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Abstract: Hyperglycemia is closely associated with prediabetes and Type 2 Diabetes Mellitus.
Hyperglycemia increases the risk of vascular complications such as diabetic retinopathy, diabetic
nephropathy, peripheral vascular disease and cerebro/cardiovascular diseases. Under hyperglycemic
conditions, the endothelial cells become dysfunctional. In this study, we investigated the
miRNA expression changes in human umbilical vein endothelial cells exposed to different glucose
concentrations (5, 10, 25 and 40 mM glucose) and at various time intervals (6, 12, 24 and 48 h). miRNA
microarray analyses showed that there is a correlation between hyperglycemia induced endothelial
dysfunction and miRNA expression. In silico pathways analyses on the altered miRNA expression
showed that the majority of the affected biological pathways appeared to be associated to endothelial
cell dysfunction and apoptosis. We found the expression of ten miRNAs (miR-26a-5p, -26b-5p,
29b-3p, -29c-3p, -125b-1-3p, -130b-3p, -140-5p, -192-5p, -221-3p and -320a) to increase gradually with
increasing concentration of glucose. These miRNAs were also found to be involved in endothelial
dysfunction. At least seven of them, miR-29b-3p, -29c-3p, -125b-1-3p, -130b-3p, -221-3p, -320a and
-192-5p, can be correlated to endothelial cell apoptosis.
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1. Introduction

Physiologically, hyperglycemia is often caused by metabolic abnormalities. The early metabolic
abnormalities are termed the impaired fasting glucose (IFG), a pre-diabetic stage. It may take several
years before the IFG eventually develop Type 2 Diabetes Mellitus (T2DM) [1]. Hyperglycemia induces
both phenotypic and genotypic alterations in vascular tissues. The effects of hyperglycemia are often
irreversible and lead to progressive cell dysfunction. Chronic exposure to hyperglycemia is identified
as the primary casual factor in the pathogenesis of diabetic complications and in the development of
endothelial dysfunction [2]. Evidently, hyperglycemia is considered as an important risk factor for
cardiovascular diseases. Therefore, early detection and aggressive treatment of hyperglycemia will
prove to be useful in retarding the development of microvascular complications, as well as prevention
of macrovascular complications [3].

Endothelial cells (ECs) are simple squamous cells that line the luminal surface of blood vessels,
which serve as an interface between circulating blood and the intima layer of the blood vessels [4,5].
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ECs are crucial for the maintenance of healthy vasculature and are sensitive to changes to blood glucose
level [6]. Under normal condition, ECs remain in the quiescent state and regulate vascular tone. While
during T2DM disease progression, hyperglycemic conditions cause functional impairment of ECs
resulting in endothelial dysfunction [7]. This event could be characterized by decreased nitric oxide
production, enhanced endothelial permeability, elevated adhesion molecule expression and increased
cell death [8]. These ultimately lead to T2DM-related vascular complications [9]. Hence, detection and
prevention of vascular damage in the early stages of T2DM progression can ameliorate the onset of
vascular complications.

The current biomarkers for endothelial dysfunction such as C-reactive protein (CRP), P-selectin,
E-selectin, Von Willebrand factor (VWF), Interleukin 6 (IL-6), Chemokine C-C motif ligand 2 (CCL2),
Vascular cell adhesion molecule 1 (VCAM-1), Intercellular adhesion molecule 1 (ICAM-1) can only be
used in later stage of T2DM disease progression [10]. Most of the current techniques in monitoring
glucose level cannot quantify the degree of endothelial cell damage [6,11]. There is a need to identify
marker(s) that can be sensitive enough to detect endothelial dysfunction in blood early on, and growing
evidence in the literature supports that microRNAs can potentially function as such marker(s) [12–14].

MicroRNAs (miRNAs) are a class of small (20–24 nucleotides), endogenously expressed,
non-coding RNA molecules [15]. They play pivotal roles in the regulation of gene expression that
controls a wide range of biological functions such as cellular metabolism, proliferation, differentiation
and apoptosis [16]. The altered expression and role of miRNAs in vascular and metabolic perturbation
is widely studied [17]. Zampetaki et al. [18] have demonstrated that circulating miRNA is altered in
diabetic patients and that expression of a panel of miRNAs could predict the development of diabetes
in otherwise normal individual. We have also shown that circulating blood miRNAs are dysregulated
in T2DM [19].

Our hypothesis is that, exposure of vascular endothelial cells to hyperglycemic conditions will lead
to endothelial cell dysfunction and it could manifest in the altered expression of their miRNA profiles.
Thus, the aim of this study is to: (1) identify miRNA that are involved in endothelial dysfunction in
hyperglycemic state that could lead to the elucidation of the glucose responsive miRNAs which could
prove useful for identification of hyperglycemia induced vascular complications; (2) determine if these
miRNAs could be potentially used as biomarker which could well differentiate the impaired fasting
glucose (IFG) from T2DM.

We reanalyzed our previous findings on dysregulations of miRNA and mRNA expression
in both diabetes and pre-diabetes (IFG) stages [19,20]. These human blood miRNA profiles were
then compared to an in vivo diabetes (rat) model. The miRNA that were altered in both the human
IFG/T2DM and rat T2DM were then compared to the in vitro laboratory model of human umbilical
vein endothelial cells (HUVEC) exposed to hyperglycemic conditions. HUVEC cells have been used
widely in vascular endothelial cell based research [21–24], and it has been proposed to be an ideal
candidate for such studies. The genes and miRNAs expression profiling of various endothelial cells
showed that most of them are clustering closely with HUVECs [25,26].

Interestingly, even though the three experiments are entirely independent/different from each
other, with one common factor, namely the hyperglycemic condition, they could identify common
miRNAs that are significantly altered in among them. The expression of ten miRNAs, miR-26a-5p,
-26b-5p, 29b-3p, -29c-3p, -125b-1-3p, -130b-3p, -140-5p, -192-5p, -221-3p and -320a were observed to be
gradually increased with increase in glucose concentration. It is noteworthy that, among these, seven
miRNAs (miR-29b-3p, -29c-3p, -125b-1-3p, -130b-3p, -221-3p, -320a and -192-5p) have been reported to
be associated with endothelial cell apoptosis.
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2. Results

2.1. Glucose Uptake Measurement Assay

As our aim was to identify the impact of high glucose concentration on miRNA expression profiles
on the vascular endothelium, we selected HUVEC system to carry out our experiments.

