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Abstract: Zinc homeostasis is crucial for an adequate function of the immune system. Zinc deficiency
as well as zinc excess result in severe disturbances in immune cell numbers and activities, which can
result in increased susceptibility to infections and development of especially inflammatory diseases.
This review focuses on the role of zinc in regulating intracellular signaling pathways in innate as
well as adaptive immune cells. Main underlying molecular mechanisms and targets affected by
altered zinc homeostasis, including kinases, caspases, phosphatases, and phosphodiesterases, will be
highlighted in this article. In addition, the interplay of zinc homeostasis and the redox metabolism in
affecting intracellular signaling will be emphasized. Key signaling pathways will be described in
detail for the different cell types of the immune system. In this, effects of fast zinc flux, taking place
within a few seconds to minutes will be distinguish from slower types of zinc signals, also designated
as “zinc waves”, and late homeostatic zinc signals regarding prolonged changes in intracellular zinc.

Keywords: zinc flux; zinc wave; homeostatic zinc signal; signaling pathways; innate and adaptive
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1. Introduction

The metal zinc is nowadays well established to be essential for a well-operating immune system.
However, knowledge about zinc homeostasis, zinc deficiency, and related diseases is comparatively
new. In 1963, Dr. Prasad proved for the first time the existence of zinc deficiency in man [1]. Since then,
knowledge about zinc evolved rapidly uncovering molecular mechanisms being indispensable for
regulating zinc homeostasis in humans. Its significance as a structural component in proteins [2] and
its participation in numerous cellular functions include, but are not limited to, cell proliferation and
differentiation [3,4], RNA and DNA synthesis [5,6], stabilization of cell structures/membrane [7,8],
as well as redox regulation [9,10], and apoptosis [11,12]. Zinc is involved in various metabolic
and chronic diseases such as: type 1 diabetes, rheumatoid arthritis, cancer, neurodegenerative
diseases, and depression [13–19]. Moreover, there is also strong evidence between zinc deficiency
and several infectious diseases such as shigellosis, acute cutaneous leishmaniosis, malaria, human
immunodeficiency virus (HIV), tuberculosis, measles, and pneumonia [20,21].

When zinc deficiency was first discovered, it was thought to be a rare disease. However,
zinc deficiency is very common, with estimated two billion people worldwide being affected, and is
identified as a major contributor to the burden of disease in developing countries. It is the 5th leading
life-threatening factor, especially in developing countries [22]. In addition, industrial counties are
affected by zinc deficiency, particularly the elderly population [23]. Despite zinc deficiency and
related symptoms can easily be treated by proper zinc intake, suboptimal zinc status cannot simply
diagnosed by reason of the lack of clinical signs and reliable biochemical indicators of zinc status.
To date, no specific and reliable biomarker of zinc status is known, although serum/plasma zinc
concentrations, hair zinc concentration, and urinary zinc excretion can be seen as potentially useful.
Nevertheless, zinc status is highly impacted by the immune status itself (infection, inflammatory
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conditions), but also by diet, absorption and conserving mechanisms via gastrointestinal tract and
kidneys [24]. Zinc uptake in the gastro intestinal (GI) tract is facilitated by an influx into the enterocyte,
through the basolateral membrane and the transport into the portal circulation. Uptake mechanisms
are not fully understood yet, however zinc transporters are mainly involved in zinc uptake or zinc
efflux [25]. In this regard, Zrt-like, Irt-like protein (ZIP)4 is highly important since it is expressed
along the entire GI tract acting as a major processor of zinc uptake into enterocytes from the apical
membrane [26]. Moreover, zinc transporter (ZnT)3, is highly expressed in the human large and
porcine small intestine and the esophagus [27,28]. Herein, its concrete function in the GI tract is
largely unknown. However, studies in the esophagus uncovered its co-localization with sensory
neuromediators and/or neuromodulators that are essential for the control of all functions of the GI
tract either under physiological and pathological conditions as well as during diseases [27–29]. Hence,
there is an ongoing need for the discovery of a reliable biological marker of zinc status.

Although the plasma pool is very small, it is highly important for cellular signaling since it is
rapidly exchangeable and mobile. Consequently, intracellular zinc level can be altered resulting in
altered cell function and differentiation [30,31]. The zinc-dependent regulation of the immune system
is particularly interesting and will be discussed in more detail in this review. We will particularly
focus on the importance of different types of zinc signals in innate as well as adaptive immunity,
and highlight altered signaling pathways due to changed intracellular free zinc level.

2. Zinc Homeostasis and the Immune System: An Overview

With a total amount of 2–4 g, zinc is the second most abundant trace metal in the human body,
iron being first. In contrast to the latter, zinc cannot be stored and has to be taken up via food daily
to guarantee sufficient supply. A large number of especially inflammatory diseases, but also aging,
pregnancy, lactation, and vegetarian or vegan lifestyles are associated with zinc deficiency. Thus,
an important role of zinc in development and exacerbation of diseases can be assumed, as indicated
earlier. This underlines the importance of a deep understanding of the various functions of zinc in the
immune system and thereby for health and disease [21,32–34]. Already marginal-to-moderate zinc
deficiency impairs immunity, delays wound healing, causes inflammation-independent low-grade
production of inflammatory cytokines and increases oxidative stress [35]. Immune cells might even
react more quickly to zinc deficiency than it is measurable in the plasma [36]. Imbalances including
strong zinc deficiency but also zinc overload cause severe immune dysfunctions. Zinc intoxication is
however rare and its symptoms mostly due to copper deficiency. Immunological hallmarks of zinc
deficiency are thymic atrophy, lymphopenia, especially decreased CD4+ T helper (Th) cell numbers,
resulting in a decreased CD4+/CD8+ ratio [37]. In vitro data suggest that monopoiesis is increased
during zinc deficiency [38], natural killer (NK) cell activity is decreased and monocyte cytotoxicity
is increased [21]. Zinc dependent alterations in chemotaxis, phagocytosis, respiratory burst and
formation of neutrophil extracellular traps by innate immune cells offer one explanation for the
increased susceptibility to infections during zinc deficiency [39–41].

In humans, high zinc concentrations are found in retina (3.8 µg/g dry weight), choroid of the eye
(274 µg/g) and in bone (100–250 µg/g), while only 1 µg/mL zinc is found in plasma, which equals
around 0.1% of total body zinc. Within body fluids, zinc is predominantly bound to proteins including
albumin, α2 macroglobulin (A2M), transferrin and others. Hypoalbuminemia can even result in
zinc deficiency [42]. Zinc binding to those proteins can activate or inactivate their activity, or change
characteristics important for substrate binding [43].

Zinc homeostasis is primarily controlled via the expression and action of 14 zinc transporters that
increase cytoplasmic zinc (Zip1–14) and 10 zinc transporters that lower cytoplasmic zinc (ZnT1–10).
Zrt-like, Irt-like proteins (Zip) are also named solute carrier family 39 (SLC39) A1–A14, while members
of the zinc transporter (ZnT) family are also denoted SLC30A1–A10. Many of those transporters
are found spanning the plasma membrane, but others are also located within mitochondrial,
Golgi network, lysosomal, and vesicular or endoplasmic reticulum membranes. This implies that
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decreasing cytoplasmic zinc can describe export via ZnTs, but also the transport of zinc into one of
those organelles [44]. The significance of zinc transportation via nicotinic acetylcholine receptors,
voltage dependent calcium channels, transient receptor potential channels and glutamatergic receptors
as well as of facilitated diffusion of zinc bound to amino acids compared to specific zinc transport
through Zips and ZnTs remains to be defined in more detail [45]. Together, those zinc transporters
regulate zinc homeostasis on tissue but also single cell and even intracellular level.

Physiological changes in body zinc homeostasis during acute phase response include the temporal
transfer of serum zinc to the tissues, especially the liver, causing transient serum hypozincemia,
which is rebalanced during resolution of the inflammatory response. The transient change in
zinc homeostasis is proposed to act as a danger signal for immune cells [46]. In addition,
pro-inflammatory acute phase proteins including interleukin-6 (IL-6) upregulate expression of zinc
binding peptides such as metallothionein (MT) and A2M, augmenting zinc sequestration from
extracellular microorganisms [43]. Intracellularly increased zinc can intoxicate engulfed pathogens
and acts cytoprotective by promotion of neutralizing reactive oxygen and nitrogen species (ROS and
NOS) as will be discussed later. Undernourishment and severe inflammatory diseases are paralleled
with prolonged and severe forms of serum hypozincemia. An association of excessively elevated levels
of inflammatory markers, reactive oxygen species and antimicrobial peptides such as calprotectin or
matrix metalloproteases (MMP) that cause tissue injury especially in lung, liver and spleen with the
augmented serum hypozincemia was suggested [46–49].

Measuring free intracellular zinc levels results in extremely low numbers in the pico- to nanomolar
range, depending on the cell type. When zinc is transported into the cell, it is efficiently buffered
by high affinity proteins. As affinity of zinc to metal binding sites of proteins is rather high and
competitive towards other metal ions, free zinc concentrations fluctuate in a narrow range. Excess zinc
ions are transported into subcellular stores such as the including interleukin (ER) or Golgi or into
extracellular space [2]. Intracellular zinc-binding proteins include members of the MT family. If in
addition to their strong binding activity to extracellular zinc, members of the S100 family can also
chelate zinc intracellular is so contested [50]. As the decrease in intracellular zinc during monopoiesis
is paralleled by an increase in S100A8 and S100A9 expression but not changes were found for MT-1
levels, binding of intracellular zinc by calprotectin in myeloid cells is likely [38].

MTs are proteins of 6–7 kDA, which can bind and quickly release up to 7 zinc ions, thereby
sequestering up to 20% of intracellular zinc. Furthermore, they protect against various types of
environmental stress, as MTs can chelate other heavy metals, decreasing their cytotoxicity and they
can scavenge reactive oxygen species. Within the four MT classes, MT-1 and MT-2 are expressed
ubiquitous throughout the body, whereas MT-3 and MT-4 are expressed cell type specific [44].
Within innate immune cells, MT is an important molecule for zinc regulation. MT deficiency impairs
cytokine production and anti-microbial activities in macrophages after lipopolysaccharide (LPS)
stimulation [51]. The S100 protein family includes 24 members, all acting calcium dependent and
having calcium buffering capacities. Intracellular, they modulate apoptosis, transcription and enzyme
activities; extracellular S100 proteins regulate chemotaxis and wound healing, but also proliferation
and differentiation via surface receptors [52]. Zinc binding S100 proteins include S100B, S100A1,
S100A2, S100A3, S100A5, S100A7, S100A8/9, S100A12 and S100A16. Calprotectin, a heterodimer of
S100A8 and S100A9, is the most abundant protein of neutrophils. Increased plasma levels are found
during severe inflammatory diseases paralleling serum hypozincemia, suggesting a link that has
recently been explored [53,54]. Some low molecular binding partners of zinc have been found as well
including adenosine triphosphate (ATP), glutathione, citrate, nicotinamine or bacillithiol [2].

