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Abstract: Inoculation of legume seeds with Rhizobium affects soil microbial community and processes,
especially in the rhizosphere. This study aimed at assessing the effect of Rhizobium inoculation on
microbial activity in the faba bean rhizosphere during the growing season in a field experiment on
a Haplic Luvisol derived from loess. Faba bean (Vicia faba L.) seeds were non-inoculated (NI) or
inoculated (I) with Rhizobium leguminosarum bv. viciae and sown. The rhizosphere soil was analyzed
for the enzymatic activities of dehydrogenases, urease, protease and acid phosphomonoesterase, and
functional diversity (catabolic potential) using the Average Well Color Development, Shannon-Weaver,
and Richness indices following the community level physiological profiling from Biolog EcoPlate™.
The analyses were done on three occasions corresponding to the growth stages of: 5–6 leaf, flowering,
and pod formation. The enzymatic activities were higher in I than NI (p < 0.05) throughout the
growing season. However, none of the functional diversity indices differed significantly under both
treatments, regardless of the growth stage. This work showed that the functional diversity of the
microbial communities was a less sensitive tool than enzyme activities in assessment of rhizobial
inoculation effects on rhizosphere microbial activity.

Keywords: soil enzymes; rhizosphere; Vicia faba; functional diversity of soil;
Rhizobium leguminosarum; biofertilizers

1. Introduction

Gram-negative soil bacteria of the genus Rhizobium play a very important role in agriculture.
They form a symbiotic relationship with leguminous crops resulting in biological nitrogen fixation
and thereby reduction of the requirements for added nitrogenous fertilizer during the growing season.
Rhizobium symbiosis with legumes produces 50% of 175 million tons of total biological N2 fixation
annually worldwide [1]. Therefore, inoculation of legumes with efficient rhizobia at sowing is one
of the most important and agronomically eco-friendly practices used for improvement of N fixation.
Denton et al. [2] observed that nodule dry matter increased in soil with an increasing rate of inoculation.
Besides enhanced nodulation and nitrogen fixation, rhizobial seed inoculation can stimulate production
of phytohormones, siderophores, and HCN (hydrogen cyanide) as well as microbial diversity and
structure, potentially enhancing plant growth-promoting rhizobacteria [3,4]. Rhizobial inoculation
(with R. leguminosarum) enhanced phosphate solubilization [1,5] as well as P and N uptake and Fe
content in lettuce and carrots [6]. Inoculation with a R. gallicum strain induced growth of bacterial
communities that had been often reported as PGPM (plant growth-promoting microorganisms) [3].
The extent of these changes was also seen in the next rotation crop. Therefore, rhizobial inoculation
resulted in increased shoot growth, number of pods, and grain yield of faba bean [2] and lentil [5],
compared with non-inoculated controls.
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Using T-RFLP (Terminal Restriction Fragment Length Polymorphism) analysis, Trabelsi et al. [4]
showed that inoculation of common bean with rhizobial strains resulted in a highly significant increase
in the TRF (Terminal Restriction Fragments) number (51 TRFs), compared to non-inoculated plants
(13 TRFs). Additionally, among the total number of 84 TRFs, 23 were specifically induced by inoculation,
indicating that inoculation with rhizobia increased microbial diversity and structure.

Rhizobia can also serve as biological control agents of some plant pathogens in legume and
non-legume plants [7]. In fields infested with Pythium spp., inoculation with Rhizobium leguminosarum
significantly increased seedling emergence in pea and sugar beets [8] and reduced the incidence
of a disease induced by soil-borne pathogens of pea and lentil [9]. Treatment of faba bean seeds
with R. leguminosarum under soil infestation conditions by R. solani caused significant reduction in
damping-off as compared to the untreated control [10].

Rhizobial seed inoculation may have a significant influence on the growth and composition
of the microbiome as well as associated synthesis and release of enzymes into soil, especially in
the rhizosphere. The rhizosphere is a narrow zone of soil that is influenced by root exudates and
inhabited by most microorganisms (bacteria and fungi), including those beneficially affecting soil health
and ecosystem functioning [11]. Rhizobacteria with growth-promoting and pathogen-suppressive
capability were isolated from healthy chickpea (Cicer arietinum L.) plants and identified as Pseudomonas
and Bacillus [12].

