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Abstract: Some melatonin functions in mammals are exerted through MT1 and MT2 receptors.
However, there are no reports of their presence in the reproductive tract of the ram, a seasonal
species. Thus, we have investigated their existence in the ram testis, epididymis, accessory glands
and ductus deferens. Real-time polymerase chain reaction (qPCR) revealed higher levels of m-RNA
for both receptors in the testis, ampulla, seminal vesicles, and vas deferens, than in the other organs
of the reproductive tract (p < 0.05). Western blot analyses showed protein bands compatible with
the MT1 in the testis and cauda epididymis, and for the MT2 in the cauda epididymis and deferent
duct. Immunohistochemistry analyses revealed the presence of MT1 receptors in spermatogonias,
spermatocytes, and spermatids, and MT2 receptors in the newly-formed spermatozoa in the testis,
whereas both receptors were located in the epithelial cells of the ampulla, seminal vesicles, and ductus
deferens. Indirect immunofluorescence showed significant differences in the immunolocation of both
receptors in spermatozoa during their transit in the epididymis. In conclusion, it was demonstrated
that melatonin receptors are present in the ram reproductive tract. These results open the way for
new studies on the molecular mechanism of melatonin and the biological significance of its receptors.
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1. Introduction

Melatonin is a multifunctional molecule, widely distributed among all taxa [1]. In unicellular
organisms its main function seems to be protection against free radical damage [2], while in
mammals it has an extensive range of functions, including the regulation of circadian rhythms,
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immunomodulation, cancer inhibition, gastrointestinal tract protection, cardiovascular regulation, and
seasonal reproduction [3].

Melatonin can exert many of these functions due to its antioxidant properties [4], but it can also
interact with cytosolic molecules, such as calmodulin [5] or tubulin [6]. Likewise, melatonin can also
act through its union with the membrane receptors MT1 and MT2 [7], and the MT3/QR2 [8]. Melatonin
receptors are located in the suprachiasmatic nucleus to regulate the circadian pacemaker but are also
present in peripheral tissues, such as blood vessels for vasomotor control, or white and bone marrow
cells for regulation of the immune system [9].

Melatonin receptors have also been identified in the reproductive system. Until recently, MT1

and/or MT2 have been located in the cumulus-oocyte complexes [10], granulosa and luteal cells
of the ovary in humans [11] and in rats [12], in the human myometrium [13], and breast epithelial
cells [14], as well as in the placenta [15]. In the male, melatonin receptors have been identified in
rat [16] and hamster [17] testis by reverse transcription polymerase chain reaction (RT-PCR) and
immunohistochemistry techniques, in the rat epididymis by means of melatonin receptor agonists [18],
by 2-[125I] iodomelatonin, and in human prostate epithelial cells [19] and in the prostatic section of the
ductus deferens [20]. However, there is no evidence of the presence of melatonin receptors in the other
accessory glands of the male reproductive tract (ampulla, seminal vesicle, or bulbourethral glands).
Moreover, there are no reports of the presence of melatonin receptors in the ram reproductive tract
despite the great importance of melatonin in sheep reproduction.

The ovine is a seasonal species, in which seasonality is regulated by the nocturnal secretion of
melatonin by the pineal gland [21]. This increase in plasma melatonin levels during the autumn/winter
nights will stimulate the hypothalamus-pituitary-gonadal axis [22], marking the beginning of the
reproductive season. Although seasonality is less marked in the ram than in the ewe [21], there is
a decrease in the testicular volume and sexual behavior during the non-reproductive season [23]
in the male, along with a decrease in sperm quality and functionality [24]. This decline of the ram
reproductive parameters has been previously related with a concomitant decrease in the activity of the
hypothalamus-pituitary-testicular axis and blood testosterone levels [25].

However, recent studies suggest more direct action of melatonin on the spermatogenesis and
ram sperm functionality. Thus, exogenous melatonin treatment during the non-reproductive season
can increase both the ram ejaculate volume and total spermatozoa number [26], along with sperm
motility parameters [27] and concentration [28]. Although all of these positive effects exerted by
melatonin treatment in the ram could be explained by the increase in testosterone levels provoked
by this hormone [29], the possibility of direct receptor-mediated melatonin action on the ram testes
cannot be ruled out.

Moreover, we have previously identified the presence of both melatonin receptors MT1 and MT2

in ram spermatozoa [30] and proved that melatonin can inhibit apoptosis [31] and modulate ram
sperm capacitation through the MT2 receptor [32]. We have also measured seasonal variations of
the melatonin concentration in ram seminal plasma [33], and we have recently demonstrated that
the melatonin synthesizing enzymes are expressed in the ram testes [34], mainly in the Leydig cells,
spermatocytes and spermatids. The testicular melatonin could protect the developing spermatozoa
from oxidative damage [35], one of the possible mechanisms of action being through melatonin
receptors in the cells [36].