3. Classification of Zinc Signals

Signaling cascades are highly complex and very sensitive to altered intracellular second messenger
concentrations. Since zinc is established to act as second messenger comparable to calcium [55], it is
obvious that cellular signals are altered due to changed intracellular zinc concentrations. Regarding this,
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free intracellular zinc level influence signaling pathways by binding reversibly to regulatory sites in
signaling proteins, altering protein activity and stability [56]. Moreover, alterations can result from
the transport of zinc through the plasma membrane, exchange with intracellular organelles or zinc
binding proteins as MT and calprotectin, or a combination of these mechanisms.

Intracellular zinc signals can be differently classified. One way is by the time scale they occur,
comprising: (1) a “zinc flux” occurring within seconds to minutes; (2) slightly slower zinc signals,
described as “zinc wave” occurring within several minutes; and (3) homeostatic zinc signals occurring
within several hours. Examples for each classification of zinc signals occurring in different cell types
and signaling pathways are summarized in Table 1.

A zinc flux can arise by triggering receptors such as Toll like receptor (TLR)4 in, e.g., monocytes.
In this connection, zinc acts as second messenger, comparable to calcium, by influencing signaling
cascades in a direct manner. This kind of zinc signal is independent of synthesis of the zinc transporter
proteins from the ZnT and Zip family responsible for zinc re-distribution and zinc uptake and is
therefore classified as zinc flux. Activation of a zinc transporter to enable a sharp rise in cytoplasmic
zinc is thus possible.

Second, zinc signals described as “zinc wave” were uncovered recently. Comparable to the zinc
flux, zinc waves act also as second messenger, but are induced indirectly depending on calcium influx.
This phenomenon was for instance observed in mast cells, when the Fc-epsilon receptor I (FcεRI) is
cross-linked [55,57].

Late zinc signals occur on a timescale significantly longer than the others, accompany cellular
differentiation, and last for several days. Those are usually involved in altered expression of proteins
participating in zinc homeostasis. In this regard, maturation of for instance monocytes and dendritic
cells (DC) as well as cytokine expression is highly dependent on zinc signals [38,58]. In general,
altered zinc homeostasis results in changes in signaling cascades without acting as second messenger.

Table 1. Effect of zinc signals on Immune function: Altered immunological functions can be induced
by different zinc signals, as zinc flux, zinc wave, and homeostatic zinc signal. Altered from [59].

Zinc Signal Duration Effect

Zinc Flux Seconds/
minutes

• Inhibition of PDE in monocytes/macrophages [60]
• Inhibition of MKP in monocytes/macrophages [61,62]
• Induction of PMA-triggered NET-formation in PMN [40]
• Induction of Lck recruitment to TCR [63,64]
• Zinc release from lysosomes in T cells [65]
• Triggering T cell activation by APC [66]
• Induction of Lck homodimerization/activation in T cells [67]
• Redistribution of zinc from nucleus/mitochondria to

cytosol/microsomes [30]

Zinc wave Minutes • Zinc release from perinuclear area in mast cells [57]

homeostatic
Zinc Signal Hours

• Stabilization of MyD88 expression [5,68]
• Induction of A20 expression in T cells, monocytes [69]
• Negative regulation of IRAK signaling [70,71]
• MAPK activation in immune cells [72–74]
• Negative regulation of TRIF pathway in macrophages [5]
• Changed Zip and ZnT expression in DCs and T cells [58,72]
• Inhibition of AC transcription in T cells [75]
• Influence of cytokine production, e.g., IL-2 in T cells [72]
• Induction of Akt/ERK/p38 phosphorylation in T cells [73]
• Triggering of PTEN degradation in T cells [76]
• Inhibition of IL-6/IL-1 induced STAT3 phosphorylation [77]
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Table 1. Cont.

Zinc Signal Duration Effect

• Alteration of M1/M2 differentiation by inhibition of STAT6
phosphorylation [78]

• Induction/stabilization of regulatory T cells [79,80]
• Inhibition of Th17 and Th9 cell differentiation [81,82]
• Reduced cytokine production, e.g., IFN-γ in T cells [83]
• Induction of NK cell killing and granzyme expression [84,85]
• Inhibition of caspase activity
• Inhibition of cAMP/cGMP hydrolysis [86,87]
• Inhibition of DNA fragmentation [6]
• Epigenetic modifications due to inhibition of SIRT1 [79]
• Inhibition of IL-1/TNF CRP expression in myeloid cells [53,69,88]

AC: adenylate cyclase; cAMP: cyclic adenosine monophosphate; cGMP: cyclic guanine monophosphate;
CRP: c-reactive protein; DC: dendritic cell; IL: interleukin; IFN: interferon; IRAK: interleukin-1 receptor-associated
kinase; Lck: lymphocyte-specific protein tyrosine kinas; MAPK: mitogen-activated protein kinase; MKP: MAP-kinase
phosphatase; MyD88: myeloid differentiation primary response gene 88; NET: neutrophil extracellular traps;
NK: natural killer; PDE: phosphodiesterase; PMA: Phorbol-12-myristat-13-acetat; PTEN: phosphatase and tensin
homolog deleted on chromosome 10; STAT: signal transducers and activators of transcription; TCR: T cell receptor;
APC: Antigen presenting cell; Th: T helper; TNF: tumor necrosis factor; TRIF: Toll-interleukin-1 receptor (TIR)
domain-containing adaptor-inducing interferon.

4. Zinc, Signaling and Immunity

In addition to its function as second messenger, another suggested mechanism how zinc is
involved in signaling is that zinc alters ligand binding to receptors either by changing the ligand’s
or the receptor’s affinity. Here, LPS revealed altered fluidity depending on zinc’s availability and
thereby binding characteristics to receptors such as TLR4 and CD14 were affected as well as subsequent
signal transduction [89].

Another possible scenario is the alteration of cellular membrane composition and fluidity [90].
Here, zinc could influence the generation and stability of membrane complexes causing assembly or
disassembly of receptors and probably altering their endocytosis, as is well described for neuronal
cells, but has also been observed in immune cells [84,91]. Furthermore, alterations of extracellular zinc
conditions affect the concentration of free intracellular zinc so that persistent changes in extracellular
zinc modify cell metabolism on the long run. Recent data indicate, that there is a major difference in
the effects of zinc on signaling in innate compared to adaptive immune cells. Therefore, data will be
discussed separately.

4.1. Innate Immune Cell Functions

Cells of the innate immune system, including principally neutrophil granulocytes and
monocytes/macrophages, but also mast cells, DCs, and NK cells are the first to encounter invading
pathogens at the side of infection. Recognition of pathogens and initiation of their clearance needs to
be fast, which is only possible if specificity is compromised. Efficient immune response is completed
by adaptive immune cells, which need longer to be recruited and activated, but are highly specific.

Innate immune cells recognize pathogens via detection of general pathogen-associated molecular
patterns (PAMPs). Receptors are simply denoted pattern recognition receptors (PRRs) and
examples include TLR, retinoic acid-inducible gene-I-like receptors (RLR) and nucleotide-binding
oligomerization domain-like receptors (NLR). At least 10 different TLRs exist in humans, enabling
cells to distinguish groups of pathogens and their intracellular or extracellular location. Lipoprotein
(gram positive bacteria), zymosan (fungi) and LPS (gram negative bacteria) are for example detected
by TLR1, -2 and -4, respectively [92]. Binding of a PAMP activates signaling pathways leading to
antimicrobial processes including cytokine production, degranulation, phagocytosis of the pathogens
and the presentation of the antigen to other cells, including those of the adaptive immune system.
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Ligation of PRRs generally leads to activation of interleukin-1 receptor-associated kinase (IRAK)
family proteins through Myeloid differentiation primary response gene (MyD)88 signaling pathways
as depicted in Figure 1 and can either induce gene expression via nuclear factor kappa B (NFκB) or
mitogen activated protein kinases (MAPK). Binding to NLRs directly leads to activation of TAK1, NFκB
and MAP kinase pathways [93]. Of note, most cells are equipped with the identical sets of signaling
molecules, but choice of signaling pathway(s) activated depends on the type of pathogens, so that
appropriate reaction to attack the invader is induced. First data connecting zinc-induced changes in
immune cell function to regulation of intracellular signaling by zinc arose in the late 1970s [94,95].
Direct effects of zinc on signaling molecules or indirect effects via phosphatases, kinases and redox
metabolism have been described since then.
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Figure 1. Zinc in TLR4 triggered signaling, illustrating explanations in the text. Black arrow:
activation, green arrow: activating function of zinc, red T bar: inhibiting function of zinc, black
dotted arrow, translocation of the molecule to nucleus, grey dotted arrow: secretion of the molecule.
Abbreviations: ERK: extracellular Signal-regulated Kinase; IFN: interferon; IRAK: Interleukin-1
receptor-associated kinase; IκB: Inhibitor of NFκB; IKK: IκB kinase; IRF: interferon related factor;
JAK: JNK janus kinase; JNK: c-Jun N-terminal Kinase; MAPK: mitogen activated protein kinases MEK:
MAPK/Erk kinase; MKK: MAPK kinase; MKP: MAPK phosphatase; MyD88: Myeloid differentiation
primary response gene 88; NFκB: nuclear factor (NF) κB. PI3K: phosphatidyl-inositol-3-phosphate;
STAT: signal transducers and activators of transcription; TBK: Tank-binding kinase 1; TIRAP:
toll-interleukin 1 receptor (TIR) domain containing adaptor protein; TLR: toll like receptor; TRAF: TNF
receptor-associated factor; TRAM: TRIF-related adaptor molecule; TRIF: Toll-interleukin-1 receptor
(TIR) domain-containing adaptor-inducing interferon.

4.2. Zinc and (De-)Phosphorylation

In the following, we will first discuss some general mechanisms of how zinc affects intracellular
signaling molecules and their activity in innate immune cells. Subsequently, we will use this
information to describe selected key receptor-induced signaling pathways for the different innate
immune cell types. This is far from being inclusive for all the pathways investigated so far, but should
give a basic idea of the state of research. One should carefully extrapolate known mechanisms within
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certain pathways from one cell type to another, over simplifying those mechanisms as other parameters
such as environmental circumstances, activation status, maturity grade and age of a cell have been
shown to matter as well.