Little information is available about the effect of Rhizobium inoculation on the soil microbial
activity in the faba bean rhizosphere. Faba bean is an important leguminous crop. It occupies ca. 5.3%
of the sown area of fodder legumes in Poland [13]. The objectives of this study were (1) to determine
the effect of inoculation of faba bean seeds with Rhizobium on soil microbial activity; and (2) to compare
the activity of actual soil microbial community using enzyme activities with the functional diversity
of the cultivable community using Biolog Ecoplates of field soil with low resident rhizobia. To date,
according to our knowledge, no studies with faba bean concerning the microbial effect of inoculation
with rhizobia were conducted using both approaches simultaneously.

2. Results and Discussion

2.1. Enzyme Activities

All enzymatic activities (except for protease activity at T1 and T2 and acid phosphomonoesterase
at T3) were higher in inoculated (I) than non-inoculated (NI) (p < 0.05) throughout the growing
season although the extent of the differentiation was related to the type of the microbial activity and
measurement occasion (Figure 1). At T1 and T2 (5–6 leaf and flowering stages, respectively), the
relative differences between the two treatments were appreciably higher in urease activity (72%–143%)
and dehydrogenase activity (55%–70%) than in the activities of acid phosphomonoesterase (8%–11%)
and protease (3%–25%), whereas at T3 the differences amounted to 86% in protease and 102% in
urease activities.

When annual averages were taken into consideration, all the evaluated enzymatic activities
were improved by the inoculation of the seeds with rhizobia. The most pronounced improvement
produced by the inoculation was noticed for urease (104%), while acid phosphomonoesterase activity
was changed to the lowest extent (7%). However, this increase for protease was insignificant.
The above results indicate that the enzymatic activities in our study were not similarly affected
by the Rhizobium inoculation during the growing season. The relatively high sensitivity of urease
activity and dehydrogenase activity at growth stages T1 (5–6 leaf) and T2 (flowering) indicate that
Rhizobium inoculation has great potential for the cycling of N and production of adenosine triphosphate
through oxidation of organic matter in the soil, respectively. However, the less pronounced increases
in the activities of acid phosphomonoesterase and protease indicate respectively low release of both
inorganic phosphorus (orthophosphate) from organic phosphomonesters [14] and protein N at the
hydrolysis [15,16].
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The changes in a majority of the enzymatic activities between the measurement occasions were
statistically different (p < 0.05) both in NI and I treatments. Irrespective of the treatment, maximum
values of dehydrogenase and protease activities were noted at T2, urease activity at T3, and the activity
of acid phosphomonoesterase at T1. The maximum values of dehydrogenase and protease activities
at T2 (flowering) can be linked to abundant root size and organic carbon from root exudates in the
rhizosphere at this growth stage and hence increasing microbial populations contributing to release
of these enzymes [11]. This effect was more pronounced in I than NI. The Rhizobium inoculation and
enhanced enzymatic activity may improve plant growth through soil nutrient enrichment and increase
of resistance against plant pathogens [17].
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Figure 1. Enzymatic activity. Different lowercase letters indicate significant differences (p < 0.05).
NI, non-inoculated; I, inoculated with Rhizobium; T1, 5–6 leaf stage; T2, flowering; T3, pod
formation stage.

2.2. Community Level Physiological Profiling (CLPP)

AWCD (average well-color development) was higher in T2 than T1 and T3 under both treatments
(Table 1). However, the differences between both treatments were not significant, regardless of the
sampling time. Similarly, annual averages did not differ after the rhizobial inoculation. The R index did
not differ between the NI and I treatments in all sampling terms and for the annual mean. However, it
decreased significantly in T3, in comparison with T2 under I. Although H did not differ between both
treatments in individual sampling terms, it significantly increased under I in T3, compared to T1 and
T2. The mean value of H was higher under I than NI.

Table 1. Community Level Physiological Profiling (CLPP) indices.