In order to check whether the glucose concentrations within the cells do vary in accordance with
the changes in the external concentrations of glucose, we determined the intracellular level of glucose
corresponding to each treatment (5 to 40 mM). We observed an increasing level of glucose within the
cells at 2.90, 6.55, 13.37 and 25.20 mM when the HUVEC cells were exposed to 5, 10, 25 and 40 mM
glucose (in media), respectively (Figure 1A). We have also measured the residual glucose concentration
in the culture media. From the results, we could observe a fraction of the total glucose in the medium,
as expected, has been metabolized as well.
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control (test vs. 5 mM Glucose treatment). 
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Figure 1. HUVECs subjected to various glucose treatments: (A) glucose assay; (B) vascular endothelial
growth factor A (VEGFA) concentration in culture media; (C) cell viability assay; and (D) cytotoxicity
(LDH) assay. ICG, Intracellular Glucose; ECG, Extracellular Glucose. Cells were treated with various
glucose concentrations (5, 10, 25 and 40 mM). Cells and media were collected at 6, 12, 24 and 48 h.
Each experiment was carried out in triplicates and as sets of three independent experiments (n = 3).
Data presented as mean ˘ SEM; * Indicates statistical significance p < 0.05 using student t-test against
control (test vs. 5 mM Glucose treatment).

2.2. Hyperglycemia Induced Endothelial Dysfunction

Vascular Endothelial Growth Factor (VEGFA) in the culture media was measured to determine
if high glucose (25 and 40 mM) concentration induces secretion of VEGFA from the endothelial cells.
The data (Figure 1B) showed that there was a significant increase in VEGFA upon treatment with
higher concentrations of glucose for 24 and 48 h. Both 5 and 10 mM glucose treatments did not show
significant changes in VEGFA level.
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2.3. Effect of Hyperglycemia on Cell Viability and Cytotoxicity in HUVECs

Cell viability and cytotoxicity were assessed using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl
tetrazolium bromide (MTT) and Lactate dehydrogenase (LDH) assay, respectively. The data from MTT
assay showed that as glucose level increased from that of control (5 mM), the cell viability decreased
by 0.6%, 11.37% and 14.8% at 10, 25 and 40 mM glucose after 24 h of incubation, respectively. Further
decrease in cell viability (2.9%, 14.5%, 21.4% for 10, 25 and 40 mM glucose treatments, respectively)
was observed when incubation time was prolonged up to 48 h (Figure 1C). An increase in LDH activity
in a concentration and time dependent manner (Figure 1D) was also observed. The cell cytotoxicity
results inversely correlated to the cell viability data.

2.4. Glucose Induced Endothelial Apoptosis

Both the MTT and LDH assays above showed that the EC cell viability is decreased in the
presence of high glucose. We also observed that the phenotype of the cells changes with hyperglycemic
condition. The nuclei of the HUVEC cells in hyperglycemic media were observed to be either
condensed or pyknotic especially at 40 mM glucose at 24 and 48 h treatments (Figure 2Ai). However,
we found that these changes (in nuclear morphology) were not statistically significant (p > 0.05;
Figure S1, Supplementary Material) for short term (6 and 12 h) glucose treatments. The association
between hyperglycemia induced decrease in EC viability and endothelial apoptosis have been
documented [24,27].
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Figure 2. Endothelial cell apoptosis: (A) Representative data from 5, 25 and 40 mM glucose treatment 
at 24 and 48 h, (i) DAPI nuclear staining: The images were captured using Olympus IX51 microscope 
(20× magnification). Healthy nuclei can be observed for 5 mM glucose treatments (24 and 48 h). 
Condensed and pyknotic nuclei can be seen under hyperglycemic conditions at both 25 and 40 mM 
glucose treatment for 24 and 48 h, respectively (yellow arrowhead); (ii) Dot-plot graph on 
fluorescence-activated cell sorting (FACS) Annexin V staining. The percentage of healthy cells and 
apoptotic cells can be seen in R5 and R6 quadrants, respectively. Figure S3 (Supplementary Material) 
shows the histogram and statistical analysis computed for the DAPI stained unhealthy cells, Annexin 
V positive cells and Annexin V and Ethidium Homodimer III stained cells; (B) (i) Active Caspase 3 
and (ii) Caspase 3 activity were measured by colorimetric readings and absorption of fluorescence 
released from the cleaved substrate (DEVD-AMC), respectively; (C) Cell viability (i) and cytotoxicity 
(ii) assay for HUVEC cells exposed to hyperglycemia in the presence of caspase 3 inhibitor. Table 
shows the significance t-test p-values for each treatment. All data presented as mean ± SEM (n = 3);  
* Indicates statistical significance p < 0.05 using t-test (test vs. 5 mM Glucose treatment). 
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Quadrant R11 shows cells that were stained with both Annexin V and Ethidium Homodimer III and 
hence they represented the cells in late apoptosis. From these results, it is also clear that the HUVEC 
cells undergo apoptosis in a glucose concentration and time dependent manner. 