Additionally, there are extensive reports of seasonal variations in the composition of ram
seminal plasma [37], and of how melatonin treatment modifies its biochemical composition [38].
In fact, melatonin treatment reactivates the seminal vesicles during the non-reproductive season [39],
increasing their size [40]. It also modulates the contraction of the vas deferens [41]. Therefore,
we can hypothesize that melatonin could act directly on the accessory glands, possibly by melatonin
receptor binding.

Given the lack of information on the presence of melatonin receptors in the ram reproductive
tract, and for further elucidation of the molecular mechanism of melatonin in the male of this species,



Int. J. Mol. Sci. 2017, 18, 662 3 of 15

the objective of this work is to determine the presence of MT1 and MT2 receptors in the ram testis,
epididymis, and accessory sex glands.

2. Results

2.1. Melatonin Receptor Gene Expression in the Ram Reproductive Tract

The real-time polymerase chain reaction (qPCR) analysis detected the transcripts for both
melatonin receptors in all the studied tissues, but also revealed substantial differences between
them in gene expression.

The testis, ampulla, seminal vesicle and vas deferens showed significantly higher (p < 0.05) gene
expression levels of MT1 and MT2 than those in the other tissues of the male genital tract (Figure 1).
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bulbourethral glands (8), and ductus deferens (9) . Ovine granulosa cells and ovine retina were used 
as positive control (+) for (a) MT1 and (b) MT2, respectively. Values of mRNA relative expression are 
shown as mean ± SEM of two males analyzed twice (n = 4). Each qPCR run was performed in 
triplicate. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and β-actine genes were used as 
housekeeping genes. Different letters a, b mean statistical differences of p < 0.05 (positive controls 
were only used for representative purposes, and were not included in the statistical analyses). 
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Western blot analyses of the proteins extracted from ram reproductive tissues revealed a strong 
39 kDa band, compatible with the MT1 melatonin receptor, in the testis and cauda epididymis, and a 
fainter one in the corpus and the prostate (Figure 2a). A smaller band of 32 kDa was also found in all 
of the studied tissues. Both the 39 and 32 kDa signals were also found in the spermatozoa (positive 
control), along with a very faded band of 50 kDa, which was also present in the testis, epididymis, 
and prostate. Likewise, several weaker bands of molecular weight ranging from 35 to 60 kDa were 
found, mainly in the testis, but also to a lesser extent in the cauda epididymis and in the prostate. 
This organ also showed a very strong band of 23 kDa. 

 

Figure 1. Real-time polymerase chain reaction (qPCR) analysis of (a) MT1 and (b) MT2 melatonin
receptors from mRNA obtained from various tissues of the ram reproductive tract: Testis (1), caput
(2), corpus (3) and cauda epididymis (4), ampulla (5), prostate (6), seminal vesicles (7), bulbourethral
glands (8), and ductus deferens (9) . Ovine granulosa cells and ovine retina were used as positive
control (+) for (a) MT1 and (b) MT2, respectively. Values of mRNA relative expression are shown
as mean ± SEM of two males analyzed twice (n = 4). Each qPCR run was performed in triplicate.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and β-actine genes were used as housekeeping
genes. Different letters a, b mean statistical differences of p < 0.05 (positive controls were only used for
representative purposes, and were not included in the statistical analyses).

2.2. Protein Expression by Western-Blot and Immunohistochemistry

Western blot analyses of the proteins extracted from ram reproductive tissues revealed a strong
39 kDa band, compatible with the MT1 melatonin receptor, in the testis and cauda epididymis, and a
fainter one in the corpus and the prostate (Figure 2a). A smaller band of 32 kDa was also found in all
of the studied tissues. Both the 39 and 32 kDa signals were also found in the spermatozoa (positive
control), along with a very faded band of 50 kDa, which was also present in the testis, epididymis, and
prostate. Likewise, several weaker bands of molecular weight ranging from 35 to 60 kDa were found,
mainly in the testis, but also to a lesser extent in the cauda epididymis and in the prostate. This organ
also showed a very strong band of 23 kDa.

Western blot analyses against the MT2 melatonin receptor revealed a very faint 39 kDa protein
band, compatible with this receptor, in the cauda epididymis, deferent duct, and spermatozoa (positive
control, Figure 2b). The positive control also showed a very strong signal that was composed of a
double band of 45–50 kDa, as we previously described [30]. A similar band of 45–50 kDa was found
in the cauda, and a smaller one of 48 kDa in the corpus. A strong band of 46 kDa was detected in
the deferent duct, along with narrower bands of the same molecular weight in the ampulla and the
seminal vesicles, and very faint ones in the testis and the caput epididymis. In the testis and the
deferent duct, a smaller band of 35 kDa was identified. Finally, a double 75 kDa band was found in the
cauda epididymis and the positive control, and a single one in the prostate.
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Figure 2. Western blot analysis of (a) MT1 and (b) MT2 in proteins obtained from various tissues
of the ram reproductive tract: Testis (1), caput (2), corpus (3) and cauda epididymis (4), ampulla
(5), prostate (6), seminal vesicles (7), bulbourethral glands (8), ductus deferens (9), and spermatozoa
(+, positive control).