Time Treatment
CLPP

AWCD R H

T1
NI 1.13 a 30.0 ab 3.376 b
I 1.15 a 30.0 ab 3.391 b

T2
NI 1.32 a 30.7 ab 3.394 ab
I 1.25 a 31.0 a 3.392 b

T3
NI 1.17 a 30.3 ab 3.398 ab
I 1.08 a 29.7 b 3.419 a

Means
NI 1.21 a 30.2 a 3.389 b
I 1.16 a 30.3 a 3.401 a

Different lowercase letters within the same variables mean significant differences (p < 0.05). AWCD, average
well-color development; R, richness index; H, Shannon-Weaver index; NI, non-inoculated; I, inoculated with
Rhizobium; T1, 5–6 leaf stage; T2, flowering; T3, pod formation stage.
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Figure 2 presents the bond distances between the treatments, where clustering was evaluated
using the carbon utilization patterns of the substrates. Taking into consideration Sneath’s criterion
66%, two groups were distinguished. A similar response was noted under I T3 and I T1 (group 1)
in terms of carbon substrate utilization. These findings were supported by the carbon substrate
utilization intensity (Figure 3). A lower degree of substrate utilization was observed in group 1 than 2.
The lower rate of utilization of substrates by group 1 than 2 was found for N-Acetyl-D-Glucosamine,
D-Galactonic Acid γ-Lactone, L-Asparagine, D-Cellobiose, α-D-Lactose, D-Malic Acid, L-Arginine,
β-Methyl-D-Glucoside, and Itaconic Acid. Significant differences among the treatments were observed
in the utilization patterns of categorized substrates (Figure 4). The highest differences between the
NI and I treatment were noted for polymers in T2 and carboxylic acids in T3 when both categorized
substrates were used to a lesser extent under I than NI.
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Figure 2. Dendrogram of the bond distances between the carbon utilizations patterns of the substrates
on the Biolog EcoPlatesTM. Grouping was conducted according to the Sneath’s criterion (66%);
NI, non-inoculated; I, inoculated with Rhizobium; T1, 5–6 leaf stage; T2, flowering; T3, pod formation
stage; n = 3. Red frames indicate group treatments with similar carbon utilization.
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Figure 3. Biolog EcoPlateTM carbon substrates utilization intensity diagram. NI, non-inoculated;
I, inoculated with Rhizobium; T1, 5–6 leaf stage; T2, flowering; T3, pod formation stage; n = 3.
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Figure 4. Utilization of categorized substrate by the microbial communities. Errors bars indicate the
standard deviations of the mean; * indicates significant difference in polymers utilization between NI
T2 and I T2; and + indicates difference in carboxylic acids utilization between NI T3 and I T3 (p < 0.05);
n = 3. NI, non-inoculated; I, inoculated with Rhizobium; T1, 5–6 leaf stage; T2, flowering; T3, pod
formation stage.

Analyses of variance (Table 2) showed that the functional diversity of the microbial communities
was a less sensitive tool for assessment of rhizobial inoculation effects than soil enzyme activities,
indicating that soil enzyme activities may reveal more about microbial activity of soil. This may be
related to the fact that CLPP could select rare, less-dominant, but culturable members of the community
that have adapted to rapid growth on available substrates. As opposed to the CLPP, soil enzyme
activity is a cultivation-independent method and can reflect the functioning of the microbial community.
It is worth noting that soil enzyme activities (Figure 1), compared to the functional diversity via Biolog
EcoPlates (Table 1), were more sensitive to the rhizobial inoculation throughout the growing season.
This result is in agreement with earlier findings indicating that the Biolog method can be suitable for
detecting changes in substrate availability for microorganisms shortly after soil modification than
during a later period [18].

Overall, the results from the present study on the enzyme activity and functional diversity of
a rhizosphere environment agree well with earlier results indicating that root-mediated processes
enhance soil aggregation and plant drought resistance and affect soil acidity and accessibility of
nutrients to plants [11].
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Table 2. F-values for enzyme activities and Community Level Physiological Profiling (CLPP) indices.

Factors
Enzyme Activities CLPP

Dehydrogenases
(µg TPF g´1¨ d´1)

Urease
(mg N-NH4 kg´1¨ h´1)

Protease
(mg Tyrosine kg´1¨ h´1)

Acid Phosphomonoesterase
(mmol PNP kg´1¨ h´1) AWCD R H

Inoculation 496.378 *** 406.903 *** 3.3857 34.9 *** 1.233 0.33 7.09 *
Time 316.912 *** 57.686 *** 8.8197 ** 60.65 *** 6.047 * 8.33 ** 10.39 **

Inoculation*Time 35.981 *** 15.03 *** 0.7304 4.05 * 0.521 2.33 2.46

AWCD, average well-color development; R, richness; H, Shannon-Weaver index; Probability at * p < 0.05, ** p < 0.01, *** p < 0.001.
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3. Materials and Methods