2.5. Hyperglycemia Induced Caspase-Mediated Apoptosis in HUVECs 
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Figure 2. Endothelial cell apoptosis: (A) Representative data from 5, 25 and 40 mM glucose
treatment at 24 and 48 h, (i) DAPI nuclear staining: The images were captured using Olympus
IX51 microscope (20ˆmagnification). Healthy nuclei can be observed for 5 mM glucose treatments
(24 and 48 h). Condensed and pyknotic nuclei can be seen under hyperglycemic conditions at both 25
and 40 mM glucose treatment for 24 and 48 h, respectively (yellow arrowhead); (ii) Dot-plot graph
on fluorescence-activated cell sorting (FACS) Annexin V staining. The percentage of healthy cells and
apoptotic cells can be seen in R5 and R6 quadrants, respectively. Figure S3 (Supplementary Material)
shows the histogram and statistical analysis computed for the DAPI stained unhealthy cells, Annexin
V positive cells and Annexin V and Ethidium Homodimer III stained cells; (B) (i) Active Caspase 3 and
(ii) Caspase 3 activity were measured by colorimetric readings and absorption of fluorescence released
from the cleaved substrate (DEVD-AMC), respectively; (C) Cell viability (i) and cytotoxicity (ii) assay
for HUVEC cells exposed to hyperglycemia in the presence of caspase 3 inhibitor. Table shows the
significance t-test p-values for each treatment. All data presented as mean ˘ SEM (n = 3); * Indicates
statistical significance p < 0.05 using t-test (test vs. 5 mM Glucose treatment).

We carried out 3-dye staining (DAPI, Annexin V and Ethidium Homodimer III) of the cells
followed by flow cytometry assay to further confirm that HUVECs undergo apoptosis during
hyperglycemic treatments. We could observe an increase in the percentage of cells with shrunken
nuclei (2.29%, 10.37% and 13.24% at 10, 25 and 40 mM glucose, respectively) after 24 h of incubation
(Figure S2A (Supplementary Material), 24 h panel). The percentage of cells with shrunken nuclei
increased further (9.42%, 12.34%, 15.34% at 10, 25 and 40 mM glucose, respectively) after 48 h of
incubation (Figure S2A, 48 h panel). Furthermore, during apoptosis, the exposed phosphatidylserine
residues on the cell surface can be labeled with Annexin V. Hence, we plotted the flow cytometry raw
data for FCS-A vs. Alexa Fluor 488A (Annexin V staining) which specifically indicated apoptotic cells
only. The results showed an increase in apoptotic cells in R6 quadrant with higher concentration of
glucose treatment at 24 and 48 h, respectively (Figure 2Aii and Figure S2B).
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In order to differentiate necrosis as well as early and late apoptosis, we have also examined the
cells stained for PE-Texas Red-A (Ethidium Homodimer III stained cells) against cells stained for
Alexa Fluor 488A (Annexin V stained cells). Figure S2C shows that the cells stained with Annexin V
remained only in R13 quadrant indicating that the cells were in the stage of early apoptosis. Quadrant
R11 shows cells that were stained with both Annexin V and Ethidium Homodimer III and hence they
represented the cells in late apoptosis. From these results, it is also clear that the HUVEC cells undergo
apoptosis in a glucose concentration and time dependent manner.

2.5. Hyperglycemia Induced Caspase-Mediated Apoptosis in HUVECs

Having examined endothelial cell apoptosis upon hyperglycemia, we wanted to understand the
underlying molecular events leading to it. For this, we carried out the measurement of both active
caspase-3 protein level and caspase-3 activity in the total cell lysates at different concentrations of
glucose for both 24 and 48 h. Compared to the control (5 mM glucose grown cells), treatment at 25 and
40 mM glucose showed a significant increase in the active form of caspase-3 protein that correlated
with its activity (using DEVD-AMC as substrate). Moreover, both the caspase-3 protein and activity
level increased further at 48 h time exposure (Figures 2Bi and 2Bii). Concomitantly, HUVEC cells that
were exposed to 5, 25 and 40 mM glucose (24 and 48 h) and treated with 25 µM caspase 3 inhibitor
(Ac-DEVD-CHO; Alexis Biochemicals, Farmingdale, NY, USA) showed that cell viability has improved
and cell cytotoxicity has been alleviated (Figures 2Ci and 2Cii).

Hence, from these results, we could interpret that hyperglycemia induced endothelial cell
(HUVEC) apoptosis in our study is possibly mediated through a caspase-3 dependent pathway.

2.6. miRNAs Correlating with Increase in Hyperglycemia

miRNAs showing dysregulation during pathophysiological conditions have been linked to the
gene and consequently protein expression in cells. Thus, we postulated that miRNAs responding to
changes in glucose concentrations could possibly be involved in pathways leading to apoptosis and
endothelial dysfunction in this study. Thus, we performed miRNA microarray on HUVECs treated
with various glucose concentrations (5 to 40 mM) and at various time-points (6 to 48 h). Our microarray
data have been deposited at the NCBI database under the GEO Accession No: GSE74296, GPL21059.
Among these miRNAs, we were able to identify 177 miRNAs (with a signal intensity >300) that were
commonly dysregulated in all time points. The hierarchical clustering of these miRNAs showed that
miRNA expression pattern changes in all glucose treatments (Figure 3A). Among them, a total of
62 miRNAs showed a gradual increase from 6 to 48 h for 5, 10, 25 and 40 mM glucose (Table S1,
Supplementary Material).
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expressed as fold change. Red represents up-regulation; green indicates down-regulation and grey 
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Figure 3. miRNA microarray and pathway analysis. (A) Hierarchical clustering of miRNAs in HUVECs
subjected to different glucose treatments (5, 10, 25, and 40 mM) at 6, 12, 24 and 48 h. In total, 177 miRNAs
with background subtracted mean signal intensities ě300 are included; (B) Heat map of selected
52 miRNAs dysregulated in human and rat. miRNAs that showed differential expression are grouped
into two categories (i,ii) of miRNAs that remained (i) upregulated in both impaired fasting glucose
(IFG) and T2DM (ii) downregulated in both IFG and T2DM vs. controls. Data are expressed as fold
change. Red represents up-regulation; green indicates down-regulation and grey indicates not detected;
(C) Venn diagram showing results of pathway analysis for dysregulated miRNAs and mRNAs using
DIANA miRPath 2.0 and WebGestalt, respectively; (D) Ten common pathways that could possibly
participate in endothelial dysfunction are also shown.

