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Abstract: Increasing evidence has shown that many chronic diseases originate from early life,
even before birth, through what are termed as fetal programming effects. Glucocorticoids are
frequently used prenatally to accelerate the maturation of the lungs of premature infants. High-fat
diets are associated with insulin resistance, but the effects of prenatal glucocorticoid exposure
plus a postnatal high-fat diet in diabetes mellitus remain unclear. We administered pregnant
Sprague-Dawley rats’ intraperitoneal dexamethasone (0.1 mg/kg body weight) or vehicle at
gestational days 14–20. Male offspring were administered a normal or high-fat diet starting from
weaning. We assessed the effects of prenatal steroid exposure plus postnatal high-fat diet on the liver,
pancreas, muscle and fat at postnatal day 120. At 15 and 30 min, sugar levels were higher in the
dexamethasone plus high-fat diet (DHF) group than the vehicle plus high-fat diet (VHF) group in
the intraperitoneal glucose tolerance test (IPGTT). Serum insulin levels at 15, 30 and 60 min were
significantly higher in the VHF group than in the vehicle and normal diet group. Liver insulin receptor
and adenosine monophosphate-activated protein kinase mRNA expressions and protein levels were
lower in the DHF group. Insulin receptor and insulin receptor substrate-1 mRNA expressions were
lower in the epididymal adipose tissue in the VHF and DHF groups. “Programming” of liver or
epididymal adipose tissue resulted from prenatal events. Prenatal steroid exposure worsened insulin
resistance in animals fed a high-fat diet.
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1. Introduction

There is more and more evidence showing that many chronic diseases originate from early life,
even before birth, through what are called “programming” effects [1]. Barker et al. [2,3] found that low
birth weight infants had higher probability of developing metabolic disorders later in life, including
insulin resistance and glucose intolerance.

Glucocorticoids are frequently used prenatally to accelerate the maturation of the lungs in the
premature babies who were highly fragile because of their lower antioxidant defense in this oxidative
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environment and glucocorticoids can decrease the damage from the oxidative environment [4];
however, there is controversy regarding the long-term effects of this treatment [5]. Dalziel et al. [6]
reported that offspring with prenatal exposure to betamethasone might develop insulin resistance at
30 years of age. The underlying mechanisms remain unclear.

Feeding behavior can also be programmed by prenatal stress caused by decreased placenta
expression of 11β-hydroxysteroid dehydrogenase type-2 [7], which plays a key role in regulating
glucocorticoid hormones [8]. Furthermore, altered expression of adipocyte proteins in response to
maternal undernutrition has been reported, e.g., adipocytes of antenatal nutrient-restricted lambs had
increased expression of 11β-hydroxysteroid dehydrogenase type-1. This may lead to increased cortisol
exposure and adipocytes proliferation [9]. In addition, early nutrient restriction in sheep was reported
to increase the expression of both 11β-hydroxysteroid dehydrogenase type-1 and glucocorticoid
receptor [10]. Moreover, rat offspring from dams who suffered from variable stress, e.g., restraint,
swim, cold exposure, group housing and light on during dark phase during the third week of gestation
were more susceptible to obesity when weaned on a high fat diet; this susceptibility may have been
related to excessive exposure of the developing fetus to maternal glucocorticoid [11]. Type 2 diabetes
mellitus has two major features: desensitization of peripheral target tissues/organs to the actions of
insulin, i.e., insulin resistance, and insufficient response of β-cell to glucose stimuli. It is well known
that high-fat diets can cause insulin resistance [12,13]. A combination of these two factors is likely to
the cause diabetes mellitus in rat offspring.

In this study, we evaluated whether rats treated prenatally with dexamethasone plus a high-fat
diet show deficits in glycemic homeostasis. In addition, we examined the effects of these treatments on
the expression of genes important in glucose and fatty acid metabolism in the liver, pancreas, muscle
and adipose depots.