In general, signal transduction is predominantly regulated by post-translational activation or
inactivation of existing signaling molecules via changes in their phosphorylation status. Each signaling
pathway involves phosphorylation of a whole cascade of molecules, where phosphorylation and
thereby the signal can be passed on from one molecule to the other within a short period of time.
Various residues within the molecules can be altered, but tyrosine and to a lesser extend serine
and threonine phosphorylation are most common in immune cells. In leukocytes, especially Src
family kinases are prevalent. As phosphorylation can be both at activating and inhibitory motifs,
there is not a general consequence of elevated kinase activity. Phosphorylation by kinases can be
removed by antagonizing phosphatases, balancing the extent of phosphorylation inside the cells.
CD45, a transmembrane protein tyrosine phosphatase (PTPs) found generally on all leukocytes, is for
example an important regulator of Src family kinase activity [65,73]. Zinc has a role in regulation of
PTP and PT kinase (PTK) activity. Of note, kinase and phosphatase activity is not only affected by
intracellular zinc homeostasis, but both are involved in changing expression of genes relevant for
regulation of zinc homeostasis, as well.

Over 107 PTPs have been identified in humans. They are primarily regulated via the redox state of
the cell, proteolysis, dimerization and phosphorylation. The IC50 for zinc of important PTPs involved in
immune cell signaling are summarized in Table 2. The table clearly shows that inhibition constants for
PTPs are very low (nanomolar), so that cellular zinc levels are sufficient to alter enzymatic activity [96].
PTP1B, for example, has a putative affinity for inhibitory zinc as low as 3–17 nM [10,97]. Zinc competes
with other co-factors of PTPs, which might explain their inhibition during high zinc conditions [98,99].
In addition, zinc directly acts on the highly conserved catalytic region of PTPs, suggesting that other
enzymes from this family might be inhibited by zinc in a similar way [98,100]. SHP-2, phosphatase
and tensin homolog deleted on chromosome 10 (PTEN) and PTP1B are discussed to be involved in
LPS-induced signaling pathways in macrophages via different pathways and molecules [5,101]. This is
in line with the observation that zinc prolonged the tyrosine phosphorylation of proteins in many
immune pathways [55,99,102], involving all kinds of signaling molecules, underlining the complexity
of zinc’s effects.

In addition to PTPs, zinc is able to inhibit the activities of other molecules involved in signaling.
However, most results were calculated from experiments using isolated enzymes or cell lysates.
The resulting IC50 concentrations for example for PDEs in the µM range will hardly be reached
within the cytosol of intact cells. However, a few studies indicate that high levels of zinc can be
enriched in cellular compartments such as vesicles and lysosomes. Hennigar et al. found 20×
higher zinc concentrations normalized to protein comparing cytosol and lysosomes [103]. Moreover,
in catalytically active lysosomes the non-bound Zn2+ concentration was measured to be close to the
permissive concentration of 0.1 µM. In inactive vesicles at neutral pH the Zn2+ concentration might
be much higher as the driving force of the proton gradient is missing [104]. In addition, Vinkenborg
et al. stated that free zinc(II) concentrations in vesicles are much higher than in the cytosol, due to
different buffering capacities. Estimates are 1–100 µmol/L in insulin-storing granules for example [105].
More investigations on intracellular effects of zinc on activity of those signaling molecules are necessary.

Close relatives to PTPs, the MAPK phosphatases (MKP), can dephosphorylate threonine residues
in addition to tyrosine in MAPK and might be zinc’s target as well. The zinc flux has indeed been
connected to inhibition of MKPs in neuronal cells, which should be tested for immune cells as well [61].

As zinc-induced secretion of cytokines by peripheral blood mononuclear cells (PBMCs) is
abolished if cells are pre-incubated with the kinase inhibitor Herbimycin A, zinc might not only
affect PTPs but also their antagonists, the tyrosine kinases (TK). Zinc-associated activation of tyrosine
kinases has been noted by Vener et al., in cells from Alzheimer patients [106]. Results from Bennasroune
et al. support this hypothesis, describing that zinc activates anaplastic lymphoma kinase (ALK), also a
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member of the receptor tyrosine kinase family [107]. Zinc was found within the molecular structure
of other TKs including Bruton’s (B)TK as well [108]. Here, zinc is probably involved in enzymatic
activity or substrate binding. BTK is an important regulator of for example TLR4 signaling via
Myeloid differentiation primary response gene (MyD)88 and also binds to TLR9, -8, and -6 [109].
Activation of mitochondrial Src tyrosine kinase by zinc indicates that effects of zinc are not limited to
the cytoplasm [110].

Well-known substrates for Tyrosine (de-)phosphorylation are the MAPKs, such as MAPK/Erk
kinase (MEK), Extracellular Signal-regulated Kinase (ERK), and p38, which are themselves involved in
phosphorylation of other signaling molecules. A role of zinc in alteration of signal transducers and
activators of transcription (STAT) phosphorylation has recently started to emerge [111,112]. Effects of
zinc on MAPK activity have been described for all kinds of cells, and seem to be a very general
molecular mechanism to translate the zinc signal into cellular function. PTP1 is known to alter
the phosphorylation of JAK2 and dephosphorylates MAPKs in immune cells [97,113]. High zinc
concentrations reduced phosphorylation of ERK in in rat glioma cells, while low zinc concentrations
activated this MAPK [98]. Along with this p38 was activated in myeloid cells during zinc deficiency [48].
In contrast, zinc activated ERK in fibroblasts. Similar effects of severe zinc deficiency and high levels of
zinc have been observed before, and might explain the variation of results. In addition, there might be
a certain threshold of intracellular zinc concentrations decisive for its influence on signaling pathways.

Table 2. IC50 values for signaling molecules in humans.

Signaling Molecule IC50 Reference

PTPRB 98 pM [114]
PTEN 0.6 nM [76]
PTP1B 3–17 nM [100]
SHP-1 92 nM [115]
SHP-2 1–2 µM [100]

TC PTP 200 mM [99]
Calcineurin 250 nM–7 µM [116]

Ca-dependent endonuclease 1 µM (in the presence of 10 µM Ca) [117]
LAR 20 µM [100]

PDE4A >5 µM [118]
PDE 5 >1 µM [119]
PDE 6 >1 µM [120]
IKK 8.7 µM [121]

Caspase 3 <10 nM, 100 nM [86,99]

PTPRB: Protein phosphotyrosylphosphatase receptor type B; PTEN: Phosphatase and tensin homologue deleted on
chromosome 10; PTP1B: Protein phosphotyrosylphosphatase 1B; SHP: SH2-containing phosphatase; TC PTP: T cell
PTP; LAR: Leukocyte common antigen-related protein; PDE: phosphodiesterase; IKK: IκB kinase.

4.3. Zinc and Redox Metabolism: Two Strongly Intertwined Second Messengers

Balancing the redox state of a cell is important for regulation of its metabolism. Amongst others,
ROS function as second messengers and interfere thereby with cellular signaling. Phorbol 12-myristate
13-acetate (PMA) activates the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase via
protein kinase C (PKC) resulting in ROS production. PMA is also a well-known inducer of a zinc
flux [122]. As NADPH oxidase inhibition blocked the PMA-induced zinc signal, the release of zinc
into the cytoplasm seems to be ROS-induced. H2O2 was shown to increase intracellular zinc in
granulocytic cells as well, underlining the association of zinc homeostasis with redox metabolism.
Both the zinc signal and the increased ROS levels are essential to subsequently activate key immune
functions [40]. ROS can induce release of zinc from proteins such as MTs or PKC itself, but the source
could also be a cellular compartment such as lysosomes as shown for T cells or the endoplasmatic
reticulum [65,102,123–125]. The source of zinc probably depends on cell type, magnitude of ROS
alteration and the kind of oxygen species (O2

−, H2O2, HOCl or similar).
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Interestingly, not only does the redox metabolism influence intracellular zinc homeostasis,
but the zinc status of a cell also alters its redox state [126]. Pro-antioxidant functions have
long been attributed to zinc for decades, and underlying mechanisms for this phenotypic
observation are becoming increasingly clear. Although low concentrations of a zinc chelator TPEN
(N,N,N′,N′-Tetrakis(2-pyridylmethyl)ethylenediamine), 5 µM) were not able to affect PKC activity,
using 100 µM of TPEN inhibited PKC’s function and thereby ROS synthesis. The abrogation of PKC
activation when zinc is chelated is suggested to be due to the requirements of zinc finger structures
for PKC’s activity, but also because translocation of the enzyme between membrane and cytoskeleton
involves zinc [122,127,128]. MAPK phosphatase (MKP)-1 is possibly also involved in LPS-induced
cytokine induction via PKC. As MKP-1 is directly inhibited by zinc, the role of the trace metal in
regulating LPS-induced effects seems to be complex and involve several levels, PKC being rather
upstream of other effects. In contrast, long lasting zinc deficiency increased basal ROS levels and
augmented stimulation induced ROS synthesis in myeloid cells [48] underlining again the difference
between long- and short-term zinc alterations. Regarding signaling in innate cells, analyses of the
role of zinc in oxidative burst added nice data to the puzzle, but more data are still necessary as some
discrepancies exist [40,41]. An increase of ROS production by granulocytes during zinc deficiency
seems to be clearly documented, whereas the effect of high zinc conditions has not been clearly defined,
yet [40,41,48,129–131].

4.4. Zinc, Cyclic Nucleotides and Proteinases A and G

The intracellular second messengers cyclic adenosine monophosphate (cAMP) and cyclic
guanosine monophosphate (cGMP) are synthesized by adenylate cyclase (AC) and guanylate cyclase
(GC). Both are degraded by cyclic nucleotide phosphodiesterases (PDE). Their main targets are protein
kinase A (PKA) and PKG, respectively, mediating inflammatory gene expression. On the one hand,
PDEs need zinc for their activity, as zinc is tightly bound to the catalytic center [118,120]. This was
first observed in PDEs in Baker’s yeast, indicating that this is a conserved mechanism [132]. On the
other hand, PDEs have an inhibitory site, which binds zinc with lower affinity. If zinc is available in
high concentrations, hydrolysis of cAMP and cGMP is inhibited, causing their intracellular increase.
In human monocytes, PDE 1, 3 and 4 have been shown to be inhibited during high zinc conditions.
Furthermore, zinc seems to be involved in PDE expression as well, blocking LPS-induced increase in
PDE4B transcription in monocytes, adding one more way of how zinc regulates intracellular second
messenger levels and thereby signaling [60]. Finally, elevated cGMP does not only target PKG but also
cross activates PKA. Subsequently, PKA phosphorylates Raf-1 at serine 259, rendering it inactive and
preventing its activation by serine 338 phosphorylation. Thereby the whole cascade of LPS-induced
NFκB signaling pathway is suppressed [133]. Cyclic nucleotides are not only affected by zinc flux,
but the homeostatic zinc signal has been shown to inhibit AC, causing decreased cAMP levels, while GC
activity and cGMP levels are not affected [134,135]. Increased cAMP and cGMP levels have been
associated with monopoiesis, which will be discussed later.