2.7. Blood miRNA Expression Profiles in Individuals with IFG and T2DM

We were interested in identifying the miRNAs that are responsive to glucose concentration and
could be used as indicators of endothelial dysfunction, especially in a pathophysiological condition
such as in the pre-diabetes (IFG) and diabetes (T2DM). We re-analyzed the human IFG/T2DM blood
miRNA expression profile data (GEO Accession No: GSE26167; and SuperSeries GSE26168) [20]. It is
noteworthy that the individuals/subjects that were recruited to the study [20] do not have any existing
clinical complications or on any medications. They were the newly diagnosed IFG or T2DM individuals.
miRNAs showing raw signal intensity values ě300 and tested to be statistically significant (p < 0.05)
were selected for our analysis. One hundred and seventy seven (177) miRNAs have been found to be
differentially expressed among the blood samples of IFG and T2DM compared to control group. These
miRNAs were grouped into four categories based on their expression pattern to identify those that
are differentially expressed among IFG and T2DM individuals (Figure S4, Supplementary Material).
Category 1—miRNAs that were upregulated in both IFG and T2DM patients (Figure S4A); Category
2—miRNAs that were downregulated in both IFG and T2DM (Figure S4B); Category 3—miRNAs that
remained downregulated in IFG and upregulated in T2DM (Figure S4C); and Category 4—miRNAs
that were upregulated in IFG but downregulated in T2DM (Figure S4D).
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2.8. Comparison of Blood miRNA Profiles in Type 2 Diabetes Mellitus between Human and Rat

As the patient sample size reported by Karolina et al. [20] was relatively small, we also included
the blood miRNA profiles of rat T2DM model data published from our group (GEO Accession No:
GSE26167; SuperSeries: GSE26168) [20]. Consequently, we compared the expression of the 177 human
miRNAs from the four different categories with the rat T2DM blood miRNA profiles. We found a total
of 52 miRNAs (Figure 3B) that showed similar expression pattern between the human and rat miRNA
profiles during T2DM disease progression. Among these miRNAs, we could observe miR-142-3p
to show an increase in the expression both IFG and T2DM (Figure 3Bi). This result also correlated
with the three independent diabetes studies carried out by Collares et al. [28], Ortega et al. [29] and
Zhu et al. [30]. Most importantly, we could identify the up-regulation of miR-142-3p in IFG condition
itself. Hence, miR-142-3p could be considered as an early indicator of hyperglycemia. Moreover,
Lalwani et al. [31] explored the role of miR-142-3p in relation to vascular dysfunction and reported that
overexpression of this miRNA resulted in a loss of vascular integrity. In addition to these, we could
also observe an upregulation of miRNAs such as miR-29b-3p, -29c-3p, -144-3p, -183-5p and miR-221-3p
as reported previously by others [20,32–35]. Compared to miR-142-3p, miR-103a-5p was found to be
downregulated (Figure 3Bii) in both IFG and T2DM. This observation correlated with the report from
Upadhyay et al. [36]. They reported that high glucose downregulates miR-103a-5p level in endothelial
cells. Xu et al. [37] suggested a possible mechanism for miR-103a-5p involving regulation of reactive
oxygen species (ROS) during oxidative stress.

We carried out a miRNA microarray for HUVEC exposed to 5, 10, 25 and 40 mM glucose at
different time points (6, 12, 24 and 48 h). We found 62 miRNAs that showed a gradual increase from 6
to 48 h for different concentration of glucose. When we compared these 62 miRNAs from our cellular
studies analysis with the 52 commonly dysregulated microRNAs from IFG and T2DM of human and
rat, we observed 10 miRNAs (miR-26a-5p, -26b-5p, -29b-3p, -29c-3p, -125b-1-3p, -130b-3p, -140-5p,
-192-5p, -221-3p and -320a) that exhibited a gradual increase in expression with the increasing glucose
concentrations. The increase in expression for the miRNAs was higher in the later time points of 24
and 48 h in cellular studies and it correlated to the expression of these miRNAs in T2DM (Table 1 and
Table S2 [38–87]).

Table 1. Ten miRNAs selected from miRNA microarray analyses (human, rat and HUVECs) with
statistical significance; p-value < 0.05.

miRNAs Human
IFG

Human
T2DM

Rat
T2DM
Model

HUVECs

25 mM Glucose 40 mM Glucose

24 h 48 h 24 h 48 h

miR-26a-5p ´1.64 1.80 1.40 1.27 1.55 1.84 2.12
miR-26b-5p 2.37 1.52 1.33 1.23 1.42 1.44 2.24
miR-29b-3p 1.45 1.96 2.02 1.69 2.19 2.42 2.86
miR-29c-3p 1.55 2.35 2.45 1.86 2.21 2.65 3.25
miR-125b-1-3ṕ1.55 1.70 2.23 1.27 1.97 1.41 4.30
miR-130b-3p 1.87 1.89 1.54 1.11 1.22 1.27 1.57
miR-140-5p 1.62 1.69 1.71 1.53 1.92 2.27 2.68
miR-192-5p 1.34 2.25 1.87 1.45 1.87 1.97 2.41
miR-221-3p 1.74 2.01 2.16 1.44 1.95 2.65 3.10
miR-320a ´1.58 1.81 2.87 1.59 1.90 1.81 2.46

2.9. In Silico Analysis of miRNA and mRNA Pathways

To understand the role of differentially expressed miRNAs, we performed a biological pathway
analysis using DIANA miRpath 2.0 [88] and miRWalk version 2.0 [89]. The 52 miRNAs dysregulated
(Figures 3Bi and 3Bii) were used to perform KEGG pathway analysis [90]. The selection criteria used
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were microT threshold value of 0.8 and cutoff of p < 0.05. The results showed more than 100 significantly
(p < 0.05) dysregulated pathways. Among them, the top 20 pathways were shortlisted (Figure 3C
and Table S3).

