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Abstract: As microRNAs (miRs) are gaining increasing attention as key regulators of cellular
processes, expressional quantification is widely applied. However, in the processing of relatively
quantified data, the importance of testing the stability of several reference mRNAs and/or miRs
and choosing among these for normalization is often overlooked, potentially leading to biased
results. Here, we have optimized the purification of miR-enriched total RNA from pancreatic
insulin-producing INS-1 cells. Additionally, we optimized and analyzed miR expression by a
qPCR-based microarray and by specific qPCR and tested the stability of candidate reference mRNAs
and miRs. Hence, this study gives a widely applicable example on how to easily and systematically
test and decide how to normalize miR quantification. We suggest that caution in the interpretation of
miR quantification studies that do not comprise stability analysis should be exerted.
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1. Introduction

Characterizing the expressional levels of microRNA (miR) in various tissues and cell lines,
and under different conditions, is increasingly performed by microarrays and quantitative PCR (qPCR)
on purified miR [1]. The choice of one or more housekeeping genes or miRs for normalization of qPCR
data is crucial to avoid potential technical bias. The choice of suitable mRNAs or miRs for normalization
should be carefully selected and validated for the specific sample type and experimental conditions to
ensure the stable expression of these between sample groups and thereby correct normalization and
data processing [2—4]. Here, we use miR quantification from the insulin-producing cell line INS-1 to
illustrate the importance of systematic optimization of RNA purification and quantitation of miRs
from a specific sample type, including profiling and selection of suitable reference candidates.

The expression of miRs in pancreatic 3 cells is heavily influenced by a number of conditions [5-8].
In several studies on miRs in pancreatic 3 cells, traditionally used housekeeping genes, such as U6
and RNUG6B, have been applied as endogenous controls for normalization, notably without any given
justification for the choice of reference [9-12]. If quantification data are normalized to a reference gene
which has not been tested for stability, this gene might vary systematically and hence introduce bias in
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the results. The present study is to our knowledge the first published systematic optimization of miR
quantification in pancreatic 3 cells.

2. Results

2.1. Purification of miR-Enriched RNA from Pancreatic {3 Cells

We wished to characterize miR expression in pancreatic 3-cells under different conditions and
chose the widely used pancreatic rat insulinoma (-cell line INS-1 [13] for this purpose. We took
advantage of INS-1 cells stably transfected with lentivirally transduced short hairpin RNA (shRNA)
knockdown of histone deacetylases HDAC1, HDAC2, HDACS3, or empty vector (EV) shown previously
to affect responses to inflammatory and metabolic stress [14,15], since knockdown of these key
transcriptional regulators were expected to modify miR expression. These four different cell lines were
harvested following exposure to interleukin-1 (IL-1) # and interferon (IFN) v, known to affect both
miR expression and mRNA expression of HDACs [11,16].

In order to obtain the best possible sample material, we compared the yield and quality of
miR-enriched RNA obtained from four samples of INS-1 cells with three different purification kits.
All three kits purify miR-enriched total RNA, enabling integrated analysis of mRNA from the same
samples. The miRCURY cell and plant kit (Exiqon, Vedbaek, Denmark) was superior in yield and
RNA purity and quality to the kits NucleoSpin miRNA (Macheray—-Nagel, Diiren, Germany) and
miRNeasy (Qiagen, Hilden, Germany) (Table 1), and the miRCURY kit was therefore chosen. Moreover,
the kit was the easiest and quickest to use, and it did not, unlike the miRNeasy kit, entail use of any
organic solvents.

Table 1. Concentrations, purity, and integrity of RNA from three purification kits.

RNA Purification Kit  Sample Concentration (ng/pL) OD 260/230 OD 260/280  RIN

1 263 1.7 2.0 9.5

miRCURY cell & plant 2 238 1.9 2.0 8.1
(Exiqon) 3 299 2.0 2.0 9.7

4 307 2.1 2.0 9.3

1 111 2.2 2.1 6.8

NucleoSpin miRNA 2 117 1.9 2.1 9.7
(Macheray—Nagel) 3 167 1.8 2.1 9.6
4 353 14 2.0 7.3

1 131 14 1.9 9.4

. . 2 134 0.3 2.0 9.5
miRNeasy (Qiagen) 3 145 0.8 2.0 39
4 184 1.9 2.0 9.5

RNA concentration and optical density (OD) ratios, an indicator of purity, were measured by NanoDrop and
RNA Integrity Values (RIN) by BioAnalyzer (Agilent Technologies, Santa Clara, CA, USA).

