feeding mice with diets with higher percentage of saturated fatty
acids not only seemed to associate with worse weight gain and hepatic steatosis, it also induced
more profound changes in the microbiome, with a decrease in diversity and an increase in the
Firmicutes/Bacterioidetes ratio [96]. Concordant with the concept of diet composition and gut
microbiota crosstalk, mice were fed with either low-fat diet for 35 weeks (remaining lean), high-fat diet
for 35 weeks (becoming and remaining obese), low-fat diet for 12 weeks followed by restricted intake
of low-fat diet for 23 weeks (to maintain a 20% reduction in body weight), or high-fat diet for 12 weeks
followed by restricted intake of high-fat diet for 23 weeks (in order to gain weight and then maintain
a 20% reduction in body weight) [97]. The authors found that, regardless of weight status, low-fat
diets induced the higher abundance of Firmicutes due to two species from the genus Allobaculum, and
the high-fat diets induced the higher abundance of non-Allobaculum Firmicutes, Bacterioidetes and
Mucispirillum. The aggregate animal data suggest a contribution of the quality of the diet versus the
caloric intake in the composition of the gut microbiota.

Similar conclusions regarding the importance of quality versus quantity of the diet, can be taken
from a study on obese volunteers that ate one of two isocaloric diets: low carbohydrates/high fat or
high carbohydrates/low fat [98]. While the former diet associated with a decrease in fecal SCFA and
Bifidobacterium, the latter associated with an increase in total anaerobes in fecal samples.

Fava et al. [99] studied subjects at increased risk for the metabolic syndrome. Those subjects
were given a high saturated fat diet for four weeks and, subsequently, randomized for one of
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the following diets: high saturated fat diet, high monosaturated fat (MUFA)/high glycemic index
diet, high MUFA/low glycemic index diet, high carbohydrate/high glycemic index diet and high
carbohydrate/low glycemic index diet. They found that high carbohydrate diets (low fat) increased
fecal Bifidobacterium and improved glucose metabolism, however if the diet had high glycemic index,
it associated with an increase in fecal Bacteroides (which were associated with NASH in patients
with NAFLD [66]), and if the glycemic index were lower, it associated with an increase in
Faecalibacterium prausnitzii (which seems beneficial in protecting from NASH [65]). Furthermore, high
saturated fat diets associated with increased fecal SCFA content. In conclusion, the Fava et al. [99] study
beautifully translates that different compositions of isocaloric diets can modulate the gut microbiota,
with potential impact in the risk for the development of the metabolic syndrome and NASH.

Studies in mice showed that high-fat diets could increase fecal content of hydrogen sulfide
producing bacteria such as from the family Desulfovibrionaceae. This is a relevant effect since
hydrogen sulfide is toxic to colonocytes, perturbing intestinal barrier function and increasing
endotoxemia [100]. Another important association was made with Akkermansia muciniphila, a specific
type of mucin-degrading bacteria that improves intestinal barrier. Akkermansia muciniphila levels were
shown to decrease after high fat diet [101].

Recently, different groups showed that bariatric surgery might induce weight loss not necessarily
by a decrease in food intake and through malabsorption, but also by modulating the gut microbiota.
Obese patients submitted to bariatric surgery experienced profound changes in the gut microbiota
that correlated with weight loss, including: an increase in diversity, decrease in Firmicutes and
methanogenic Archea, with concurrent increases in Bacterioidetes and Gammaproteobacteria, as well
as a decrease in lactic acid bacteria such as Lactobacillus and Bifidobacterium [102–104]. Indeed, causality
between modulation of gut microbiota and weight loss was proved by Liou et al. [105] Transfering the
gut microbiota from mice that underwent bariatric surgery into non-operated germ-free mice, resulted
in weight loss, decreased body and liver fat, as compared to germ-free mice receiving gut microbiota
from mice submitted to sham surgery.

More recently, bile acids entered the equation between bariatric surgery, altered microbiota and
weight loss. In fact, bariatric surgery is known to associate with increased circulating levels of bile
acids and FXR signaling [106–109]. Suggesting a role of bile acids through FXR signaling, FXR deficient
mice submitted to high-fat diet induced obesity and subsequent bariatric surgery (vertical sleeve
gastrectomy), were less prone to sustained weight loss after surgery, with compensatory increase in
food intake within three to five weeks [110]. Also, they did not improve glycemic control after surgery.
Interestingly, as compared to wild type mice, in FXR deficient mice, bariatric surgery had an attenuated
ability to modulate the gut microbiota, with no inhibition of Bacteroides and maintaining a decrease in
Roseburia (known to also be decreased in human type 2 diabetes mellitus).

5. Microbiota as a Therapeutic Target

We can intervene in order to modulate our gut microbiota either giving commensal organisms
known to improve our health status (dubbed probiotics), giving carbohydrates that stimulate the
growth of potential beneficial commensals (dubbed prebiotics), or by giving a mix of both (dubbed
symbiotics). In this review we will focus on the evidence on probiotics and symbiotics, since data on
prebiotics alone are less robust.