4.5. Zinc-Mediated Regulation of NFκB Signaling and A20 Expression

In addition to MAPKs, signaling in innate immune cells centers on NFκB. This molecule is
involved in regulating a large set of genes, thereby affecting apoptosis, proliferation, cell adhesion,
pro-inflammatory responses, tissue remodeling and stress-responses [21]. Important molecules within
these signaling pathways include RelA (p65), RelB, c-Rel, p50/p105 (NFκB1) and p52/p100 (NFκB2),
which can form various homo- and heterodimers. Inhibitors of NFκB (IκBs) can bind to single
molecules and complexes, causing their sequestration in the cytoplasm, hindering the translocation
to the nucleus as well as subsequent DNA binding and gene activation. Inhibitors are IκBα, IκBβ,
IκBε, IκBγ, Bcl-3, p100 and p105 [36]. The complexity of this signaling process makes its investigation
regarding an association to zinc homeostasis a difficult task. Existing studies show conflicting results
and a general unilateral statement on the connection is difficult to formulate.



Int. J. Mol. Sci. 2017, 18, 2222 10 of 34

Diverse effects of zinc on NFκB signaling have been observed (see Figure 2) [136].
Chelating zinc using TPEN abrogated LPS-induced, NFκB-mediated signaling [102]. In contrast,

zinc has been found to be inhibitory for NFκB signal transduction as well by others [137].
Clear mechanistic insights are not available, but suggestions include the effect of zinc on A20,
a principally anti-inflammatory zinc-finger protein, important for tumor necrosis factor receptor (TNFR)-
and TLR-induced signaling. A20 can de-ubiquitinate receptor interacting protein (RIP)-1, preventing
its binding to I kappa B kinase (IKK)γ, which keeps sequestering NFκB in the cytoplasm. In addition,
A20 can remove polyubiquitin chains from TNFR-associated factor (TRAF)6, thereby inhibiting
TLR-mediated signaling.Int. J. Mol. Sci. 2017, 18, 2222 10 of 32 
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GC: guanine cyclase; GMP: guanine monophosphate; GTP: guanine triphosphate; ICAM: intercellular
adhesion molecule; iNOS: inducible nitric oxide synthase; IKK: IκB kinase; IL: interleukin;
MCP: monocyte chemoattractant protein; NIK: NFκB-inducing kinase; NFκB: nuclear factor (NF)κB;
PDE: phosphodiesterase; PKA: protein kinase A; PPAR: Peroxisome proliferator-activated receptor;
ROS: reactive oxygen species; STAT: Signal transducer and activator of transcription; TNF: tumor
necrosis factor; VCAM: vascular cell adhesion molecule.

In endothelial and pre-monocytic cells, zinc-dependent induction of A20 mRNA expression
and protein production was demonstrated, while information on the ubiquitination activity of the
enzyme regarding zinc availability is not clear yet. Zinc signals upregulated mRNA expression of
A20 in other immune cells as well [30,69,138]. Inhibition of gene expression by zinc via increased
A20 and decreased NFκB activity was found for various molecules, including decreased expression
of interleukin (IL)-1β and TNFα in myeloid cells and decreased C reactive protein (CRP) levels,
lipid peroxidation and inflammatory cytokines in elderly subjects [53,88,138–140]. In addition to A20,
peroxisome proliferator-activated receptor (PPAR) alpha is of interest as it alters the binding of NFκB
to the DNA. Its zinc-induced expression results in decreased NFκB binding and down regulation of
pro-inflammatory cytokine and adhesion molecule expression. [53]. NFκB is also inhibited by PKA
via zinc-induced alteration of cGMP levels, as described earlier adding one more explanation for the
decrease in NFκB induced gene expression during high zinc conditions and its increase during zinc
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deficiency [133]. The complex postulated effects of zinc on NFκB centered signaling pathways are
summarized in Figure 2.

4.6. Zinc and Signaling Proteome

Most of the so far described effects of zinc in signaling depict consequences of immediate changes
in zinc homeostasis. Long-term alterations in intracellular zinc are often related to altered expression
of zinc transporters and zinc binding proteins. In a recent approach, Aude-Garcia et al. [68] cultured
macrophages with zinc oxide nanoparticles or an equivalent dose of zinc acetate for at least 24 h
and analyzed the proteome of the cells via 2D gel based analyses. In addition to changes regarding
energy, mitochondrial, cytoskeletal and DNA-control metabolism, authors found altered levels of
certain signaling molecules. Protein phosphatase 1a and 2a and S/T phosphatase were affected by zinc
acetate. Zinc oxide nanoparticles changed the levels of Prostaglandin reductase 2, Phosphatidylinositol
transfer protein (PITP)α, Acyl-protein thioesterase 2, Regulator of G-protein signaling 10, MOB kinase
activator 1B and Inositol-3-phosphate synthase 1. Protein levels of MyD88 were affected by both
the zinc ion and the nanoparticle in a similar manner [68]. If altered proteome is due to changes
in gene expression, posttranscriptional mechanisms or if protein stability is reduced remains open.
Furthermore, information on whether proteins are functional is missing. However, results suggest that
certain signaling pathways are prioritized during high zinc conditions and are important to the cell.
MyD88 might be stabilized to keep signaling pathways, important for the pro-inflammatory activity of
the cell active during high zinc conditions. The study provides molecules to the list of zinc-regulated
targets in signaling, but as protein species-based proteomics have some limitations, results have to be
verified carefully [68]. Effects of zinc deficiency should be investigated using a similar approach as well.

4.7. Zinc and Transcription Factors

As a note, many transcription factors governing innate immune cell functions are zinc finger
proteins, suggesting an additional direct or indirect role of zinc in intracellular signaling. Promyelocytic
leukemia zinc-finger (PLZF) is a critical transcription factor for induced natural killer T cell (iNKT
cell) development as is PU.1 for myelopoiesis [141,142]. GATA-4, -5, and -6 and krüppel like factor
(KLF)-4 and KLF-5 are additional examples of zinc finger transcriptionfactors important during
the development of innate immune cells [143,144]. The same is true for adaptive immune cells:
zinc finger transcription factors (ZEB1, ZNF292, and ZNF644) were confirmed to play a role in CD4+

T cells in Rheumatoid Arthritis. A lot of genes involved in regulating zinc homeostasis reveal metal
response elements in their promoters and can be induced by binding of metal-response element
binding transcription factor (MTF)-1, which acts as an intracellular zinc sensor, suggesting feedback
mechanisms [145]. After some initial analysis in this area of research, this topic has not been followed
much recently, but would be a great area for future experiments.

5. From Altered Zinc Homeostasis via Signaling to Innate Immune Cell Functions

As described above, the effects of zinc homeostasis on signaling are complex. Knowing the
effect of zinc on single signaling molecules does not enable prediction of the functional outcome of
zinc deficiency or supplementation. In the upcoming paragraphs, examples will be described for
some selected zinc-dependent key functions of innate immune cells. Predicted underlying molecular
mechanism for the particular setting will be mentioned as well.

5.1. TLR4 Signaling in Monocytes

One of the best-studied examples for the role of zinc in innate immune signaling is TLR4
triggering by LPS. Pathways involved are illustrated in Figure 1 and molecules where zinc is
potentially intervening in the signaling pathways are indicated. Long-term zinc deficiency augments
pro-inflammatory cytokine production, which is reversible if zinc is reconstituted [48]. In contrast,
within two minutes after LPS binding to the receptor complex a significant increase in intracellular
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zinc can be detected, which is involved in activation of MAPK signaling pathways. Amongst others,
zinc inhibits dephosphorylation of MAPK and supports IKKα/β phosphorylation, NFκB translocation
to the nucleus and gene activation [102,146]. Wan et al. recently separated zinc-dependent and
-independent processes shortly after LPS triggering of TLR4 of murine macrophages. Depletion of zinc
inhibited the LPS-induced activation of several kinases including ERK1/2, IKKβ, MKK3/6 and IκB
in murine primary macrophages and cell lines. Interestingly, phosphorylation and ubiquitination of
IRAK1 was not affected by zinc deficiency, at least not early after stimulation, suggesting a selective
effect of zinc on certain signaling pathways, shortly after LPS-stimulation. However, degradation of
ubiquitinated IRAK1 required zinc but did not involve proteasome [70]. Zinc chelation caused the
accumulation of phosphorylated and ubiquitinated IRAK1. One can speculate, that inactivation
of zinc-containing metalloproteases during zinc deficiency, prevents the destruction of IRAK1,
which remains to be investigated. A membrane associated complex, which is phosphorylated after LPS
stimulation, contains IRAK1 in addition to IKKα and IKKβ [147]. Degradation of IRAK1 is essential to
release phosphorylated IKKs into the cytoplasm, which then degrade IκB and p105 activating NFκB
and ERK signaling. However, zinc deficiency might affect phosphorylation of ERK and IκB via its
effect on PTPs as well, which is not clear yet.