2.10. Analysis of mRNA Profiles of IFG and T2DM (R4)

To gain further insight on endothelial dysfunction during T2DM, we carried out a systematic
approach of pathway enrichment analysis using WEB-based Gene SeT AnaLysis Toolkit (WebGestalt)
algorithm [91] with the hypergeometric statistical method and multiple corrections using
Benjamini-Hochberg (p < 0.001). We analyzed our previously published human mRNA microarray
data (IFG and T2DM), GEO Accession No: GSE21321 [20]. The top 20 pathways (Table S3) included
insulin signaling, VEGF signaling, focal adhesion, regulation of actin cytoskeleton, adherens and tight
junction and apoptosis pathways that are associated with T2DM. Most of these pathways are also
known to be related to both micro and macrovascular complications during type 2 diabetes [92,93].
From the analysis, we found various endothelial cell specific genes such as nitric oxide synthase (NOS3)
and endothelin (EDN1) as well as other genes related to vascular dysfunction such as endothelial
permeability (ERG, RHOA, ROCK) [94–98], inflammation (CCL5, TLR4, NFKB1 and IL1B) [99–101]
and apoptosis (BNIP3, DNM1L, BCL-2, MCL-1 and CASP3) [102–106] to be dysregulated (Table S4).
These data clearly indicate that the hyperglycemia can result in endothelial dysfunction and the event
can be analyzed from the mRNA data of the blood.

Based on this mRNAs and miRNAs pathways analysis, we were able to deduce 10 common
pathways that could possibly participate in endothelial dysfunction (Figure 3C,D).

2.11. MicroRNAs as Possible Glucose Responsive and Endothelial Dysfunction Indicators

From our microarray data on the HUVEC exposed to hyperglycemia, we selected 10 miRNAs
(miR-26a-5p, -26b-5p, -29b-3p, -29c-3p, -125b-1-3p, -130b-3p, -140-5p, -192-5p, -221-3p and -320a)
that showed corresponding increase in expression with increase glucose concentration (Figure 4A).
These miRNAs were quantitated by stem loop PCR. The results confirmed that all 10 miRNAs were
significantly upregulated at higher concentrations of glucose treatments at 24 and 48 h (Figure 4B).

Among these 10, seven microRNAs (miR-26b-5p, -29b-3p, -29c-3p, -130b-3p, -140-5p, -192-5p, and
-221-3p) consistently showed an increased expression in both IFG and T2DM (Figure S4A and Table 1).
The other three miRNAs (miR-26a-5p, -125b-1-3p and -320a) were found to be downregulated in IFG
individuals and subsequently upregulated in T2DM (Figure S4C and Table 1). Notably, these miRNAs
remained upregulated in most of our in vitro (HUVEC cell culture) study (Table S2, Supplementary
Material [38–87]). We have also noticed that BCL2 and MCL1 genes that are known to be crucial for
the caspase 3 mediated apoptosis can be targeted by miR-26b-5p, -29b-3p and -192-5p. qPCR analysis
on both the BCL2 and MCL1 genes showed that they are downregulated in our study (Figure 4C,D;
Table S2 [38–87]) and an inverse correlation to miR-26b-5p, -29b-3p and -192-5p expression.
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expression observed for the 10 selected miRNAs from the microarray data for HUVECs treated with
different glucose treatments for 24 and 48 h; (B) Verification of microarray data in (A) by real-time
quantitative PCR; (C,D) The expression level of three miRNAs and their corresponding mRNAs that
are involved in apoptosis: (C) miR-29b-2p and -192-5p against BCL2 mRNA and (D) miR-26b-5p
and -29b-3p against MCL-1 mRNA. Data are presented as mean ˘ SEM (n = 3). * indicates statistical
significance at p < 0.05 using t-test against control (test vs. 5 mM glucose treatment).

3. Discussion

Hyperglycemia has been the hallmark and a major risk factor for endothelial dysfunction and
vascular complications in diabetes [107]. Under normal physiological conditions, the blood glucose
level is tightly regulated in order to maintain the vascular quiescence and integrity. However, in
hyperglycemic conditions (uncontrolled glucose level above physiological concentrations, such as
in T2DM), endothelial cells (ECs) become dysfunctional and undergo apoptosis [108]. Endothelial
dysfunction could be characterized by the decrease in cell viability and an increase in the release of
lactate dehydrogenase as well as overproduction of VEGFA [109]. In this study, we have shown that
HUVECs exposed to 25 and 40 mM glucose for 24 and 48 h exhibited reduced cell viability followed by
an increase in VEGFA secretion. Besides, these cells also showed increased cell apoptosis as indicated
by enhanced Annexin V stained cells that corresponded to the increase in glucose concentration
(25 and 40 mM) and time (24 and 48 h) as reported [24,27]. We observed that the apoptotic cell death
mediated by hyperglycemia is also caspase 3 dependent.

Vascular complications due to T2DM have become one of the most challenging pathology that
brings about increased risk for various diseases/complications to individuals [110]. The currently
available biomarkers, drugs, and treatments for vascular complications due to T2DM are ineffective
in the diagnosis and treatment of the disease, suggesting that our understanding of this metabolic
disorder is still incomplete [111]. miRNAs are one of the most fascinating small RNA molecules



Int. J. Mol. Sci. 2016, 17, 518 11 of 22

that regulate gene expression in both normal and pathophysiological conditions. Emerging evidence
suggests that miRNAs could fulfill this inadequacy as early biomarkers as well as therapeutic targets
or agents [112]. In order to identify the possible role played by miRNAs in the glucose induced
endothelial dysfunction/cell death, miRNA microarray data from the in vitro hyperglycemic studies,
in vivo rat model of T2DM and the blood samples of T2DM and IFG individuals were analyzed.
Initial analysis from the in vitro study (HUVECs exposed to glucose) showed that 177 miRNAs were
significantly dysregulated in hyperglycemic conditions with 62 miRNAs (Table S1) showing gradual
increase in expression with the increase in glucose concentration. Independent analysis of the miRNA
microarray data from the in vivo study on T2DM/IFG or T2DM animal model, revealed that a total
of 52 miRNAs to be altered in the progression/evolution of T2DM and it correlated to the mRNA
expression for the same samples. An unbiased biological pathway analysis was carried out on these
two sets of miRNAs independently. Both the biological pathway analyses showed that biological
process related to endothelial integrity and function, micro and macrovascular complications and
endothelial dysfunction are obviously altered during hyperglycemia.