Probiotics can potentially be beneficial in the treatment of NAFLD/NASH through several
mechanisms: (a) competition with pathogenic species and antimicrobial effect modulating IgA
secretion; (b) anti-inflammatory effect with inhibition of pro-inflammatory cytokines production;
(c) increased gut satiety signals such as induction of YY peptide and inhibition of orexigenic ghrelin;
(d) promotion of intestinal epithelium integrity and improvement of intestinal barrier; (e) decreased
harvesting of energy from non-digestible carbohydrates; (f) decreased production of ethanol and other
volatile organic compounds; (g) increased production of Fiaf; (h) decreased fatty acid oxidation in the
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liver; (i) insulin-sensitizing effect via synthesis of GLP-1; (j) modulation of bile acids and cholesterol
metabolism; as well as (k) modulation of choline metabolism [13,111,112].

Due to the high resilience of our gut microbiota that easily tends to return to baseline after
perturbation, interventions aimed to modulate the gut microbiota are deemed to early relapse to the
initial dysbiota state after stopping the intervention, unless long-term approaches are used.

Several pre-clinical studies evaluated the role of probiotics in protecting from obesity and/or
the metabolic syndrome, in different rodent models of obesity [113–117]. The studies are difficult to
compare because not only are the models used different, the probiotics used are also different. While
not all studies achieved a decrease in body weight and adiposity [117], all showed some metabolic
benefit. Similarly, clinical studies in obese patients used different probiotics [118–122]. Those studies
had small sample sizes and many of them were uncontrolled interventions [118,120,121]. Not all
interventions achieved an improvement in body weight [118] or in metabolic profile [119,121]. While
small pilot studies on prebiotics applied to obese patients did modify the gut microbiota [123] and
improved lipid profile, in general those interventions failed to achieve weight loss or improvement in
the glucose metabolism [124–126].

Probiotics have also been studied as a therapeutic tool for NAFLD/NASH. Three preclinical
studies in mouse models of NAFLD associated with genetic and/or diet-induced obesity evaluated
the role of a probiotic preparation, VSL#3. VSL#3 contains eight bacterial species from the
genera Bifidobacterium, Lactobacillus, and Streptococcus salivarius subsp. thermophilus. This
intervention improved steatosis, aminotransferases levels, serum lipids and insulin resistance [127–129].
Additionally, mice fed methionine-choline diet, a model of severe NASH not associated with obesity or
the metabolic syndrome, developed less liver fibrosis when treated with VSL#3 [130]. Other probiotics
also showed beneficial effects in animal models of NAFLD/NASH [131–139].

In humans, only small short-term pilot studies evaluated different probiotic/symbiotic
preparations as a therapeutic approach for NAFLD (Table 2) [140–147]. However, the expectations
on probiotics as a therapeutic tool in NAFLD are so high, that there are more systematic reviews
and meta-analysis [13,112,148–154] on the topic than primary studies itself. Most studies did find a
decrease in aminotransferases levels and hepatic steatosis after a short-term intervention. However,
in terms of dysmetabolism, these studies failed to show benefit in anthropometric parameters and
effect on lipid and glucose metabolism was not consistent among studies. Eslamparast et al. [146]
noninvasively assessed liver fibrosis with transient elastography, pre- and post-intervention. They
performed a randomized clinical trial, compared to placebo in 26 patients with NAFLD in each arm.
They used a probiotic mixture that included different species from Lactobacillus, Bifidobacterium, and
Streptococcus genera, as well as two different yeasts. After seven months of therapy, they did achieve
a difference between probiotic and placebo arms in liver fibrosis, favoring the probiotic arm. One
randomized clinical trial, with 36 patients with NASH in the probiotic group and 36 in the control
group, performed liver biopsy pre and post-intervention [143]. After six months of treatment with
Zirfos (a symbiotic with B. longum), patients in the symbiotic group, as compared to the placebo
group, profited in terms of hepatic steatosis, but had no advantage in hepatocellular ballooning, liver
inflammation, or liver fibrosis.

In summary, though promising, the evidence for the use of probiotics in the treatment of
NAFLD/NASH is still insufficient. Studies are small, with short-term interventions, different
formulations, different compositions of probiotics/symbiotics, and different durations of treatment.
Also, most studies lack liver biopsy. The one study that systematically performed liver biopsy
pre- and post-intervention failed to demonstrate significant differences between probiotics and placebo
in important histological endpoints such as hepatic inflammation and fibrosis [143].
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Table 2. Studies evaluating the therapeutic role of probiotics in human NAFLD/NASH.