2. Results

The birth body weight was lighter in the prenatal steroid exposure group than in the vehicle
control group (5.9 ˘ 0.1 vs. 8.0 ˘ 0.2 g, p = 0.001). There was no difference in body weight from
weaning among the four groups until from 94 days of postnatal age (P94), when the body weight was
heavier in the vehicle and high-fat diet (VHF) group than in the vehicle with normal diet (VSD) group.
The dexamethasone and high-fat diet (DHF) group had a higher body weight than the dexamethasone
and normal diet (DSD) group at P119. The high-fat diet had a positive effect on body weight increase,
while prenatal steroid did not significantly influence the body weight. The mortality rates of the four
groups of animals were all 0% (Figure 1).
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Figure 1. Body weights. Mean body weight from weaning until six months. Groups were compared
by repeated measures Analysis of Variance (ANOVA) with post hoc least significant difference testing.
*, vehicle with normal diet (VSD) group vs. vehicle and high-fat diet (VHF) group, p < 0.05;
$, dexamethasone and normal diet (DSD) group vs. dexamethasone and high-fat diet (DHF) group,
p < 0.05.
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Intraperitoneal Glucose Tolerance Test (IPGTT) and Insulin Tolerance Test (ITT)

Sugar levels at 15 and 30 min were higher in the DHF group than in the VHF group and at 15 min
in the DHF group than in the VSD group (Figure 2A). The glucose area under curve (AUC) was larger
in the DHF group than in the VHF group (Figure 2B). Serum insulin levels at 15, 30 and 60 min after
intraperitoneal glucose injection were significantly higher in the VHF group than in the VSD group
(Figure 2C). The glucose level at 60 min during the ITT was higher in the DHF group than the other
three groups (Figure 2D).
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(B) glucose area under curves (AUC); (C) insulin levels; and (D) insulin tolerance test. Data were
analyzed by repeated measures ANOVA with post hoc least significant difference testing. *, VSD vs.
VHF, p < 0.05; #, VHF vs. DHF, p < 0.05; %, VSD vs. DHF, p < 0.05; $, DSD vs. DHF, p < 0.05.

To investigate the mechanisms underlying the development of insulin resistance after prenatal
glucocorticoid overexposure plus postnatal high fat-diet, we measured the transcript levels of genes
involved in glucose metabolism in the liver, muscle and fat depots.

In the liver, the mRNA levels of Acot1, Acadsb and Srebf1 were increased, while the mRNA level
for G-6-Pase was decreased in the DHF group compared to that in the DSD group. The mRNA levels
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of Adiponectin and hexokinase 2 were increased in the DSD group compared to that in the VSD group
and the mRNA levels for IGF-1 were increased in the DHF group compared to that in the VHF group.
Additionally, the mRNA levels of both insulin receptor (IR) and AMP-activated protein kinase (AMPK)
were both decreased in the DHF group compared to that in the other groups. Since AMPK plays a key
role in stimulating fatty acid oxidation and suppressing hepatic lipogenesis, decreased AMPK levels
may be a mechanism for the increased insulin resistance. The results for AMPK or pAMPK protein
levels were consistent with the results of Western blot analysis (Figure 3).

Int. J. Mol. Sci. 2016, 17, 533 4 of 12 

 

In the liver, the mRNA levels of Acot1, Acadsb and Srebf1 were increased, while the mRNA 
level for G-6-Pase was decreased in the DHF group compared to that in the DSD group. The mRNA 
levels of Adiponectin and hexokinase 2 were increased in the DSD group compared to that in the 
VSD group and the mRNA levels for IGF-1 were increased in the DHF group compared to that in the 
VHF group. Additionally, the mRNA levels of both insulin receptor (IR) and AMP-activated protein 
kinase (AMPK) were both decreased in the DHF group compared to that in the other groups. Since 
AMPK plays a key role in stimulating fatty acid oxidation and suppressing hepatic lipogenesis, 
decreased AMPK levels may be a mechanism for the increased insulin resistance. The results for 
AMPK or pAMPK protein levels were consistent with the results of Western blot analysis (Figure 3). 

 

Figure 3. Hepatic mRNA transcript levels and adenosine monophosphate-activated protein kinase 
(AMPK) and phsopho-AMPK protein levels: (A,B) hepatic mRNA transcript levels; and (C) hepatic 
AMPK and pAMPK protein levels. The red dotted line represented that the relative gene expression 
was 1 when compared to VSD group. Adipoq, adiponectin; Acot1, Acyl-CoA thioesterase 1;  
Acot4, Acyl-CoA thioesterase 4; HK2, Hexokinase 2. Ldha, Lactate dehydrogenase A; Pfk1,  
6-phosphofructokinase; Irs2, Insulin receptor substrate 2; Acadsb, Acyl-CoA dehydrogenase; Srebf1, 
Sterol regulatory element-binding transcription factor 1; Slc2a1, Solute carrier family 2, member 1; 
IGF1, Insulin-like growth factor 1; G-6-Pase, Glucose 6-phosphatase; PEPCK, phosphoenolpyruvate 
carboxykinase; IR, Insulin receptor; AMPKa, AMP-activated protein kinase alpha; OBRa, leptin/obese 
receptor a; OBRb, leptin/obese receptor b. Data were compared by two-way ANOVA followed with 
post hoc least significant difference tests. * vs. VSD, p < 0.05; $, DSD vs. DHF, p < 0.05; #, VHF vs. DHF, 
p < 0.05; +, DSD vs. VHF, p < 0.05. 