TLR4-induced pathways can be grouped into MyD88-dependent pathways, including MAPKs and
NFκB, which induce expression of inflammatory cytokines and MyD88-independent/Toll-interleukin-1
receptor (TIR) domain-containing adaptor-inducing interferon (TRIF)-dependent pathways involving
TRIF-related adaptor molecule (TRAM), TRIF and IRF-3 and triggering interferon (IFN)β expression
(see Figure 1). The latter has an autocrine function and can bind to surface interferon receptor (IFNR)
resulting in activation of the JAK-STAT pathway finally causing expression of CD40, CD80 and CD86,
necessary for interaction of myeloid cells with T cells [5,148]. Zinc has been suggested to be involved
in IFN signaling in hepatocytes recently, which should be tested for immune cells as well [149].
In addition, NFκB as well as the JAK-STAT pathway induce NO production via inducible nitric oxide
synthase (iNOS), which is a potent anti-microbial mediator. While our knowledge on the role of zinc in
MyD88-dependent pathways, especially early after receptor triggering, is broad and described in large
detail [102], an association of zinc to TRIF pathways and NO synthesis is less explicit. In addition,
most data originate from investigations of time points early after receptor triggering, representing
investigation of the zinc flux. Pre-existing zinc deficiency augmented LPS-induced NO synthesis in
murine macrophages and also increased LPS induced IFNβ expression as well as CD80 and CD86
(cell-line and bone marrow based). Effects were measured a few hours after the original stimulus and
where therefore assigned to be regulated by homeostatic zinc signals. Reconstitution of zinc abolished
the effect of the chelator. Interestingly, chelation of zinc caused decreased LPS-induced transcription of
IL-1β, IL-6, and IL-10 in macrophages compared to zinc adequate controls. This indicates zinc chelation
seems to inhibit the MyD88-depending pathways while triggering TRIF-dependent signaling. In line
with this, a time-course experiment revealed, that adding the chelator at the time of TRIF activation
caused the maximal increase in NO synthesis. This also indicates that TRIF-signaling is independent
from the initial zinc signal, induced quickly after LPS binding to TLR4. MyD88-dependent pathways
induce fast translocation of NFκB to the nucleus which was reduced, when cells were pre-incubated
with TPEN. However, TRIF-dependent delayed NFκB activation was not affected by TPEN, underlining
this hypothesis [5].

Regarding effects of persisting changes in intracellular zinc levels, the de-ubiquitination of
TRAF6 by A20 is probably involved in turning off TLR4-induced signaling and pro-inflammatory
activity of macrophages. Ubiquinated TRAF6 activates TAK1 a kinase phosphorylating IKKs and
MKKs, resulting in gene expression which is thereby blocked [138,150,151]. Thus, balanced zinc
homeostasis is important to prevent unwanted signaling disturbances. In macrophages, A20 is induced
by pro-inflammatory cytokines, possibly as a feedback mechanism to terminate their expression [152].
Increased cGMPs levels due to high intracellular zinc could explain elevated phosphorylation of Raf-1,
mediating its inactivation as well as inactivation of NFκB as can be seen in Figure 2. Investigation of
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TLR7 and TLR3-induced signaling showed dependents of TRIF/IRF/IFNβ signaling as well, while NO
production was not affected by zinc chelation after TLR3 activation.

Altogether, TLR4 signaling in macrophages is a great example of the combination of a short-lived
zinc peak and modulation of basal intracellular zinc levels for longer periods to balance MyD88-
and TRIF-dependent pathways, acting as a fine-tuning signal after TLR4 triggering. Using ligands
for other TLRs including Pam3CSK4 (TLR1/2), Listeria monocytogenes (TLR2), flagellin (TLR5),
FSL-1 (TLR6/2), ssRNA40 (TLR7) and ODN1826 (TLR9) all increased intracellular zinc in murine
macrophages and primary human monocytes [5,102]. If this has similar consequences on signaling
pathways remains to be investigated. Simplification of zinc’s effect such as stating that zinc generally
supports all TLR-induced signaling pathways, is difficult, as the whole environmental set up, including
the current zinc supply, activation and maturity state of the cell, chronic inflammation, time after
stimulation and more, can affect consequences of altered zinc levels.

5.2. Zinc Homeostasis, Hematopoiesis and STAT3

Long-term changes in zinc homeostasis usually involve changes in zinc transporter expression.
In dendritic cells, stimulation with LPS changes the expression of Zip6 and Zip10 as well as of ZnT-1,
-4 and -6 via pathways involving TRIF. An association of zinc with regulation of TRIF signaling has just
been described above, explaining this observation. This causes a long-term reduction in intracellular
zinc which is essential for cellular maturation [58]. This is just one of the examples explaining the
often-observed effect of zinc on hematopoiesis. Monopoiesis has been shown to be paralleled by a
decrease in intracellular zinc and similar data have just been generated for granulopoiesis [38,153].

IL-6 is one of the most potent inflammatory cytokines, activating immune cells via binding to
its gp130 receptor found within the plasma membrane. Amongst others, IL-6 induces the expression
of acute phase proteins (APP), which subsequently interact with TLRs and induce the NLRP3
inflammasome. Receptor ligation activates JAK-STAT3 and MAPK pathways. Recent years revealed
that especially the phosphorylation of STAT3 is broadly affected by zinc homeostasis. Zinc deficiency
increased IL-6-induced activation of JAK-STAT3 signaling pathways; reconstitution with zinc
normalized the effect while zinc supplementation was shown to inhibit STAT3 phosphorylation
induced by IL-6 and IL-1 [111]. Phosphorylation of STAT3 is known to be regulated by SHP1/2,
whose activity is increased by zinc [154]. If this is the only mechanism how zinc is involved in JAK-STAT
signal transduction remains to be further investigated. STAT3 seems to be an important player in
regular myelopoiesis as well as in demand adapted emergency myelopoiesis, during inflammatory
diseases such as sepsis [155]. The connection between disease-related serum hypozincemia,
STAT3 activity and grade of differentiation needs to be explored.

In murine hematopoietic stem cells, zinc chloride promotes transient STAT3 phosphorylation
(Tyr705), resulting in increased expression of pluripotency genes and inhibition of differentiation
genes [112]. Expression of STAT3 was not altered. Thus, zinc plays a critical role in maintaining
pluripotency and self-renewal of stem cells and can even replace leukemia inhibitory factor (LIF),
which is normally essential for this process. Zinc disrupted differentiation induced by retinoic
acid, at least for a certain period of time. Treatment of cells with zinc chloride and LIF did not
augment pluripotency, suggesting that both factors regulate the same pathway, which is centered
on STAT3. The observation that inhibition of STAT3 abrogates the effect of zinc chloride on the cells
underlines the importance of STAT3 as a central molecule in hematopoiesis. Along with this, B cell
proliferation, was increased during zinc deficiency [77]. Again, STAT3 phosphorylation was shown to
be responsible here.

Neuronal development is also strongly affected by zinc via STAT3-centered signaling. Results
from this very recent study add alteration in the redox-state as underlying mechanism for the effect
of zinc on STAT3 phosphorylation. In this study, moderate zinc deficiency (1.5 µM) caused oxidative
stress within 24 h, resulting in decreased tyrosine phosphorylation and retention of STAT3 in the
cytosol. In addition to tyrosine (Y705), serine (S727) phosphorylation was analyzed. While only
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tyrosine phosphorylation was decreased during zinc deficiency when whole cell lysates were tested,
in nuclear extracts phosphorylation of both residues was decreased [156]. If this is a cell-type specific
effect or if it can be extrapolated to innate immune cells remains to be tested, but as redox and zinc
metabolism are highly intertwined in innate immune cells, as described earlier, a similar mechanism is
highly likely.

Thus far, an association of zinc homeostasis with the activity of STAT molecules other than
STAT3 is barely investigated. The effect of zinc on phosphorylation of STAT1 and STAT6 was
suggested to be relevant for lineage determination of macrophages. Zinc supplementation decreased
STAT6 phosphorylation reducing the amount of M2 macrophages, while zinc deficiency increased
phosphorylation of STAT2, thereby supporting M1 development [78]. While studies in T cells did
not show an effect of zinc on STAT5 activity, recent results from myeloid cells suggest that zinc
supplementation inhibits STAT5 phosphorylation [157]. This indicates a general mechanism of zinc
affected STAT activity in cell differentiation, which should be investigates in more detail.

5.3. Zinc Alters Killing Activity of Natural Killer Cells

Although natural killer cells belong to the lymphoid lineage, they are counted as innate immune
cells and kill infected or transformed cells. Regular human cells carry major histocompatibility complex
(MHC)-I on their surface, which rescues them from being killed by binding to p58 killer cell inhibitory
receptor (KIR) on NK cells. KIR can bind zinc which alters recognition of MHC-I and thereby the
induction of subsequent signaling pathways. A zinc-dependent multimerization of KIR was suggested
to be essential for formation of the clusters of KIR and human leukocyte antigen (HLA) molecules,
also called “natural killer (NK) cell immune synapse” [84,158]. Effects of zinc deficiency on KIR
multimerization have not been investigated, yet, but might explain why the lytic activity of NK cells
is decreased when zinc supply is limited [159]. In general, existing studies for NK cells are limited
to experiments, where zinc has been extracellularly added, whereas effects of altered intracellular
zinc homeostasis can only be assumed, as measurements of intracellular zinc levels after stimulation
are not available. Only some very recent data are available that showed a zinc flux shortly after IL-1
stimulation [85]. However, NK cells carry a variety of cell surface receptors, essential for fine tuning of
their activities, which contain tyrosine phosphorylation sides such as immunoreceptor tyrosine-based
activation motif (ITAM) or immunoreceptor tyrosine-based inhibitory motif (ITIM). As described
earlier, the ability of zinc to inhibit PTPs is well accepted, so a role of intracellular zinc homeostasis in
regulation of signaling pathways in NK cells is highly likely, but remains to be analyzed.

5.4. Mast Cell Degranulation Depends on Zinc Levels

Knowledge of a role of zinc in signaling in mast cells (MCs) is scarce. Cytoplasm and granules
seem to represent two distinct zinc pools in this cell type. High amounts of zinc are stored in
the granules, lost during immunglobulin (Ig)E-induced degranulation, and are quickly replenished
thereafter. This zinc is probably not involved in signaling [160]. Zinc was however important
for the process of degranulation, mediating granule translocation to the plasma membrane Zinc
chelation inhibited degranulation. A transient increase in cytoplasmic zinc has been reported after cell
activation [161]. This zinc signal affected translocation of NFκB to the nucleus and phosphorylation of
ERK1/2, JNK1/2 and the translocation of PKC to the plasma membrane, as reported for other cells and
stimuli [55,161]. Abrogation of the zinc wave via incubation with the zinc chelator TPEN abrogated
activation of signaling pathways and blocked expression of IL-1β and TNFα. Zinc supplementation
was able to prolong activation of the signaling pathways. Different probes were used to measure zinc
here, enabling staining of the different zinc pools. It is well known, that low molecular weight probes
highly differ in their exact intracellular location, which might explain the discrepancies [162].
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6. The Adaptive Immunity

The adaptive immune system is built up of the humoral immune defense, represented by
B lymphocytes (B cells), and the cellular immune defense, represented by T lymphocytes (T cells).
Both cell types evolve off precursors and are educated to recognize their specific antigen in the thymus
(T cells) or bone marrow (B cells), respectively. According to antigen contact, naïve lymphocytes
differentiate into effector cells or memory cells, facilitating a stronger reaction to a known antigen
as a secondary response due to immunological memory. The immune system is a highly active
and proliferating organ influenced by a multitude of external factors such as nutrition. In this
regard, the immune response is highly dependent on zinc, since zinc deficiency is accompanied with
malfunctions and disorders, such as allergies, autoimmune diseases and cancer. In the past decade,
studies on animal models have provided considerable knowledge about the underlying molecular
mechanisms of the zinc-related modulation of the immune system, including new insights into how
nutritional deficiency can alter immune cell homeostasis and function of the adaptive immunity.
Zinc-related immunological changes in the adaptive immune response and altered signaling cascades
are discussed in the following sections.