A more detailed analysis on the miRNA microarray data from the HUVECs exposed to
hyperglycemia (in vitro) showed that a group of 10 miRNAs (miR-26a-5p, -26b-5p, -29b-3p, -29c-3p,
-125b-1-3p, -130b-3p, -140-5p, -192-5p, -221-3p and -320a), gradually increased with increasing
glucose concentration at 24 and 48 h treatments. Among them, miR-26a-5p, miR-140-5p, miR-221-3p,
miR-29b-3p, miR-192-5p have been implicated in apoptosis (Table S2; [38–87]).

Consistent with our findings, exposure to high glucose has been demonstrated to induce
miR-26a-5p expression [113]. Furthermore, Chen et al. [114] found that miR-26a-5p increases glucose
uptake and suggested that there is a positive feedback loop between increased extracellular glucose
concentration and miR-26a-5p expression. Up-regulation of miR-26a-5p have been reported to increase
cardiomyocyte apoptosis by increasing reactive oxygen species (ROS) production [115], which is one
of the important mediator/pathways for glucose-induced endothelial apoptosis. Apart from these
studies, Lezina et al. [116] and Zhang et al. [117] independently reported that p53 pathway regulates
miR-26a-5p expression and induces apoptosis in cancer. We observed that exposure of HUVECs
with increasing concentrations of glucose increased glucose uptake as well as miR-26a-5p expression,
thus indicating that miR-26a-5p may be considered as a potential glucose responsive miRNAs and a
surrogate biomarker for endothelial cell apoptosis.

We found that the expression of miR-140-5p to be increased in IFG as well as in T2DM, in both
the human and rat miRNA microarray analyses, as well as in our in vitro study, where miR-140-5p
level increased with increasing glucose concentrations (Table 1 and Table S2 [72,87–135]). This increase
was also found to correlate with the increase in apoptosis (Figure 2). Lan et al. [118] have also
reported that treating ovarian cancer cells with miR-140-5p resulted in enhanced apoptosis. Besides,
we also observed that the endothelial enriched miR-221-3p remained up-regulated during exposure
to hyperglycemia in both in vitro and in vivo studies, consistent with the findings of Li et al. [119],
Qin et al. [120] and Cerda et al. [121]. The authors have reported that up-regulated miR-221 in T2DM
could be involved in glucose-induced endothelial apoptosis.

miR-29b-3p was observed to be upregulated in both our in vitro and in vivo studies. Mott et al. [38]
reported that miR-29b-3p is involved in endothelial cell apoptosis by inhibiting the anti-apoptotic
gene Mcl-1. Recently, Ye et al. [122] showed that p53 pathway could directly up-regulate miR-192-5p
expression and inhibit X-linked inhibitor of apoptosis protein (XIAP) which is also an anti-apoptotic
gene. Jin et al. [123], Geng et al. [124] and Cao et al. [125] independently showed that miR-192-5p to be
involved in the regulation of apoptosis via down-regulation of its target gene BCL2. Jin et al. [126], also
reported that upregulation of miR-192-5p induces apoptosis via suppression of PI3K-Akt signaling
pathway. It is noteworthy, that we found PI3K-Akt signaling pathway as one of the top 10 pathways
being dysregulated in our analyses. Hence, glucose-induced endothelial apoptosis may be regulated
by modulating miR-29b-3p and miR-192-5p.
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An independent pathway analysis of the differentially expressed 52 miRNAs (common among
human and rat T2DM) revealed that pathways related to vascular dysfunction are affected during
T2DM. We also carried out the KEGG pathway analysis for the selected 10 miRNAs that varied with
different glucose concentrations. The compilation of the top 10 pathways dysregulated in human, rat
and HUVECs studies showed that majority of them are involved in endothelial dysfunction related
pathways such as PI3K-Akt signaling, apoptosis, regulation of actin cytoskeleton, focal adhesion,
neurotrophin and MAPK signaling. Apoptosis, focal adhesion, adherens and tight junction pathways
are dysregulated during T2DM and these pathways could be regulated by the miRNAs [104,105,127].
Hence, the 10 selected miRNAs may potentially help in understanding the mechanisms underlying
glucose-induced endothelial dysfunction.

We could observe an opposite profile between the expression of the miRNAs and their
corresponding target genes (mRNAs) suggesting that these miRNAs can function as potential
indicators of endothelial dysfunction associated apoptosis. miR-26a-5p, -130b-5p, -140-5p, and -221-3p
exhibited a positive correlation to the endogenous glucose levels in both the in vivo (human and rat
samples) and in vitro (HUVECs subjected to hyperglycemia) studies (Table 1 and Table S2 [38–87]).
Thus, these four miRNAs could be potentially useful as “glucose responsive miRNAs” to detect
or identify hyperglycemia or high glucose conditions. We propose that the other three miRNAs
(miR-130b-3p, -140-5p and -221-3p) could be triggering endothelial dysfunction via inflammation,
pathological angiogenesis, hyperpermeability, apoptosis, and senescence since they have been
validated to target several genes (Table S2 [38–87]) involved in such processes.

In this study, we have used HUVEC as a model for the in vivo endothelium. It has been widely
accepted to be a model system for studying vascular responses in diabetes and atherosclerosis [23].
The miRNA profiles between the different endothelial cell types are similar [26]. Nevertheless, there
are differences between the different vasculature within the human circulatory system [4]. However,
the scope of this paper was only to investigate and discuss a general response in the endothelium upon
hyperglycemia. Thus, for identifying groups of miRNAs for vascular damage in specific target organs,
further work must be performed on respective cell lines derived from the vessels native to the target
organ of interest.