2.2. Stability Analysis of Candidates for Normalization of gPCR-Based miR Array

To map the global repertoire of (3-cell miR expression, RNA samples were subjected to a SYBR
Green qPCR-based microRNA array, detecting 752 miRs and 6 suggested references. To evaluate the
stability of the given references, their expression was analyzed with the NormFinder algorithm plugin
for Microsoft Excel [2]. NormFinder ranks a set of candidate mRNAs or miRs for optimal normalization
according to their expression stability in a given sample set and given experimental design. When
subjecting non-normalized expression values (2~) to analysis by NormFinder, one must designate
to which group each sample belongs, the goal being to evaluate the stability across these groups.
In this case, we had two options of grouping samples, that is, according to the transduced cell line
(HDAC1, —2, —3 knockdown or EV) or exposure (with or without cytokines). We therefore analyzed
the data twice using each of these groupings.
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The NormFinder output is provided as arbitrary “stability values”, where the smallest stability
value signifies the highest stability. The stability values take into account the intergroup variation,
which provides a measure of how much bias is introduced by normalizing to the given reference
and of the intragroup variation, i.e., the confidence interval within each group. Figure 1 shows the
intergroup variation of the reference candidates from the array as confidence intervals, and Table 2
shows the stability values. As seen in Figure 1B, the intragroup variation can be larger than the
intergroup variation, indicating either that expression levels are not very stable within the group or
that the variation between the groups is even lower than the normal intragroup variation. As all
values are arbitrary, it is not possible to discriminate between these two possibilities. However, this is
subordinate, as both types of variation are accounted for when the NormFinder algorithm calculates
the stability value.
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Figure 1. Intergroup variation of expression of six reference mRNAs/miRs in the array. Intragroup
variation is given as error bars. Independent biological triplicates from each of the four cell lines
were exposed cytokines or control medium for 6 h. RNA was purified, and triplicates were pooled
and analyzed by two technical array replicates. Hence, data from eight samples were analyzed by
NormFinder and divided by transduced cell line into four groups of 2n (A) or by exposure to cytokines
or control medium into two groups of 4n (B).
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Table 2. Stability values of six reference genes/miRs in the array.

Stability Value Stability Value

Gene Name Average Cy £+ SD (A, Cell Line Grouping) (B, Exposure Grouping)

rno-miR-103a 25.6 +0.3 0.134 0.045
rno-miR-191 29.1+04 0.151 0.067
rno-miR-423 303 +0.2 0.119 0.043
U6 214+ 0.2 0.111 0.035
RNU5G 20.0 £ 0.3 0.126 0.042
RNU1A1 181+ 0.2 0.172 0.074

Data obtained as given in legend to Figure 1. The smaller the stability value, the more stable the expression is.

Figure 1 and Table 2 show that the stabilities of the six candidates are in a similar range.
Of note, there are both miR and non-miR references among these six candidates, which does not
seem to influence the stability. We suggest that it is preferable to use miR for normalization of miR
quantification. Thereby, the targets and references can be characterized in parallel. If the techniques
used should include any bias against miRs in general, the reference miR will be affected similarly.

2.3. Stability Analysis of miR for Normalization of gPCR Quantification of Specific miR Expression

We next measured the expressional levels of the three reference miRs by specific qPCR and
analyzed their stability with NormFinder, as shown in Figure 2 and Table 3. The stability values
depict that miR-423 is the most stable of the three. However, it is recommended that more than one
reference gene for normalization is used [2—4], and NormFinder also gives the stability value of the
best combination of two genes (Table 3). Note that this might not include the miR with the lowest
stability value, because normalization to the combination of two other miRs might compensate for
the bias introduced by normalization to the individual miR. In this case, the best combination of two
reference miRs differs according to how the samples are grouped, and the user must then make the
choice depending on the research hypothesis in question.
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Figure 2. Cont.
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Figure 2. Intergroup variation of three reference miRs quantified by gPCR. Intragroup variation is
given as error bars. One sample from each of the four cell lines were exposed to cytokines for 624 h
or control medium. RNA was purified, and samples were analyzed by qPCR. In total, 24 samples
were analyzed by NormFinder, divided by cell line into four groups of 6n (A) or by exposure into two
groups of 12n (B).

Table 3. Stability values of three reference miR quantified by qPCR.

miR Name Average C; + SD Stability Value (A, Cell Line)  Stability Value (B, Treatment)
miR-103a 35.0 +£0.7 0.380 0.179
miR-191 343+ 09 0.303 0.099
miR-423 23.6 £0.7 0.255 0.063
Best combination of two genes miR-103a and miR-191 miR-191 and miR-423
Stability value for best combination of two genes 0.258 0.067

Data obtained as given in the legend of Figure 2. The smaller the stability value, the more stable the expression is.