6.1. Zinc Homeostasis in Development of T and B Cells

For a long time, zinc is known to be essential especially for proper T cell and B cell
development [163,164]. However, T cells are in particular much more sensitive to altered zinc
signals resulting in altered differentiation or function, since zinc directly influence the biological
activity of the thymic hormone thymulin by acting as essential co-factor. Thymulin, is produced
by the thymus and released by thymic epithelial cells [165]. By binding to high-affinity receptors
on T cells, it induces markers of differentiation in immature T cells, and promotes T cell function,
including allogenic cytotoxicity, suppressor functions, and IL-2 production [166]. It is therefore
not surprising that during zinc deficiency the recruitment of naïve Th cells and the percentage of
cytotoxic T lymphocytes (CTL) precursors is diminished respectively [167]. The loss of developing
T cells (pre-T cells) is ascribed to accelerated apoptosis consistent with the finding that pre-T cells
express the lowest amount of the anti-apoptotic proteins B cell lymphoma (Bcl)-2 and Bcl-xL thereby
increasing the vulnerability towards cell death. In general, zinc deficiency is described to affect for
instance the hypothalamus-adrenal-pituitary axis, resulting in increased circulating glucocorticoids,
being powerful apoptogens for immature lymphoid cells [168]. Additionally, caspase activity is known
to be regulated in a zinc-dependent manner and zinc deficiency directly induce caspase 3-dependent
cleavage of the cell cycle regulator p21 leading to an immediate induction of cyclin-dependent kinase
(CDK)2 activity which may result in premature entry of the cells into S-phase and apoptotic cell
death [169,170]. Since the thymus comprises of about 80% pre-T cells, its strong susceptibility towards
zinc deficiency account for a main cause of disturbed T cell-mediated immune responses. Interestingly,
in vitro and in vivo supplementation of serum zinc restored thymulin activity observed in moderately
zinc-deficient mice and men, emphasizing a direct effect of serum zinc on thymulin activity [165,171].

Besides intrathymic functions on thymocytes and immature T cells, mature T cells in the
periphery are also affected by thymulin. Herein, thymulin modulates cytokine release by PBMC,
and proliferation of cytotoxic CD8-expressing CTL in combination with IL-2 responsible for T cell
activation and proliferation [172]. Hence, it is obvious that zinc status has impact on immature as well
as mature T cells through the direct activation of thymulin. As a consequence of zinc deficiency, T cell
proliferation is decreased after mitogen stimulation, whereas zinc supplementation is able to reverse
zinc deficiency-induced changes in the thymus and on peripheral cells [173].

In general, both mature T cell types: CD4-expressing Th cells as well as CD8-expressing CTL,
are affected by zinc deficiency. On the one hand, the amount of CD8/CD73 co-expressing T cells is
decreased during zinc deficiency. Those are predominantly precursors of cytotoxic T cells, needing
CD73 expression for antigen recognition and proliferation as well as cytolytic process generation [167].
On the other hand, polarization of mature Th cells is disturbed. Polarization into Th1 cells is impaired
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and therefore changes in the Th1/Th2 ratio towards Th2 cells is observed leading to unbalanced
cell-mediated immune responses [174]. Herein, Th1 cell products as IFNγ and IL-2 are decreased,
whereas Th2 cell products like IL-4, IL-6, and IL-10 remain unaffected. Therefore, the incidence of
infections and Th2-driven allergies is increased by zinc deficiency [23,175]. Furthermore, the functional
impairment of T cell-mediated responses during zinc-deficiency is described to favor the development
of autoimmune diseases [20,176]. In this regard, patients suffering from multiple sclerosis (MS) show
lower plasma zinc level and lower zinc concentrations in chronic MS lesions [14,177,178]. Moreover,
adequate zinc status is essential for transplant rejections since zinc supplementation was shown to
beneficially influence allogeneic cardiac transplantation and intraportal islet transplantation [87,179].
Here, zinc as a pro-antioxidant is involved in the inhibition of apoptotic enzymes such as caspases and
acts tolerogenic [79,87,180]. Another mechanism to lower transplant rejections by zinc administration
in physiological doses is the capacity of zinc to induce and stabilize a specific subpopulation of
Th cells, namely regulatory T cells (Treg) in vitro and in vivo [79–81]. This is of great importance,
since the discovery of Treg offers a new paradigm for transplantation medicine since intra-graft
Treg frequency seems to correlate with clinical graft acceptance, survival, and function [181,182].
Moreover, pro-inflammatory graft-related immune reactions are tried to impede that might be
accomplished by Treg induction. To date, Treg gain more and more importance in combating
diseases in clinical approaches and a multitude of studies elicited transforming growth factor
(TGF)-β1 to be essential in conversion of Th cells into Treg in vitro [183–185]. In this connection,
TGF-β1 seem to be important in establishing immunological tolerance by induction of Treg cells
in mice [183,186,187] and humans [185,188] by triggering the TGF-β1-dependent Smad signaling
pathway. Herein, studies suggest an essential role for Smad 2/3 in Forkhead-Box-Protein (FoxP)3
induction and cytokine suppression [189,190]. Interestingly, TGF-β-induced Smad signaling was
shown to be intensified by zinc administration contributing to higher Treg cell induction (see Figure 3).
Because Smad-binding elements were found in the conserved non-coding DNA sequence (CNS) 1
region of the FoxP3 promoter [189], and zinc promoted FoxP3 stability by preventing proteasomal
degradation caused by the histone deacetylase Sirt1 [79], the synergistic effect of the combined
treatment could result from both triggered mechanism.

Another mechanism controlling Treg function probably is CK2-mediated activation of zinc
transporter Zip7 and thereby altering cellular zinc homeostasis. Zip7 is considered as gatekeeper
of cytosolic zinc release from the ER [191], highlighting the involvement of zinc in rapid signaling.
Protein kinase CK2 is a ubiquitously expressed tetrameric threonine/serine kinase composed of two
catalytic α-subunits and β-subunits respectively [192]. CK2 particularly is involved in regulation of
cell survival and proliferation, apoptosis and mitosis [193], by shuttling between the cytosol and nuclei
of cells in order to support apoptosis or mitosis, respectively. Zip7 phosphorylation by CK2 results
in Zip7-mediated zinc release from the ER and the subsequent activation of multiple downstream
pathways that enhance cell proliferation and migration. In the context of Treg function, genetic ablation
of the β-subunit of CK2 is addressed to insufficient potential to suppress allergic immune responses
in the lungs mediated by Th2 cells in vivo [194]. Therefore, inappropriate CK2 function impairs
cell-specific immunological tolerance that might be due, amongst others, to changed zinc homeostasis.
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Figure 3. Influence of zinc signals on T cell signaling pathways. This figure presents an overview
of T cell receptor (TCR)-, Interleukin-1 receptor (IL-1R)-, IL-2R-, IL-4R-, Transforming growth factor
β1 receptor (TGF-β1R)-signaling in T cells, as well as zinc flux via zinc transporter ZIP6. Signaling
pathways are described in detail in the text. Black arrow: activation, green arrow: activating function
of zinc, red T bar: inhibiting function of zinc, black dotted arrow, translocation of the molecule to
nucleus. Abbreviations: CREB: cyclic adenosine monophosphate response element-binding protein;
Csk: c-src tyrosine kinase; Foxp3: forkhead-box-protein P3; IL: Interleukin; IRAK: interleukin-1
receptor-associated kinase; KLF-10: krüppel-like factor-10; Lck: lymphocyte-specific protein tyrosine
kinase; MAPK: mitogen-activated protein kinase; MKP: MAP-kinase phosphatase; NFAT: nuclear
factor of activated T cells; NFκB: nuclear factor kappa B; PKA: protein kinase A; PKC: protein
kinase C; SIRT1: Sirtuin1; STAT: signal transducer and activator of transcription; TCR: T cell receptor;
TGF-β1: transforming growth factor β1. ZAP: zeta-chain (TCR)-associated protein kinase.

In contrast to that, the ZIP8-zinc axis might have a negative impact on immune regulation.
ZIP8 is known to be highly expressed in human T cells on the lysosomal membrane and is even
more prominent when T cells are activated by TCR triggering [125]. Hence, after T cell activation free
intralysosomal zinc is released into the cytoplasm increasing the zinc available, which leads to altered T
cell function by modulation of distinct signaling pathways. In this connection, overexpression of ZIP8
was shown to trigger the pro-inflammatory immune responses by enhancing the IFN-γ production
due to zinc-mediated reduction of CN phosphatase activity and prolonged phosphorylation of the
transcription factor cyclic adenosine monophosphate response element-binding protein (CREB) [125].
Hence, the TCR-induced cytokine production is strengthened. In line with that, the NFκB activity is
triggered by downregulation of the IκB kinase activity in pro-inflammatory responses observed in
ZIP8 hypomorphic mice [137]. Hence, an overreacting immune system can lead to hyperinflammation,
autoimmune diseases or sepsis.

Nevertheless, one has to keep in mind that T cell function is sensitively regulated by zinc
concentration leading to cellular activation or deactivation respectively [31]. Additionally, results observed
in different species and different cellular models needs to be compared with wariness.

In general, Treg development and survival is dependent on a high number of key factors, such as
the transcription factor Foxp3 and additional signals, including IL-2, TGF-β, and co-stimulatory
molecules like CD28. Moreover, transcription factors as IRF-1 and KLF-10 are described to influence
Treg stability and function. One study elicited IRF-1 deficiency to result in a selective and marked
increase in highly differentiated and activated FoxP3 expressing Treg cells in vivo [195]. IRF-1 plays
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a direct role in the generation and expansion of Treg cells by specifically repressing FoxP3 activity
that can be dampened by zinc supplementation supporting the pro-tolerogenic immune reaction [196].
In contrast to IRF-1, KLF-10 seem to be indispensable for appropriate Treg function, because animals
carrying a disruption in KLF-10 no longer show FoxP3 activation [197]. KLF-10-deficient Treg cells
display impaired cell differentiation, altered cytokine profiles with enhanced Th1, Th2, and Th17
cytokine expression. Furthermore, a reduced capacity for suppression by wild-type co-cultured
T effector cells, as well as accelerated atherosclerosis in immunodeficient atherosclerotic mice
was exhibited [197].