4. Materials and Methods

4.1. Cell Culture

Human Umbilical vein endothelial cells (HUVECs) were purchased from ATCC (CRL-1730) and
grown in a T75 flask using 5 mM glucose Dulbecco’s Modified Eagle Medium (DMEM; Thermo
Fisher Scientific, Waltham, MA, USA) supplemented with 2 mM L-glutamine, 10% fetal bovine serum
(FBS) and 1% penicillin (100 IU/mL) and streptomycin (100 µg/mL) (Thermo Fisher Scientific) in
the presence of 5% CO2 at 37 ˝C. Media were changed every 48 h until the cells reached 80%–90%
confluence. The cells (between passages 3 to 6) were then sub-cultured in serum starved 5 mM glucose
DMEM containing 1% FBS. After which, they were seeded at a density of 6 ˆ 104 cells/well in 24 well
plates (Greiner bio-one, Cell star, Kremsmünster, Austria) and grown for another 24 h to reach 80%–90%
confluence before treating them separately with media containing different concentrations (5, 10, 25
and 40 mM) of glucose for 6, 12, 24 and 48 h time intervals.

4.2. Glucose Uptake Measurement Assay

HUVECs were always grown first in 300 µL per well of DMEM containing 5 mM glucose and
1% FBS and then treated with different concentrations of glucose as above for 24 and 48 h. The total
volume of media remained constant for all treatments. The media were then collected separately, cells
washed twice with 1ˆ PBS, then lysed with 1ˆ lysis buffer and kept at ´20 ˝C until needed. The
amount of glucose taken up by the cells and that remaining in the medium were measured according to
manufacturer’s protocol using glucose (HK) assay kit (GAHK-20; Sigma, Saint Louis, MO, USA) [128].
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In brief, the collected cell lysates and media were diluted 1:1 ratio with sterile distilled water to measure
the amount of glucose level as recommended by the manufacturer. In a fresh Eppendorf tube, 500 µL
of glucose assay reagent was added along with 150 µL of a test sample, mixed well and incubated
at room temperature for 15 min. The absorbance at a wavelength of 340 nm was then measured in a
spectrophotometer (Model 680 Microplate Reader, Biorad, Hercules, CA, USA).

4.3. Quantification of Vascular Endothelial Growth Factor A (VEGFA) Release

VEGFA release in the cell culture media obtained after treatment of HUVECs with different
concentrations of glucose was measured by an ELISA kit following manufacturer’s protocol (Invitrogen,
Carlsbad, CA, USA) at 450 nm using a Microplate Reader (Model 680; Biorad, Hercules, CA, USA).

4.4. Cell Viability Assay

The cell viability was determined by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium
bromide (MTT; Sigma) uptake according to Armugam et al. [129]. HUVECs were seeded at a density
of 6 ˆ 104 cells in 24 well plates and treated with different concentrations of glucose for 6, 12, 24
and 48 h. Ten microliters of MTT (10 mg/mL) was added one hour before the end point. The media
were aspirated separately and the cells were lysed by adding 200 µL of Dimethyl Sulfoxide (DMSO;
Sigma-Aldrich, St. Louis, MO, USA) to each well. The optical density of each sample was measured in
a microplate reader (Model 680; Biorad) at 570 nm.

4.5. Cell Cytotoxicity Assay

Cell cytotoxicity was measured by the release of cytoplasmic enzyme, lactate dehydrogenase
(LDH) into the cell culture medium. HUVECs incubated with Triton X-100, (Sigma-Aldrich, St. Louis,
MO, USA) for 30 min at 37 ˝C was used as positive control. Fifty microliters from each culture medium
was withdrawn and mixed with 50 µL of cytotoxicity detection assay kit reagent (Sigma-Aldrich,
Roche Diagnostics, St. Louis, MO, USA) kept in a microtiter plate. The samples were mixed well and
the absorption was measured at 490 nm in a microplate reader (Model 680; Biorad).

4.6. Total RNA Isolation

Total RNA (+miRNAs) was extracted from the cells by using Trizol Reagent (Invitrogen, Life
Technologies, Carlsbad, CA, USA) according to the Jeyaseelan et al. [130]. The RNA concentration and
purity were measured using Nanodrop ND-2000c spectrophotometry (Nanodrop Tech, Rockland, Del,
Wilmington, DE, USA). The ratios of 260/280 were always kept within the range of 1.9–2.0 and RNA
integrity was observed using denatured 1% agarose gel and 15% polyacrylamide gel electrophoresis.

4.7. miRNA Microarray Data and Statistical Analysis

LNA-modified oligonucleotide (Exiqon, Vedbaek, Denmark) probes for human miRNAs
annotated in miRbase version 16.0 were used in the microarray that was carried out in our laboratory.
A total RNA of 1 µg from three individual experiments (n = 3) were pooled for each concentration of
glucose treatment (0–40 mM glucose) and their respective time intervals (6–48 h). The 3’end of RNA
samples were labeled with Hy3 dye using miRCURY LNA power labeling kit (Exiqon). The labeled
RNA was hybridized on miRCURY LNA arrays, using MAUI hybridization system (BioMicro Systems,
Salt Lake City, UT, USA) for 17 h at 56 ˝C. The hybridized arrays were washed, fixed and scanned on
InnoScan 700 microarray scanner (Innopsys, Carbonne, France). The digitalized images were captured
and analyzed by MAPIX®4.5 (Innopsys) microarray image analysis software. Microarray analysis was
carried out by background subtraction of the signal values, followed by One-way ANOVA analyses and
hierarchical clustering [131]. Normalization was performed using an average of multiple endogenous
controls. The hierarchical clustering method was used to detect the clustering pattern of samples across
different concentrations of glucose treatment at various time intervals. The clustering was generated
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using TM4 MeV (Multiple Experimental Viewer) software (Dana-Farber Cancer Institute, Boston, MA,
USA) [132] and statistical evaluations were performed using Microsoft Excel (2010) data analysis such
as t-tests or in the case of multiple comparisons using One-way ANOVA with significance level p < 0.05.
Differential expression analysis of the miRNAs was performed using the FDR (Benjamini-Hochberg
False Discovery Rate) correction (p < 0.05) as in Partek® Genomics Suite™ 6.6 Software (Partek Inc.,
St. Louis, MO, USA). Post hoc test was performed with Bonferroni correction to determine the difference
between the different groups. Hierarchical clustering (HCL) and k-means clustering were performed
using TIGR MeV (TMeV) software and Partek® Genomics Suite™ 6.6 Software [133,134].