Figure 3. Hepatic mRNA transcript levels and adenosine monophosphate-activated protein kinase
(AMPK) and phsopho-AMPK protein levels: (A,B) hepatic mRNA transcript levels; and (C) hepatic
AMPK and pAMPK protein levels. The red dotted line represented that the relative gene expression
was 1 when compared to VSD group. Adipoq, adiponectin; Acot1, Acyl-CoA thioesterase 1;
Acot4, Acyl-CoA thioesterase 4; HK2, Hexokinase 2. Ldha, Lactate dehydrogenase A; Pfk1,
6-phosphofructokinase; Irs2, Insulin receptor substrate 2; Acadsb, Acyl-CoA dehydrogenase; Srebf1,
Sterol regulatory element-binding transcription factor 1; Slc2a1, Solute carrier family 2, member 1;
IGF1, Insulin-like growth factor 1; G-6-Pase, Glucose 6-phosphatase; PEPCK, phosphoenolpyruvate
carboxykinase; IR, Insulin receptor; AMPKa, AMP-activated protein kinase alpha; OBRa, leptin/obese
receptor a; OBRb, leptin/obese receptor b. Data were compared by two-way ANOVA followed with
post hoc least significant difference tests. * vs. VSD, p < 0.05; $, DSD vs. DHF, p < 0.05; #, VHF vs. DHF,
p < 0.05; +, DSD vs. VHF, p < 0.05.
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In the pancreas (Figure 4), we found increased glucokinase mRNA expression in the DHF group
compared to that in the VSD group. There was no difference in the pdx-1, maf-a, pax-6 and neuro D1
mRNA expression among the four groups.
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Peroxisome proliferator-activated receptor gamma. Data were compared by two-way ANOVA with
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3. Discussion

In this study, we found: (1) higher sugar level at 15 and 30 min in the DHF group than in the VHF
group; (2) the serum insulin level at 15, 30 and 60 min were significantly higher in the DHF group than
in the VSD group; (3) lower liver IR and AMPK mRNA and protein in the DHF group than the other
three groups; and (4) lower IR and IRS-1 mRNA expression in the epididymal adipose tissue in the
VHF and DHF groups than the other two groups.

Glucocorticoids can promote gluconeogenesis in the liver and decrease glucose uptake and
utilization in the skeletal muscle and white adipose tissue. Excess glucocorticoid exposure causes
hyperglycemia by inducing gluconeogenic enzyme genes in the liver. In addition, they also take a
role in catecholamine induced glycogenolysis and/or inhibit insulin stimulated glycogen synthesis
in the skeletal muscle. Furthermore, they adjust the function of pancreatic α and β cells to regulate
the glucagon and insulin secretion [14,15]. Maternal glucocorticoid administration can influence
glucose homeostasis in various organs in offspring. Franko et al. [16] reported that after maternal
injection with dexamethasone, offspring showed higher phosphoenolpyruvate carboxykinase activity
in the liver than in controls both at birth and weanlings. We previously found that seven-day-old
rats with antenatal glucocorticoid exposure had lower pdx-1, maf-a, neurod-1, and pax-6 mRNA
expressions in the pancreas [17]. Blasio et al. [18] also demonstrated that maternal glucocorticoid
exposure during early pregnancy altered glucose homeostasis and induced hyperinsulinemia in adult
male sheep offspring.

Decreases in insulin secretion and insulin sensitivity occur during the development of type 2
diabetes. Our previous study showed prenatal dexamethasone may have programming effects on
pancreas development by decreasing PD 120 pancreatic β cell mass with lower serum insulin level at
15 min in IPGTT without differences in sugar levels [18]. Autopsy studies from various populations
revealed the pancreatic β cell mass reduced significantly in patients with type 2 diabetes compared
to that in nondiabetic individuals [19,20]. A high-fat diet was reported to induce insulin resistance.
Therefore, we evaluated the combined effects of prenatal glucocorticoid and a high-fat diet.