2.4. Stability Ranking of All miR in qPCR-Based miR Array

Finally, we ranked all miR quantified in the array using NormFinder, of which the top ten and the
bottom-ranking miRs are given in Table 4. This shows that the difference between the most stable and
the least stable miRs is very large when including all miRs, obviously including highly regulated miRs.
Notably, two of the three miRs selected for this study, namely miR-103a and miR-423, figure in the top
ten ranking miRs of the array in both groupings. This confirms that these two miRs are indeed stably
expressed in both the array and specific qPCR quantifications, and a combination of these two miRs is
appropriate for normalizing qPCR data from INS-1 cells in the conditions used here.

Table 4. Ranking of miR quantified by array according to stability value.

Cell Line Grouping Exposure Grouping
Rank miR Name Stability Value Rank miR Name Stability Value
1 rno-miR-132 0.066 1 rno-let-7b 0.049
2 rno-let-7b 0.080 2 rno-miR-103a 0.053
3 rmo-miR-30c 0.089 3 mmu-miR-671-5p 0.054
4 mmu-miR-671-5p 0.093 4 rno-miR-132 0.058
5 rno-miR-130a 0.095 5 rno-miR-331 0.058
6 rno-miR-103a 0.096 6 mmu-miR-1195 0.062
7 mmu-miR-1195 0.099 7 rno-miR-15b 0.065
8 rno-miR-204 0.099 8 rno-miR-125a-5p 0.068
9 rno-miR-423 0.100 9 mmu-let-7g 0.070
10 rno-miR-15b 0.109 10 rno-miR-423 0.070
416 mmu-miR-155 0.882 416 mmu-miR-155 1.475
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3. Discussion

In this study, we systematically analyzed the stability of several reference mRNAs and miRs
for use in qPCR-based quantification of candidate miRs from INS-1 cells. Insulin-producing cell
lines provide the advantage of representing only one islet cell subtype, but differ in many respects
from primary islet 3-cells. Further, since primary islets contain non-3 endocrine and non-endocrine
passenger cells, the RNA purification procedure for INS-1 cells may need separate optimization when
isolating miR from intact islets.

For INS-1 cells, our efforts resulted in the choice of a normalization factor based on miR-103a
and miR-423 for this particular setup, but this work more importantly outlines a broadly applicable
example on how to choose the most stable miR(s) for normalization in relative quantification of specific
qPCR. The same method can be applied for array-based expressional profiling. However, in most cases,
using a global normalization procedure, such as the quantile method or the geometric mean, is more
appropriate for this experiment type [4,17]. Nonetheless, analyzing the stability of a broad range of
miRs from array data functions well as a screening method when searching for stably expressed miRs
in a given experimental setup.

4. Materials and Methods

The rat insulinoma-derived {3-cell line INS-1 is a standard model for studying B-cell function due
to its responsiveness to glucose and degree of differentiation [13]. The INS-1 cell line was a generous
gift from Claes Wollheim (Department of Cell Physiology and Metabolism, University Medical
Center, Geneva, Switzerland). INS-1 cell lines with stable lentiviral transduction of shRNAs entailing
knockdowns of HDAC1, HDAC2, and HDAC3 or a mock transduction with the empty vector construct
(EV) were produced, and knockdown was verified by real-time qPCR and Western blotting [14]. Cells
were maintained in RPMI-1640 medium with GlutaMAX, supplemented with 10% fetal calf serum,
100 U/mL penicillin, 10 pg/mL streptomycin, 50 uM [-mercaptoethanol, and 2.5 pg/mL puromycin.
The cells were cultured at 37 °C in a humidified atmosphere containing 5% CO,. Medium changes and
cell passage were performed weekly. Cells were seeded in 6-well plates (1.5 mio cells/well) and left for
two days prior to exposure to 150 pg/mL IL-13 and 0.1 ng/mL IFNY for 6 h before harvest. The cells
were lysed and microRNA-enriched total RNA purified according to the kit manufacturer’s protocols.

For microRNA array analysis, the SYBR Green-based microRNA Ready-to-Use PCR Panels
(Exigon, Vedbaek, Denmark) were used according to the manufacturer’s protocols.

For SYBR Green-based qPCR quantification of specific miRs, the Universal cDNA Synthesis Kit
II and the EXiLENT SYBR® Green master mix (Exiqon) were used according to the manufacturer’s
protocols with the following modifications based on careful optimizations: 20 ng/uL total RNA in
10-uL ¢cDNA reactions and 40x cDNA dilutions in 10-pL qPCR reactions were used. Primer efficiencies
were all in the range of 90%—-105%.

For NormFinder analysis, software download and detailed description of use and data
interpretation can be found at [18].

5. Conclusions

A small effort in optimizing the normalization of the relative quantification of miRs will enhance
data validity and is recommended for all studies.
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