During the last decade, the pro-inflammatory Th9 cell subpopulation is reported to be involved
allergic asthma and autoimmune diseases like MS respectively [198,199]. Interestingly, comparable to
the zinc-mediated reduction of pro-inflammatory Th17 cells in allogeneic immunoreactions [81,200],
zinc supplementation in physiological doses facilitates a similar reduction of pro-inflammatory Th9
cells [82], subsequently leading to dampened allogeneic immunoreaction. Hence, an overreacting
immune response can be beneficially influenced by zinc administration seeming to be promising to
improve the life of patients suffering autoimmune or allergic diseases.

To date, zinc-related targets for the above-mentioned effects are still not fully known. However,
some zinc-related targets for the above mentioned effects were found, comprising receptor proteins,
kinases, phosphatases, caspases, and transcription factors. Those can be activated or inactivated by zinc
administration or zinc deficiency depending on type of zinc signal and zinc level [4,30]. The impact of
zinc signals on the adaptive immune system will be discussed in detail in the following paragraphs.

6.2. Zinc Signals in T Cell Receptor-Triggered Signaling Cascades

When T cell activation via T cell receptor (TCR) stimulation is examined into detail, already the
TCR activating complex is influenced by zinc signals (see Figure 3). One has to keep in mind that TCR
exhibit no intrinsic kinase activity and depend on Src-family tyrosine kinases for signal transduction,
like lymphocyte protein tyrosine kinase (Lck). Lck is one of the first kinases activated, essential for
T cell activation mediated either by proximal or distal Lck promoter activity, and is essential for
phosphorylation of the 10 ITAM motifs of the T cell antigen receptor-signaling complex augmenting
phosphorylation of the kinase ZAP70 [201,202]. Activation of ZAP70 phosphorylates downstream
targets eventually inducing MAPK signaling pathway contributing to T cell activation. Zinc-mediated
T cell activation is facilitated by either a zinc flux inducing direct or indirect Lck activation or SHP-1
deactivation, respectively, or homeostatic zinc signals altering gene expression, as for instance of
distinct zinc transporter.

Lck activation occurs by zinc flux-dependent Lck homodimerization by stabilization the dimer
interface of the SH3 domains [67]. Herein, the activation is highly complex by involving distinct
tyrosine residues either in the so-called activation loop or at the C-terminal negative regulatory
site [154,201]. On the other hand, Lck activation is facilitated by stabilization the interface site of
Lck and the membrane proteins CD4 and CD8 respectively [63,64]. By forming a so-called “zinc
clasp structure”, zinc bridges two cysteine residues of each protein facilitating a stable interaction
of Lck and CD4/CD8 [203]. Since the surface molecules CD8 and CD4 bind to MHC class I or II
respectively, all components are recruited in close proximity to the TCR signaling complex, leading to
T cell activation. On the other hand, Lck activity is influenced in an indirect manner due to reduced
recruitment of the enzyme SHP-1. Since Lck homodimerization and phosphorylation, as well as
TCR complex arrangement and signaling, is highly dependent on numerous PTP [204,205], all can
be considered as potential targets for zinc-mediated regulation. Consequently, it cannot be precisely
predicted whether a PTP regulation result in preferential dephosphorylation of an activating or
inactivating tyrosine by zinc in vivo eventually facilitation signaling activation or inactivation.

T cell activation can furthermore be influenced by altered intracellular zinc signals and zinc
concentrations mediated by specific zinc transporter, as for instance Zip6. Initiation of TCR signaling is
initiated by specific interaction with an antigen-loaded MHC molecule on the surface of a neighboring
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antigen-presenting cell (APC) by formation of a functional immunologic synapse. This results in an
immediately influx of zinc from the extracellular environment through the transporter Zip6 after T cell
stimulation [66]. Hence, intracellular free zinc levels are altered influencing signaling pathways and
subsequently T cell activation, maturation and differentiation.

In response to TCR stimulation, specific transcription factors and signaling pathways are triggered
that are often zinc-regulated (see Figure 3). Nuclear factor of activated T cells (NFAT) mediates
the expression of plenty of genes, such as IL-2. In resting T cells, NFAT proteins are constitutively
phosphorylated remaining inactive and are located in the cytoplasm. In response to TCR/CD28-mediated
calcium signaling, NFAT is dephosphorylated by calcineurin (CN), a calcium/calmodulin-dependent
serine/threonine phosphatase, and eventually translocates into the nucleus [206]. Zinc and iron are
essential cofactors for the catalytic domain of CN, containing a Zn2+-Fe2+ binuclear center. However,
CN inhibition is only reported for zinc. Regarding this, physiologic zinc concentrations, ranging from 10
to 10 µM are described to exhibit a CN inhibition-capacity in vitro [116,207]. Zinc-dependent regulation
of T cell activation, proliferation and differentiation is much more complex than modifying transcription
factor activity as NFAT, since CN activity itself is regulated in a complex zinc-dependent manner. Herein,
CN remains in its inactive phosphorylated form, due to phosphatidyl-inositol-3-kinase (PI3K) [206].
PI3K is a lipid kinase and generates phosphatidylinositol-3,4,5-trisphosphate (PI(3,4,5)P3).

PI(3,4,5)P3 acts as second messenger essential for the translocation of Akt to the plasma membrane
where it is phosphorylated and activated by phosphoinositide-dependent kinase (PDK)1 and PDK2.
Activation of Akt plays a pivotal role in fundamental cellular functions such as cell proliferation and
survival by phosphorylating a variety of substrates [208]. In PI3K pathway, zinc signals are well
reported to influence the signaling cascade in various cell types [209–212]. One possible explanation
for this mechanism is an increased enzyme degradation of phosphatase and tensin homolog deleted
on chromosome 10 (PTEN) [213,214]. PTEN in general functions as a dephosphorylase of PI(3,4,5)P3,
a product of PI3K mediating the activation of PDK-1/Akt. More recently, a study examining the
IL-2-induced PI3K/Akt signaling pathway uncovered an inhibition of PTEN. Here, homeostatic
zinc signals seem to be necessary for the regulation the PI3K/Akt pathway, since the IL-2-induced
Akt phosphorylation is diminished during zinc deficiency. Homeostatic zinc signals are known
to upregulate phosphorylation of Akt at Ser473 and inhibit PTEN at subnanomolar concentrations
(IC50~0.59 nM). This inhibition seems to be mediated by zinc binding to cysteine thiol at position
124 (Cys124) essential for the catalytic activity of PTEN [76]. Thus, a modulation of this pathway
occurs upstream of Akt, but down-stream of Jak1, because STAT-5 signaling is not influenced by zinc
signals [65]. These results suggest a comparable activation of PI3K via zinc in T cells. Zinc-mediated
inhibition of CN results in NFAT inactivation and reduction of TCR-mediated transcription, whereas
activation of PI3K signaling act agonistic.

Zinc signals as mediator of T cell signal transduction is known since the first reports of a potential
role of this ion in signaling were described. Its interaction with PKC is identified as biochemical
basis of these observations [215]. The PKC family members are serine/threonine kinases comprising
of several isoforms are known to play crucial roles in intracellular signal transduction elicited by
various extracellular stimuli, like growth factors, hormones, and neurotransmitters. PKC members
can be subdivided into: (1) classical PKCs, activated by cofactors like Ca2+ and diacylglycerol (DAC);
(2) novel PKC that bind DAC but no Ca2+; and (3) atypical PKCs that interact with neither Ca2+

nor DAC. Several isoforms are well described to be important in T cell function. Following T cell
activation via TCR/CD28 triggering, PKCθ is involved in the activation of several transcription factors.
Additionally, PKCα is involved in T cell proliferation and IL-2 production. Furthermore, several PKC
isoforms are involved in survival of B cells, pre-B cell development, and induction of tolerance toward
self-antigens [216]. PKC is described as a zinc metallo-enzyme. Atomic absorption measurements on
the intact enzyme indicated that four zinc atoms (4.2 ± 0.5) are bound per PKCα molecule. Similar
stoichiometric ratios were determined for PKCβII and PKCγ [217]. PKC comprise of four commonly
conserved domains (C1-C4). Herein, DAC binds to C1 domain in the N-terminal regulatory part
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of PKCα1, which contains two homologous regions containing six cysteine (Cys) and two histidine
(His) residues, forming a total of four Cys3His zinc binding motifs [218]. No information about a
differential effect of zinc on the different isoforms is available, and varying forms of C1 domains are
present in conventional, novel, and atypical PKCs, pointing to probable zinc binding to all known
PKC isoforms [216].

Late zinc signals are mentioned to affect multiple steps during PKC activation, as for instance
augmented PKC kinase activity, increased affinity to phorbol esters, and enhanced binding to the
cytoskeleton and plasma membrane [219]. Inhibition of the above mentioned events can be seen during
zinc deficiency in vitro, facilitated by membrane-permeable zinc chelators, as TPEN. Interestingly,
PKC itself can be a source for zinc release, thus interaction between PKC and zinc is not limited to
an effect of zinc on the PKC activation. PKC activation by lipid second messengers or thiol oxidation
lead to measurable zinc release from the regulatory domain [220,221]. In addition, PKC regulates
the intracellular free zinc concentration and distribution. In T cells, phorbol ester treatment lead to
a zinc flux resulting in redistribution of zinc from the nucleus and mitochondria to the cytosol and
microsomes [222].

Besides activating signaling cascades, also inhibition of TCR signaling and subsequent inhibition
of overall T cell activation is facilitated by phosphorylation status of different amino acids. One of those
is phosphorylation of the inactivating tyrosine 505 of Lck via c-src tyrosine kinase COOH-terminal Srk
kinase (Csk) [223]. The zinc flux interferes with this event in different ways: (1) zinc signals lead to
an inhibition of Csk [75]; and (2) activation of Csk in T cells can be observed via phosphorylation by
PKA [224]. Although zinc has no direct impact on PKA activity itself, it inhibit AC transcription by
a homeostatic zinc signal thereby inhibiting the formation of the PKA activator cAMP. Furthermore,
cAMP is influenced by zinc via inhibition of PDE that can block degradation of cyclic nucleotides,
leading to activation of PKA [60]. An inhibition of Csk and AC promote TCR signaling, while PDE
inhibition antagonizes it. However, the outcome on TCR signaling resulting from the modulation of
this pathway by zinc in vivo remains to be elucidated yet.