4.8. Biological Pathway Analysis (miRNA and mRNA)

DIANA (DNA Intelligent Analysis) miRPath [88] and miRWalk pathway analysis [89] were
performed with the MicroT threshold cut-off value of 0.8 and p-value <0.05, for prediction of
miRNA mediated pathway analysis. Similarly KEGG (Kyoto Encyclopedia of Genes and Genomes)
pathway [90] was used for pathway analysis for mRNA and the top 20 pathways based on the
enrichment scores were selected.

4.9. Assessment of Nuclear Morphology

To characterize the pattern of cell death, nuclear morphology was observed by Hoechst 33342
staining and fluorescence microscopy. HUVECs seeded and treated as for the microarray experiments
were washed twice with 1x PBS and incubated with 0.1 µg/mL Hoechst 33342 (Biotium, Foster City,
CA, USA) for 15 min in the dark and visualized under an Olympus IX51 microscope (Olympus,
Shinjuku-ku, Tokyo, Japan) using DAPI (41,6-diamidino-2-phenylindole) fluorescence filter. Digital
Images were captured with 20ˆ objective using Olympus DP71 digital camera and Olympus DP
controller software program. Cells with the morphology of fragmented or condensed pyknotic nuclei
were considered as apoptotic and counted using Image J software (Schneider, Madison, WI, USA) [135].
Each experiment was carried out in triplicates (n = 3).

4.10. Flow Cytometry

The confluent monolayer of HUVECs treated with different concentrations of glucose for 24 and
48 h after washing twice with 1ˆ PBS were gently detached using 0.05% of trypsin. The cells were
collected in 2 mL Eppendorf tubes and spun down at 800 rpm for 5 min. The cell pellets were
suspended in 500 µL of 1ˆ Annexin binding buffer and subjected to staining with 3 dyes: Annexin
V, Ethidium Homodimer III, and DAPI, to detect apoptosis (Biotium) according to manufacturer’s
protocol. Flow cytometric analysis was performed by analyzing 10,000 events on FACScan flow
cytometer (BD biosciences, San Jose, CA, USA) and the data were processed and analyzed using
summit 4.0 software package.

4.11. Caspase-3 Assay

To determine whether the cells undergo caspase dependent apoptosis upon glucose treatment,
both the active form of caspase-3 and caspase-3 activity were measured in the total cell lysate using
Invitrogen human active caspase-3 ELISA kit (KHO1091; Life technologies, Carlsbad, CA, USA)
and (Alexis Corporation, Lausen, Switzerland), respectively, according to manufacturers’ protocol.
Background fluorescence was measured in wells containing lysis buffer, assay buffer and the substrate
without cell lysate and used for the normalization of the test samples. For active caspase-3 measurement
readings at 450 nm were obtained using microplate spectrofluorometer (Spectra Gemini; Molecular
devices, Sunnyvale, CA, USA). For caspase-3 activity, the fluorometric readings were measured at
405 nm absorption. All the measurements were carried out in triplicates and for 3 independent sets
of experiments.
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4.12. Real-Time Quantitative Polymerase Chain Reaction (qPCR)

Total RNA was isolated from cultured cells using TRIzol® Reagent (Invitrogen, Life Technologies
Corporation). Reverse transcription followed by real-time quantitative PCR (qRT-PCR) was carried
out according to Jeyaseelan et al. [130]. Gene specific primers designed using PrimerExpress software
(Version 3.0) from Applied Biosystems (Carlsbad, CA, USA) have been used for qRT-PCR on an
Applied Biosystems 7900 sequence detection system (Applied Biosystems). The miRNA microarray
results were validated with stem-loop real time qPCR. Ten nanograms of total RNA was reverse
transcribed and used for stem loop PCR. GAPDH mRNA was used as the endogenous control for
both miRNA and mRNA measurements. Each reaction was performed in triplicates (n = 3). Statistical
significance analysis between the control (treated with 5 mM glucose) vs. test (10, 25 or 40 mM glucose)
was carried out using student t-test.

5. Conclusions

In summary, our study describes the miRNA dysregulation in hyperglycemic conditions induce
endothelial dysfunction and apoptosis while highlighting that these miRNAs could also function
as “glucose responsive miRNAs”. Furthermore, these miRNAs being detectable (in blood) in the
pre-diabetic condition (IFG) indicates their possible role as potential biomarkers in the early diagnosis
of diabetes.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/
17/4/518/s1.

Acknowledgments: This work was supported by a research grant from the National Medical Research Council
(NMRC/IRG: R-183-000-290-213), Singapore. Maskomani Silambarasan acknowledges the receipt of a PhD
scholarship from NUS Medicine, National University of Singapore, Singapore.

Author Contributions: Maskomani Silambarasan, Dwi Setyowati Karolina and Arunmozhiarasi Armugam
carried out the experiments, analyzed the data and compiled the manuscript. Charanjit Kaur, (Co-supervisor
of Maskomani Silambarasan) assisted in analyzing the data on cellular studies Kandiah Jeyaseelan (Principal
Investigator and Supervisor of Maskomani Silambarasan), Dwi Setyowati Karolina and Arunmozhiarasi Armugam
planned the study, and drafted and reviewed the manuscript. Jun Rong Tan assisted in the statistical analysis and
interpretation of the microarray data.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

T2DM Type 2 Diabetes Mellitus
IFG Impaired Fasting Glucose
ECs Endothelial Cells
MicroRNAs miRNAs
GEO Gene Expression Omnibus
DEVD-AMC N-Acetyl-Asp-Glu-Val-Asp-7-amido-4-Methylcoumarin
Ac-DEVD-CHO Acetyl-Asp-Glu-Val-Asp-1-aldehyde
HK Hexokinase
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