Int. J. Mol. Sci. 2016, 17, 533 8 of 12

First, we evaluated the effects of prenatal glucocorticoid exposure. We found increased
adiponectin mRNA levels in the liver of DSD group than in the VSD group. Adiponectin is primarily
an adipocyte-derived protein that has anti-obesity, antidiabetic and anti-inflammatory characteristics.
Higher circulating adiponectin levels were reported to be associated with a lower risk of type 2
diabetes [21]. The expression of adiponectin in the liver is downregulated in morbidly obese patients
with non-alcoholic steatohepatitis compared to that in patients with simple steatosis [22]. We found no
difference in sugar levels in the IPGTT between the DSD group and the VSD group. There were also no
difference in leptin, adiponectin, and resistin expression among these four groups in the epididymal
adipose tissue and omentum fat. Liver adiponectin seemed to play a minor role in this study.

Next, we observed increased IGF-1 mRNA levels in the liver of the DHF group than in the
VHF group and increased IGF1-r mRNA expression in the gastrocnemius muscle in the DHF group
compared to that in the other three groups. IGF-1 gene expression was reported to be downregulated in
liver tissues and progressively decreased with the severity and duration of diabetic state [23]. Increased
IGF-1 mRNA levels in the liver may compensate to overcome the hyperglycemic state during the
early stage of diabetes. Sugar levels in the DHF group were higher than in the VHF group. The
serum insulin level at 60 min after intraperitoneal (i.p.) glucose injection was significantly higher
in the DHF group than in the VHF group. The glucose level was higher at 60 min during the ITT
in the DHF group than in the other three groups. These data indicate that prenatal glucocorticoid
exposure strengthens high-fat induced insulin resistance. Since GLUT4 is a downstream target of the
IR and IGF-1r, disruption of the IR signaling pathway in muscle can be compensated functionally by
increasing IGF-Ir expression [24].

Additionally, we found IR and AMPK mRNA levels were both decreased in the livers of the
DHF group compared to that in the other groups. In gastrocnemius muscle, IR mRNA expression
was decreased in the DSD, VHF, and DHF groups compared to that in the VSD group. Phopho-Akt
protein levels were decreased in the DHF group compared to that in the DSD group. In the epididymal
adipose tissue, we observed decreased IR and IRS-1 mRNA expression in the VHF and DHF groups.
However, there were no differences in the omentum fat. The AMPK system takes a major role in
regulating glucose metabolism. The mechanism can be through its effects on energy metabolism
pathways acutely and gene expression change chronically. The relationship between AMPK activation
and advantageous metabolic effects in diabetic rodent models provides a foundation for developing
new therapeutic strategies and nutritional use of AMPK activators to prevent or reverse hepatic
disorders related to type 2 diabetes and obesity. In this study, we found lower liver AMPK mRNA
and protein in the DHF group, indicating that prenatal steroid and postnatal high-fat diet may affect
glucose homeostasis through the AMPK pathway [25,26]. In addition, insulin signaling is required
for insulin to act both, directly and indirectly, on hepatic glucose production. Lower liver IR was also
observed in the DHF group.

Insulin resistance in obesity and type 2 diabetes is characterized by fewer insulin stimulated
glucose transport and less metabolism in skeletal muscle and adipocytes. These functional defects
may result partly from impaired insulin signaling. In both the muscle and adipocytes, binding of
insulin to its receptor, insulin receptor phosphorylation and activation of tyrosine kinase, and IRSs
phosphorylation are reduced. There are also tissue-specific alterations. In adipocytes isolated from
obese humans with type 2 diabetes, expression of IRS-1 is reduced, followed by IRS-1–associated
PI3K activity decreased, then IRS-2 becomes the main docking protein for PI3K [27]. In our study,
we detected lower IR and IRS-1 mRNA expression in the epididymal adipose tissue but not in the
omentum fat in the VHF and DHF groups. Thus, the roles of IR and IRS-1 in various adipose tissues
require further analysis.
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4. Material and Methods

4.1. Animals

This study was approved by the Institutional Animal Care and Use Committee of the Kaohsiung
Chang Gung Memorial Hospital (number 2014032607, approved date 2014/05/05). The experiments
were done under the Guidelines for Animal Experiments of Chang Gung Memorial Hospital and Chang
Gung University (Kaohsiung, Taiwan). We purchased virgin Sprague-Dawley (SD) rats (12–16 weeks
old) from the BioLASCO Taiwan Co., Ltd. (Taipei, Taiwan). SD rats were fed in the animal care center
with a 12-h light/dark cycle and lights on at 7 a.m. We allowed SD female rats to mate with male
rats for 24 h. After one day, the female rats were separated from the male rats individually. Pregnant
females were randomly divided into prenatal steroid exposure and control groups.