6.3. Zinc Signals in Interleukin Receptor Signaling Pathways in T Cells

Besides PI3K and PTEN modulation downstream of TCR activation, zinc signals also affects
signals originating from the IL-1 receptor (IL-1R). High zinc concentrations of about 100 µM inhibit
IL-1β-stimulated IFNγ production in primary human T cells and IL-1 dependent proliferation of
murine T cells. Zinc incubation leads to a reduced activity of IRAK that is a central kinase in
the signaling pathways downstream of the IL-1 receptor. IRAK comprise of four different genes
existing in the human genome (IRAK1, IRAK2, IRAK3, and IRAK4), and studies with transgenic
mice, have revealed distinct, non-redundant biological roles [225]. Interestingly, IRAK4 is reported
to be essential for the TLR signaling in innate immunity as well as for TCR-mediated signaling in
adaptive immunity leading to the activation of NFκB [226], however this is still matter of debate [227].
Since zinc signals show modulating capacity on TCR as well as on IL-1-dependent signaling via IRAK
inhibition, two central signaling pathways are uncovered in negative regulation of T cell activation.
Nevertheless, one has to keep in mind that IRAK function and zinc-mediated regulation is not limited
to T cells. High similarity between TLR4 and IL-1R signal transduction suggests IRAK inhibition
for another mechanism by which zinc negatively influences TLR4 signaling in innate immunity as
discussed before.

Moreover, triggering of interleukin receptor (IL-2R) also results in altered intracellular zinc signals.
Following IL-2R stimulation, zinc signal is releases of from lysosomal compartment called zincosomes
within several minutes after T cell stimulation [65]. Thus, an intracellular zinc flux is triggered
influencing PTP, as for instance dual-specificity phosphatases (DUSP) or Protein phosphatase (PP)2A
activity in a direct manner. Subsequently, ultimately signal transduction and protein expression,
such as diminished dephosphorylation of MAPK MEK and ERK, or elevated transcription of zinc
transporter such as Zip6, can be modulated by zinc.
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Not only is kinase activity regulated by zinc signals, but cytokine production is also influenced.
During zinc deficiency zinc administration leads to a fast rise in intracellular zinc levels, i.e., zinc flux,
due to an increased expression of cell membrane-located zinc transporters Zip10 and Zip12 because
of the former zinc deficiency. Due to altered intracellular zinc homeostasis, activity of signaling
molecules as MAPK p38, and NFκB p65 are affected consequently leading to highly increased IL-2
mRNA expression and IL-2 cytokine production [72].

In general, a forecast of zinc-related effects on T cell function is impossible due to the high number
of signaling pathways modulated by zinc signals. Several studies concerning zinc status and T cell
function in vivo, stated an increase of the delayed type hypersensitivity reaction upon correction of
zinc deficiency [228]. By contrast, zinc administration diminishes the allogeneic reaction in the mixed
lymphocyte culture (MLC) [229] and stabilizes regulatory T cell function in vitro and in vivo [79,230]
indicating that zinc may have multiple, opposing functions, depending on its concentration and
interaction with multiple other environmental factors.

6.4. Zinc Signals in B Cell Maturation, Survival and Function

B cells represent the specific humoral immunity and differentiate to antibody-producing plasma
cells after stimulation. Nearly all of the zinc regulated signaling pathways discussed above in T cells
are also important in B cells maturation and differentiation, such as tyrosine phosphorylation, PKC,
MAPK signaling, and activation of the transcription factors NFAT and NFκB. In contrast to other cell
types discussed before, mature B cell proliferation and function is not as dependent on the organisms’
zinc status. Hence, the impact of zinc deficiency on B cell maturation and function and its subsequent
impact on the immune system is not as profound as it is in the context of T cells [231]. Zinc signals
itself seem to have no impact on B cell activity in a direct manner. However, zinc deficiency affect B
cell lymphopoiesis in different ways. Following acute zinc deficiency, the B cell compartment is largely
reduced (about 50% to 70%) and the composition of surviving B cells within the B cell compartment
markedly changed [232]. In contrast, chronic zinc deficiency is reported to merely influence T cell
development and B cell development remains sustained [164].

During cellular development, lymphocytes are sensitive for apoptosis signals due to positive and
negative selection mechanisms in the primary lymphoid organs. Mature cells are apoptosis resistant
and getting inactivated in the case of autoreactivity known as anergy. A strict selection guarantees
adequate cellular function, thus avoiding cellular autoreactivity by eliminating the majority of newly
formed cells by apoptosis. Zinc deficiency increases apoptosis within the B cell population and leads
to cell depletion [11,233]. Thus, there are fewer naïve B cells during zinc deficiency that can react
to neoantigens. Contrarily to zinc deficiency, low zinc levels have no influence on the cell cycle
status of precursor B cells and only modest influence on cycling pro-B cells. Taking into account
that T cell numbers are reduced during zinc deficiency as well, and that recognition of most antigens
is T cell dependent, it is probable that the body is unable to respond with antibody production in
response to neoantigens. This assumption is consistent with findings showing a disturbed antibody
production by B cells during zinc depletion [234]. This disturbed feedback mechanism might also
be an explanation for zinc deficient patients, like elderly and hemodialysis patients, showing a
reduced response to vaccination [235–237]. Another possible mechanism impairing adequate immune
responses are epigenetic changes of DNA. The epigenome is highly influenced by environmental
changes, but also by nutrition [238]. Since histone modifying enzymes as histonedeacetylases are
known to be regulated in a zinc-dependent manner [79], the organism’s zinc status is important for
adequate epigenetic modification of DNA.

Studies uncovered B cell activity and antibody production to be impaired during zinc deficiency
respectively leading to higher risk of parasitic infection [239]. On a molecular mechanism this might be
due to diminished STAT6 phosphorylation during zinc deficiency. Hence, zinc signals are important
for proper IL-4 induced STAT6 phosphorylation [77]. Since IL-4 promotes activation of early B
cells and immunoglobulin class switch towards IgE, and thereby the further antibody specification,
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this mechanism explains the higher risk of parasitic infection during zinc deficiency. Furthermore,
zinc signals are important for IL-6 induced STAT3 phosphorylation shown to be increased due to zinc
deficiency. IL-6 mediates the activation and final differentiation of B cells into plasma cells and IL-6
overproduction is associated with autoantibody production. Diseases such as rheumatoid arthritis and
plasma cell neoplasia go along with reduced serum zinc levels, indicating potential co-effects of IL-6
overproduction and enhanced susceptibility of B cells due to zinc deficiency. Those observations
indicate that a strict regulation and proper zinc homeostasis is necessary to keep the immune
system balanced [77].

Studies reveal that antibody production as consequence to T cell-dependent antigen recognition
is more sensitive to zinc deficiency than antibody production in response to T cell-independent
antigens [240]. Zinc deficient mice show reduced antibody recall responses to antigens they have been
immunized with before. This effect was observed in T cell-independent as well as in T cell-dependent
systems. Thus, immunologic memory also seems to be influenced by zinc [241]. However, mature B
cells still are more resistant to zinc deficiency-induced apoptosis due to high Bcl2 level. Thus,
B cell memory is less affected than the primary response [233]. Homeostatic zinc signals influence
several regulatory proteins, such as those from the Bcl/Bax family [11] and furthermore several
aspects of apoptotic signal transduction. In this connection, the calcium-dependent endonuclease,
which mediates DNA fragmentation, is inhibited by zinc. However, this target is beyond the point
of no return for programmed cell death, and an inhibition could explain a suppression of DNA
fragmentation during apoptosis, but not the effect on cellular survival. Another important group of
enzymes in apoptosis is cysteine-aspartic acid proteases, also known as caspases. Inactive pro-caspases
first are activated by proteolytic cleavage and second form a signaling cascade to transduce initial
apoptotic signals to effector enzymes mediating the organized cellular destruction characteristic for
programmed cell death. Low micromolar zinc concentrations are reported to inhibit caspases-3, -6,
and -8 [242]. A half maximal inhibitory concentration for caspase-3 was found below 10 nM [99].
This value is within the physiological range of free intracellular zinc level, leading to the suggestion
that endogenous zinc can inhibit caspase-3 activity subsequently altering apoptosis signals and cellular
survival. More recently, similar results were observed in an in vivo rat heterotrophic heart transplant
model that might contribute to an increased allograft survival [87].

Even though both cell types of the adaptive immune system utilize the same signaling pathways,
B cell function seems to be affected by zinc to a lesser magnitude. Even the reduced antibody production
during zinc deficiency is based on reduced B cell numbers whereas it remains unaffected on a per-cell
basis [243]. This indicates an effect on cellular development rather than on function. One reason might
be a difference in zinc homeostasis, making mature B cells less susceptible to conditions of limited zinc
availability. Although B cells are highly susceptible to apoptosis during development, and zinc is one
factor that influences these signals, mature B cells can tolerate comparable conditions due to changes
in zinc-regulating proteins, but also by changing the expression patterns of several other factors that
regulate the cellular responsiveness to apoptotic signals. One highly important zinc-regulating protein
in B cells is the zinc importer Zip10.

Zip10 is essential for cell survival during early B-cell development as well as for adequate B-cell
receptor (BCR) signaling [244,245]. A loss of Zip10 during an early B cell stage was reported to
specifically abrogated cell survival. Eventually, this leads to an absence of mature B cells in vivo,
provoking spleno-atrophy and reduced Ig level. Moreover, the absence of Zip10 causes an impaired T
cell-dependent and -independent immune response respectively. Additionally, due to the dysregulated
BCR signaling, mature B cells proliferated poorly in response to BCR crosslinking. On the molecular
level, this is probable due to a disturbed JAK-STAT-Zip10 signaling axis, since the JAK-STAT pathway
is known to modulate expression of Zip10 [244]. Furthermore, a disturbed regulation of the BCR signal
strength is likely. This might be due to the positive regulator function of Zip10 regarding CD45R
phosphatase activity. In the case of Zip10 malfunction, CD45R phosphatase activity is reduced resulting
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in hyperactivation of tyrosine-protein kinase Lyn that consequently provoke an altered threshold for
BCR signaling [245].

7. Conclusions

Summing up, all immune cells are directly affected by zinc signals. Most prominent pathologic
changes are found during zinc deficiency indicating that zinc is a main regulator of cellular function and
signal transduction. However, precise underlying molecular mechanisms still need to be investigated
in further detail, to guarantee beneficial effects of clinical zinc application to patients suffering of
distinct diseases.
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