In order to corroborate the data found with qPCR and Western-blot analyses, we performed
an immunohistochemistry study using the avidin-biotin complex technique on the tissues with the
highest gene and/or protein expression of the melatonin receptors, namely the testis, cauda epididymis,
ampulla, seminal vesicles, and vas deferens (Figure 3).
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in panels a, d, g, j and m) and MT2 (arrows in panels b, e, h, k, and n) in testis (a–c), cauda epididymis
(d–f), ampulla (g–i), seminal vesicles (j–l), and ductus deferens (m–o). Magnification 1000×. A 20 µm
measurement bar is displayed in panel o. Negative controls are shown (panels c, f, i, l, and o).
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In the testis, positivity for MT1 was found in the form of dark brown spots in the cytoplasm
located around the nucleus of the spermatogonias and spermatocyte. Likewise, round and maturing
spermatids showed an intense immunostaining in the nucleus and cytoplasm (Figure 3a). No
immunostaining for MT1 or MT2 was detected in the Sertoli or Leydig cells. A clear immunoreactivity
for MT2 was only found in the neck and head of the newly-formed spermatozoa (Figure 3b).

In the cauda epididymis, the MT1 receptor was found as a brown stain in the nucleus of some
of the columnar epithelial cells (Figure 3d). This positivity was also found in the nucleus of the
smooth muscle cells (positive control). On the other hand, for the MT2 receptor, only the spermatozoa
contained in the cauda epididymis lumen showed some positivity (Figure 3e).

In the ampulla, positivity for MT1 was found in the apical pole of the epithelial cells (Figure 3g).
However, a positive reaction for MT2 was detected within all the cytoplasm of the cells (Figure 3h).

Similarly, the MT1 receptor was found in the nucleus of a few cells on the pseudostratified
columnar epithelium of the seminal vesicles (Figure 3i), whereas the MT2 receptor was located
in the cytoplasm of these cells (Figure 3j). It is worth noting that positive and negative secretory
alveoli coexisted. In addition, alveoli, which showed both positive and negative secretory cells, were
also observed.

In the ductus deferens, immunostaining for the MT1 receptor was found in the nucleus of the
pseudostratified columnar epithelium and basal cells (Figure 3l). Although nearly all of these cells
seem to be positive to the MT1 receptor, differences in staining intensity can also be seen. Smooth
muscle cells are also positive for the MT1 receptor (positive control). In this tissue, positivity for the
MT2 receptor is located in the cytoplasm of the epithelial cells, between the nucleus and the apical
pole. The nucleus of the cells is also stained to a lesser extent (Figure 3m).

2.3. Changes in Melatonin Receptor Distribution during Ram Sperm Maturation in the Testis and Epididymis

Despite the low gene expression for MT1 and MT2 receptors found in the epididymis, we observed
high protein expression of these receptors in this organ by means of Western blot. Furthermore, we
also detected differences in the Western blot band pattern between the testis, caput, corpus, and
cauda epididymis. The immunohistochemistry (IHC) analyses, especially against the MT2 receptor,
suggested that these differences might be due to the spermatozoa contained in the lumen of these
organs. Consequently, we decided to determine whether melatonin receptor expression or distribution
varies during ram sperm maturation.

For the melatonin receptor distribution analysis, spermatozoa were classified according to a
previous study performed on ejaculated spermatozoa [30]: In the case of the MT1 receptor, spermatozoa
were categorized in four immunotypes; Type I labelled all over the head and tail, type II with reactivity
at the equatorial and post-acrosomal regions, neck and tail; type III labelled only at the equatorial
zone and tail, and type IV stained only on the tail. Indirect immunofluorescence (IIF) against the MT2

melatonin receptor allowed us to classify the spermatozoa into four different immunotypes: Type
A, showing greater intensity of staining at the acrosome than the post-acrosome; type P, with more
intense staining at the post-acrosome region than the acrosome; type AP, with the same intensity of
immunostaining at both acrosome and post-acrosome, and a fourth immunotype, not described in
ejaculated spermatozoa, named type N, with staining only in the neck. Additionally, spermatozoa
without immunoreactivity were recorded for both receptors. According to this sorting, 27.3% ± 3.5%
and 43.0% ± 3.6% of the spermatozoa obtained from the testis showed no immunostaining against the
MT1 and MT2 receptors, respectively, whereas in the caput epididymis this percentage decreased to
7.3% ± 5.3% and 3.0% ± 3.0%, respectively (p < 0.001). In the corpus, and cauda epididymis, all the
cells were positive to the presence of the receptors.