4.2. Prenatal Steroid Exposure and Postnatal High Fat Diet

We administered pregnant SD rats in the prenatal steroid exposure group i.p. dexamethasone
(0.1 mg/kg/day) from gestational days (GD) 14–20. The vehicle control group received normal saline
i.p. at GD 14–20. We designated the day of birth as postnatal Day 0 (PD 0). Pups were weaned at PD
21, and had free access to standard chow and water. Only the male offspring were used for this study.

Four groups of rats were used: the number in each group was ten.

1. VSD group: Offspring of SD rats that received i.p. normal saline at GD 14–20; received normal
diet after weaning, sacrificed at 4 months of age.

2. DSD group: Offspring of SD rats that received i.p. dexamethasone at GD 14–20; received normal
diet after weaning, sacrificed at 4 months of age.

3. VHF group: Offspring of SD rats that received i.p. normal saline at GD 14–20; received high-fat
diet (58% high-fat diet, Research Diet, D12330, soybean Oil 25 gm%, coconut Oil, hydrogenated
333.5 gm%) (Supplementary Table S1) from weaning, sacrificed at 4 months of age.

4. DHF group: Offspring of SD rats that received i.p. dexamethasone at GD 14–20; received high-fat
diet from weaning, sacrificed at 4 months of age.

4.3. I.P. Glucose Tolerance Test (IPGTT) and Insulin Tolerance Test (ITT)

After an 8-h fast at PD 110, blood samples were collected at five time points: before injection and
at 15, 30, 60, and 120 min after the i.p. injection of glucose (2 g/kg body weight). Plasma glucose levels
were immediately measured using the enzymatic (hexokinase) method with a glucose assay kit. Serum
insulin levels were checked using enzyme -linked immunosorbent assay (Crystal Chem Inc., Downers
Grove, IL, USA) The ITT was performed by injecting insulin i.p. (1 U/kg body weight) after a 5-h
fast. We measured blood glucose levels before and 15, 30, 60, and 120 min after insulin injection using
methods as described above.

4.4. Quantitative Real-Time Polymerase Chain Reaction (PCR) Analysis

We extracted RNA by using TRI Reagent then treated with DNase I to measure mRNA expression.
RNA (2 µg) was reverse-transcribed with random primers in a total volume of 40 µL as previously
published [28]. We performed control RT reactions by omitting the RT enzyme followed by PCR
amplification. We conducted two-step quantitative real-time PCR using Quantitect SYBR Green PCR
Reagents according to the manufacturer’s protocol on a LightCycler Real-Time PCR System (Roche
Diagnostics Ltd., Basel, Switzerland). The β-Actin served as a control housekeeping gene. The primers
used are listed in Table 1. All samples were run in duplicate (2.5 µL of cDNA/well in a 96-well format).
The comparative threshold cycle (Ct) method was employed for the relative quantification of gene
expression. The averaged Ct was subtracted from the corresponding averaged β-Actin value for each
sample to result in ∆Ct. We determined ∆∆Ct by subtracting the average control ∆Ct value from the



Int. J. Mol. Sci. 2016, 17, 533 10 of 12

average experimental ∆Ct. The fold increase was established by calculating 2´∆∆Ct for experimental
versus control samples.

Table 1. Primers used in real-time polymerase chain reaction.

Gene Sense (51–31) Anti-Sense (31–51)

Adipocytokine signaling pathway

Adiponectin GGAGACGCAGGTGTTCTTGG AGCCCTACGCTGAATGCTGA
Leptin CGGTTCCTGTGGCTTTGGT CCGACTGCGTGTGTGAAATG
OBRa CCTCTTGTGTCCTGCTGCTCGG TTCTATGGACTGTTGGGAGGTTGGT
OBRb GCATGCAGAATCAGTGATATTTGG CAAGCTGTATCGACACTGATTTCTTC
Slc2a1 GCTCCATTTAGGATTCGCCCA TATACACAGCAGGGCAGGAGT