Study Design Probiotic Composition Results

Loguercio, C.,
2002 [140]

10 patients with NASH
No control group

Two months intervention

LAB: L. acidophilus, L, rhamnosus, L plantarum, L. salivarius, L. casei,
L. bulgaricus, B. lactis, B. bifidus, B. breve, FOS, vitamins

Ó liver enzymes: ALT and γGT
Ó TNF-α levels and oxidative stress

Relapse after stopping the intervention

Loguercio, C.,
2005 [141]

22 patients with NASH
No control group

Three months intervention

VSL#3: B. breve, B. longum, B. infantis, L. acidophilus, L. plantarum,
L. paracasei, L. bulgaricus, S. Thermophilus

(2 capsules, twice a day)

Ó liver enzymes
Ó oxidative stress

Aller, R.,
2011 [142]

Patients with NAFLD: probiotic group n = 15 and
control group n = 15

Three months intervention
Mixture of 500 million L. bulgaricus + S. thermophiles

Ó liver enzymes: ALT
no difference in anthropometric metrics

no difference in lipid/glucose metabolism
no difference in IL-6 or TNF-α levels

Malaguarnera, M.,
2012 [143]

Patients with NASH: Probiotic group n = 34
and control group n = 29

Biopsy pre and post-intervention
Six months intervention

Zirfos: FOS, B. longum, vitamins

Ó liver enzymes: AST
Ó LDL-cholesterol and insulin resistance
Ó TNF-α levels and endotoxemia

no difference in anthropometric metrics
Ó steatosis and NAS score

no difference in ballooning, inflammation or fibrosis

Wong, V.W.S.,
2013 [144]

Patients with NASH: probiotic group n = 10 and control
group n = 10

Six months intervention
Lepicol: L. deslbrueckii, L. acidophilus, L. rhamnosus, B. bifidum

Ó liver steatosis by H-MRS
Ó liver enzymes: AST

no difference in anthropometric metrics
no difference in lipid/glucose metabolism

Nabavi, S.,
2014 [145]

Patients with NAFLD: probiotic group n = 36 and
control group n = 36

Two months intervention
Probiotic yogurt containing L. acidophilus La5 and B. lactis Bb12 Ó liver enzymes: ALT and AST

Ó total cholesterol and LDL-cholesterol

Eslamparast, T.,
2014 [146]

Patients with NAFLD: Probiotic group n = 26 and
control group n = 26

Fibroscan© pre and post-intervention
Seven months intervention

Protexin: L. plantarum, L. bulgaricus, L. acidophilus, L. casei, B. bifidum,
S. thermophilus, S. faecium, Torulopsis spp, Aspergillus oryzae

Ó liver enzymes: AST, ALT and γGT
Ó TNF-α levels

Ó fibrosis assessed by transient elastography

Sepideh, A.,
2015 [147]

Patients with NAFLD: probiotic group n = 21 and
control group n = 21

Two months intervention

Lactocare: L. casei, L. acidophilus, L. rhamnosus, L. bulgaricus, B. breve,
B. longum, S. Thermophilus

(2 capsules per day)

Ó insulin resistance and IL-6
no difference in anthropometic metrics

no difference in TNF-α levels

ALT, alanine aminotransferase; AST, aspartate aminotransferase; FOS, fructooligosaccharides; γGT, γ-glutamyl transpeptidase; H-MRS, proton magnetic resonance spectroscopy;
IL-6, interleukin-6; LDL, low density lipoprotein; NAFLD, nonalcoholic fatty liver disease; NASH, nonalcoholic steatohepatitis, TNF-α, tumor necrosis factor α. Arrows indicate the
differences in the intervention group as compared to the control group.
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6. Conclusions

Obesity-associated NAFLD is the hepatic pandemic of our century. The gut microbiota has a huge
impact in the pathogenesis of obesity and its metabolic complications, as well as in the development and
progression of NAFLD. Gut dysbiosis promotes obesity through modulation of the energy harvested
from the diet, as well as through direct modulation of adipose tissue and hepatic metabolism. Bacterial
products may be toxic, two examples being ethanol and TMAO. Dysbiota may also perturb choline
and bile acid metabolism, with detrimental effects in the liver. Furthermore, gut dysbiota can perturb
the intestinal barrier, and bacterial products may induce systemic toxicity, including hepatic toxicity,
that favors proinflammatory states and liver injury.

Several lines of evidence link NAFLD to dysbiosis; for example NAFLD associates with small
bowel bacterial overgrowth, increased intestinal permeability, and endotoxemia. Also, in animal
models of NAFLD/NASH, as well as in patients, the composition of the gut microbiota tends to be
different from healthy subjects. Lastly, in animal models, NAFLD can be a transmissible disease by
fecal microbiota transplantation from donors prone to develop NAFLD.

Taken into consideration the acknowledged role of gut dysbiosis in the pathogenesis of
NAFLD/NASH, there are huge expectations on the role of probiotics/symbiotics in modulating
the gut microbiota and hence having a therapeutic role in NAFLD. Despite the enthusiasm on
the field, the available studies are small, heterogeneous, short-term, and do not properly address
hepatic histology/risk for progressive liver disease. Hence, the lack of solid evidence, still precludes
us implementing probiotics in the management of NAFLD/NASH. Extensive pre-clinical studies
comparing different approaches in different animal models of NASH would be important to better
delineate large multicentric well-designed, well-powered studies in patients with NASH. Other
strategies for modulating the gut microbiota, such as fecal microbiota transplantation may merit
further study.
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