3.1. Description of the Study Site and Treatments

The field study was performed in Lublin, Poland (51˝15’ N, 22˝35’ E). The soil was a Haplic
Luvisol [19] derived from loess, with clay, silt, and sand contents of 70, 290, and 640 g¨ kg´1,
respectively, in the 0–20 cm soil layer, pH 6.1 (H2O), and organic matter content of 14.1 g¨ kg´1.
As indicated by the Kjeldahl method, total N was 0.75 g¨ kg´1, and P, K, Mg contents were 114, 153,
and 39 mg¨ kg´1, respectively. The soil was under 30-year conventional tillage, with main tillage
operations including pre-plow (10 cm depth) + harrowing and moldboard plowing (20–25 cm depth).
Faba bean (Vicia faba L.) cultivar Granit was used as the test crop. Faba bean seeds were non-inoculated
(NI) or inoculated (I) with commercial inoculum of Rhizobium leguminosarum bv. viciae on perlite
(Nitragina) obtained from the Institute of Soil Science and Plant Cultivation (IUNG). The number
of Rhizobium was 106 CFU¨ g´1 perlite. The inoculum was applied immediately before sowing, in
accordance with the recommendations of the manufacturer. The plots (2 m ˆ 2 m) were randomly
organized in three replicates.

3.2. Sampling of Rhizosphere Soil

Faba bean roots were excavated from the 0–15 cm soil layer and shaken gently to separate loosely
adhering soil. The soil left adhering to the roots (rhizosphere soil) was vigorously shaken and taken
for further analysis. Soil for microbial analyses was taken three times during the vegetative period of
faba bean: at the T1 5–6 leaf, T2 flowering, and T3 pod formation stages. Soil was passed through a
0.2 cm mesh sieve and used immediately for analyses or it was short-term stored at 4 ˝C.

3.3. Enzymatic Activities

Dehydrogenase activity was determined using the Thalmann [20] method, modified by Alef [21],
after soil incubation with 2,3,5-triphenyltetrazolium chloride (TTC) as a substrate. Triphenyl formazan
(TPF) absorbance was measured at 485 nm. Urease activity was assessed with urea solution as a
substrate according to Zantua and Bremner [22] method. The Ladd and Butler [23] method modified
by Alef and Nannipieri [24] was used for protease activity measurement. The concentration of
tyrosine in soil after one-hour incubation at 50 ˝C with a TRIS-HCl (pH 8.1) sodium caseinate
solution was measured at 578 nm. Acid phosphomonoesterase was determined by the Tabatabai and
Bremner [25] method after soil incubation with p-nitrophenyl disodium phosphate and by measuring
the p-nitrophenol (PNP) concentration at 400 nm. Four replicates per treatment were done for each
analysis. Results were calculated in reference to oven-dry (105 ˝C) weight of soil.

3.4. Community Level Physiological Profiling

Community Level Physiological Profiling was evaluated using Biolog EcoPlate™ (Biolog Inc.,
Hayward, CA, USA) with 31 carbon sources [26]. Each well of the Biolog EcoPlate™ was inoculated
with 120 µL of the inoculum and incubated at 27 ˝C. Absorbance data were taken every 24 h for 72 h at
590 nm using a plate reader Biolog MicroStation™. On the basis of data obtained at 72 h, Richness (R),
Shannon-Weaver (H), and average well color development (AWCD) indices were calculated following
Garland and Millis [27].

3.5. Statistical Analysis

Statistical analyses were performed with Statistica 10.0 software (StatSoft Inc., Tulsa, OK, USA,
2011). Collected data were subjected to two-way analysis of variance (ANOVA) for comparing means,
and significant differences were calculated with post-hoc Tukey’s HSD (honestly significant differences)
test at a p < 0.05 significant level. Cluster analysis, including grouping of treatments and features, was
conducted on standardized data from the average absorbance results at 72 h. To indicate the similarity
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of the carbon utilization patterns of the substrates on the Biolog EcoPlateTM between the treatments, a
dendrogram was prepared with scaled bond distances on the axis (method of Ward) and boundary
marked according to Sneath’s criterion (66%). The results were standardized according to AWCD in
each microplate in order to remove the inoculum density effects [28].

4. Conclusions

This work showed that Rhizobium inoculation induced a significant and consistent increase
in a majority of enzymatic activities in the rhizosphere throughout the vegetative period of faba
bean. Rhizobium inoculation can affect selectively and variously the enzymatic activity depending
on the enzyme type and plant growth stage. The functional diversity of microbial communities
determined using Biolog EcoPlates is a less sensitive tool than enzyme activities in assessment of
rhizobial inoculation effects on rhizosphere microbial activity.
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