Resistin TCATGCCCAGAACCGAGTTG CAGCCCCAGGACAAGGAAGA
Visfatin TCTGGAAATCCGCTCGACAC CACTCCGTCCCCTTGAATGA

Fatty acid metabolism

Acadsb GGACTGGCCCAAGGATGTTT ATAAATGGCCTCCCGGCTTC
Acot1 GTGATGGTTTTGGCAGGAAAAGT AATGTGCTCTTTTCCCTTACAGC
Acot4 TTGCCATCTCAATGGGGTAGAT AGGGAGTCTCTCTTAACGTTTACC

Perilipin1 GAGGGGCTGATCTGGCTTTG GCATCTTTTGCCGTCCTGAA
PPAR-r GGCTTCATGACAAGGGAGTTTC AACTCAAACTTGGGCTCCATAAAG

Glycolysis/Gluconeogenesis

G6Pase AACGTCTGTCTGTCCCGGATCTAC ACCTCTGGAGGCTGGCATTG
Ldha TCAGCGTCCCATGTATCCTG CTGGACCAACTGGACTAACCA

PEPCK CTCACCTCTGGCCAAGATTGGTA GTTGCAGGCCCAGTTGTTGA
Pfkl CTTACCGATCACCCTCGTTC CCACAGGTGCTCTGTTCTGA

Insulin/IGF-1 signaling pathway

AMPKa GTCGGCACCTTCGGCAAAGTGAA AGAAATTCACCATCTGACATCATATTAGA
Glucokinase CAGTGGAGCGTGAAGACAAA AGGGAAGGAGAAGGTGGAGC

GLUT-4 TTTCCAGTATGTTGCGGATG TCAGTCATTCTCATCTGGCC
Hexokinase 2 ATGGTCCTCCCCCACTCTAC TCCCACCCAACATCTACCTC

IR TCGAACCCTTCCTAACAG CAGGTCCAAAGACAAACAGA
IRS-1 ATCTTCCTTTGGCGCAGCTA CAGCACGAAAAAGCGCTTA
IRS-2 GAATCCCCCAGGGACAGTAG GGGGAGGGGGAGTTTAGTGT
IGF-1 TCAGTTCGTG TGTGGACCAG TCACAGCTCCGGAAGCAAC
IGF-1r TGGCAGAACTGCTGTCTGAG AACGCAGGGTCTAGTTGAGC

SREBF1 GCTGATGGAGACAGGGAGTT GCAGTTGATGTAGAGGCTAAGC

Insulin secretion

Maf-a GGAGGTCATCCGACT GAAACA CCGCCAACTTCTCGTATTTCTC
Neuro D1 CTCGCTGTGA GATCC CCATAG TAATCGTGAAAGATGGCATTAAGC

PAX-6 CTCCTCGTACTCCTGCATGCT GGGCTGACTGTTCATGTGTGTT
Pdx-1 GCTGGAGCTGGAGAAGGAAT CGTTGTCCCGCTACGTT

β-Actin TACTGCCCTGGCTCCTA GGGCCGGACTCATCGTA

4.5. Western Blot

Western blot analysis was performed as previously described [28]. The following antibodies were
used: AMPK (goat anti-rat antibody (1:1000, overnight incubation; Santa Cruz Biotechnology, Santa
Cruz, CA, USA); phospho-AMPK antibody (rabbit anti-rat antibody (1:1000, overnight incubation;
Santa Cruz Biotechnology) and phospho-Akt (Ser 473) antibody (rabbit anti-rat antibody (1:1000,
overnight incubation; Cell Signaling Technology, Danvers, MA, USA)). We used Super Signal West
Pico reagent (Pierce; Rockford, IL, USA) to visualize bands of interest and quantified them using
densitometry as integrated optical density, factored for Ponceau S red (PonS) staining to correct
variations in total protein loading. Protein levels were represented as integrate optical density/PonS.
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4.6. Statistical Analyses

The results are presented as the mean ˘ standard error of the mean. We analyzed data by
two-way ANOVA with post hoc least significant difference test. All analyses were carried out using the
Statistical Package for the Social Sciences (SPSS) software version 15 (SPSS Inc., Chicago, IL, USA) on a
PC-compatible computer. Significance was defined as p < 0.05 for all tests.

5. Conclusions

In conclusion, we found evidence for “programming” of the liver or of epididymal adipose tissue
mass by prenatal events in animal model. Exposure to a high-fat diet was associated with worsening
of insulin resistance in animals exposed to excess glucocorticoid in utero.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/17/
4/533/s1.
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