## Supplementary Materials: MicroRNAs and Drinking: Association between the Pre-miR-27a rs895819 Polymorphism and Alcohol Consumption in a Mediterranean Population

Rocío Barragán, Oscar Coltell, Eva M. Asensio, Francesc Francés, José V. Sorlí, Ramon Estruch, Albert Salas-Huetos, Jose M. Ordovas and Dolores Corella

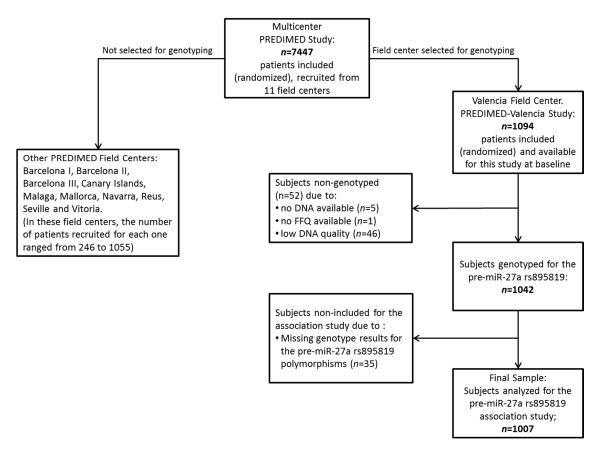
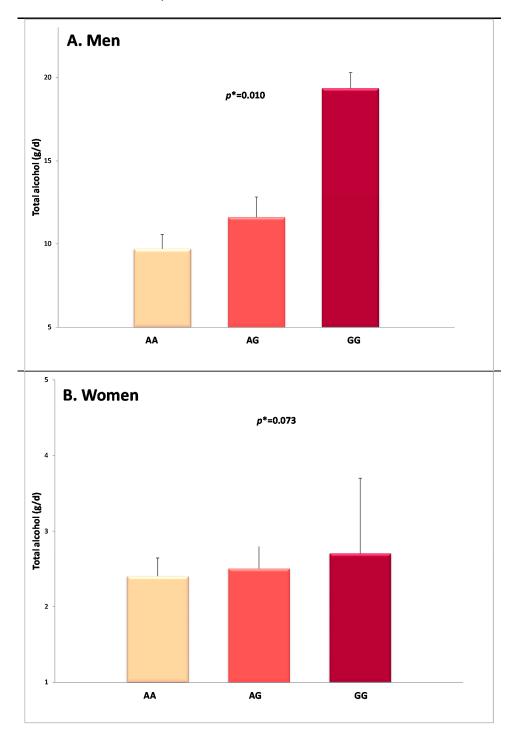
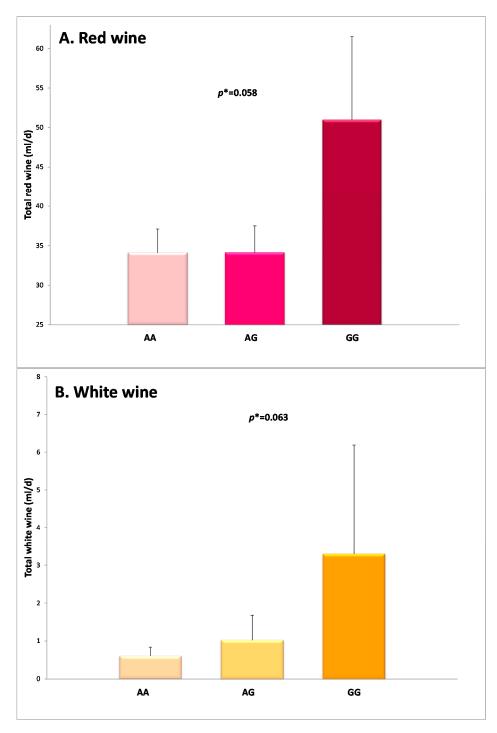





Figure S1. Flow-chart of the PREDIMED-Valencia Study.



**Figure S2.** Total alcohol consumption (g/day) in men (**A**) and women (**B**). Means and standard errors (SE) of total alcohol intake (g/day), depending on the pre-miR-27a rs895819 polymorphism, are presented as untransformed variables (n = 368 for men, and n = 639 for women); *p*-values are calculated for the square root transformed variables;  $p^*$  indicates the *p*-value for linear trend (additive model for the SNP). When these models were adjusted for age, type-2 diabetes, obesity, hypertension, dyslipidemia, physical activity, smoking and total energy intake, the adjusted *p*-values were  $p_{adj} = 0.034$  for men, and  $p_{adj} = 0.292$  for women.



**Figure S3.** Consumption (mL/day) of red wine (**A**) and white wine (**B**) in both men and women. Means and standard errors (SE) of total consumption (mL/day) of red and white wine, depending on pre-miR-27a rs895819 polymorphism, are presented as untransformed variables (n = 1007 participants). *p*-values are calculated for the square root transformed variables. *p*\* indicates the *p*-value for linear trend (additive model for the SNP). When these models were adjusted for age, type 2 diabetes, obesity, hypertension, dyslipidemia, physical activity, smoking and total energy intake, the adjusted *p*-values were *p*<sub>adj</sub> = 0.165 for men, and *p*<sub>adj</sub> = 0.210 for women.

**Table S1.** Association between liver enzymes and mean corpuscular volume with alcohol consumption <sup>1,2</sup>.

| Liver Enzymes and Mean          | Total            | Non-Drinker      | Moderate Drinker | High Drinker | $p^4$ | $p^5$ |
|---------------------------------|------------------|------------------|------------------|--------------|-------|-------|
| Corpuscular Volume <sup>3</sup> | ( <i>n</i> =749) | ( <i>n</i> =329) | (n = 371)        | (n = 49)     |       |       |
| AST (U/L) ( $n = 672$ )         | 21.86 (0.34)     | 21.60 (0.54)     | 21.99 (0.45)     | 22.80 (1.66) | 0.424 | 0.793 |
| ALT (U/L) $(n = 749)$           | 24.10 (0.45)     | 23.17 (0.63)     | 24.70 (0.69)     | 26.10 (1.46) | 0.122 | 0.536 |
| GGT (U/L) (n = 521)             | 28.07 (0.96)     | 25.23 (1.96)     | 29.69 (1.51)     | 22.78 (3.40) | 0.052 | 0.288 |
| MCV (fL/RBC) ( <i>n</i> = 567)  | 89.48 (0.21)     | 88.80 (0.32)     | 89.70 (0.31)     | 92.01 (0.87) | 0.001 | 0.045 |

<sup>1</sup>: Values are expressed as mean (standard error); <sup>2</sup>: Non-drinker: 0 g/day; Moderate drinker:  $\leq 26.4$  g/day for men and  $\leq 13.2$  g/day for women; High drinker:  $\geq 26.4$  g/day for men and  $\geq 13.2$  g/day for women; <sup>3</sup>: *n* values are the number of subjects having almost one liver enzyme determination (*n* = 749 for ALT). For the other parameters, the corresponding *n* has been indicated between brackets; <sup>4</sup>: *p* Unadjusted *p*-value obtained in the ANOVA test for linear trend; <sup>5</sup>: *p* Adjusted *p*-value for sex and age in the multivariable GML; AST: aspartate aminotransferase (old GOT); ALT: alanine aminotransferase (old GPT); GGT: gamma glutamyl transferase; and MCV: mean corpuscular volume. AST, ALT and GGT are expressed in units of enzymatic activity (the amount of enzyme that catalyzes the conversion of 1 micro mole of substrate per minute) in a volume of 1 liter. MCV is expressed in femtoLiters per Red Blood Cell size.