In the testis, the predominant immunotype regarding the MT1 receptor distribution was type
IV (45.6% ± 4.4%). This immunotype decreased during the sperm maturation in the epididymis
(43.3% ± 1.2%, 31.3% ± 7.7%, and 32.5% ± 1.4% for the caput, corpus, and cauda epididymis,
respectively; p < 0.05 when corpus and cauda are compared with the testis and caput). Concomitantly,



Int. J. Mol. Sci. 2017, 18, 662 6 of 15

the percentage of type II increased (16.3% ± 2.3%, 29.3% ± 5.2%, 42.0% ± 4.5%, and 45.0% ± 2.8%
for the testis, caput, corpus, and cauda epididymis, respectively; p < 0.001 when the epididymis is
compared with the testis, and p < 0.01 when the caput epididymis is compared with the corpus and
cauda, respectively). There were no significant differences in the percentage of type I (6.6% ± 2.0%,
11.3% ± 0.6%, 13.0% ± 2.0%, and 13.1% ± 0.5% for testis, caput, corpus, and cauda epididymis) or
type III spermatozoa (4.0% ± 1.0%, 8.6% ± 1.7%, 13.6% ± 2.4%, and 9.3% ± 0.8% for testis, caput,
corpus, and cauda epididymis) during sperm maturation in the epididymis, but their percentages
showed significant differences when compared with the testis (p < 0.05, Figure 4a).
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Figure 4. Percentages of the different immunotypes, assessed by indirect immunofluorescence (IIF)
against MT1 (a) and MT2 (b) melatonin receptors in spermatozoa obtained from the testis and the
caput, corpus, and cauda epididymis. For the MT1 receptor, type I (labelling all over the head and
tail), type II (equatorial and post-acrosomal regions, neck, and tail), type III (equatorial zone and
tail), and type IV (staining only on the tail) were detected. For the MT2 melatonin receptor, type A
(more intense staining at the acrosome than the post-acrosome), type P (more intense staining at the
post-acrosome region than the acrosome), type AP (the same intensity of immunostaining at both
acrosome and post-acrosome), and type N (staining only in the neck) spermatozoa were identified.
Additionally, spermatozoa without immunoreactivity were recorded for both receptors. Results are
shown as mean ± SEM, n = 5. Different letters (a, b, c) mean statistical differences of p < 0.05.
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Similarly, the analysis of the MT2 receptor distribution revealed that the predominant immunotype
in the testis was type N (36.3% ± 1.2%, Figure 4b).This immunotype was increased in the caput
epididymis (53.6% ± 6.1%; p < 0.001, when compared with the testis), mainly due to the high decrease
in the percentage of non-stained spermatozoa, and decreased during sperm maturation (35.0% ± 14.3%
and 15.0% ± 0.5% for the corpus and cauda epididymis, respectively; p < 0.001 for the corpus when
compared with the cauda, and the cauda when compared with the testis and caput epididymis,
respectively). Alongside this type N decrease, type AP increased (3.6% ± 0.6%, 12.3% ± 3.7%,
25.6% ± 3.9%, and 52.5% ± 0.2% for the testis, caput, corpus, and cauda epididymis, respectively;
p < 0.001), as well as type A (14.0% ± 5.2%, 26.6% ± 4.8%, 30.0% ± 8.7%, and 22.3% ± 3.1% for the testis,
caput, corpus, and cauda epididymis, respectively; p < 0.05 for the testis, with no significant differences
within the epididymis) and type P (3.0% ± 1.0%, 4.3% ± 1.8%, 9.3% ± 2.7%, and 10.0% ± 4.1% for
the testis, caput, corpus, and cauda epididymis, respectively; p < 0.05, when the testis and caput are
compared with the corpus and cauda, respectively).

3. Discussion

Melatonin and melatonin receptors are widely distributed in mammalian tissues and cells,
including those of the reproductive system. In the female, granulosa cells surrounding the oocyte can
synthesize melatonin [42], and the melatonin receptors have been found in the ovary [43], uterus [13,44],
and mammary gland [14]. In the male, melatonin is secreted in the testes [34,45], and although there
are several reports of the presence of melatonin receptors MT1 and/or MT2 in various organs of the
male reproductive tract, such as the testes [16,17], epididymis [18], or prostate [19], to the best of our
knowledge this is the first time that the presence of melatonin receptors MT1 and MT2 have been
studied in the whole male reproductive tract of one species, the sheep.

Our study revealed that both melatonin receptors MT1 and MT2 are present in all of the organs
of the ram reproductive tract. However, real-time PCR analyses showed a significantly higher genic
expression of both receptors in the testis, the ampulla of the vas deferens, the seminal vesicle, and
vas deferens.

For the MT1 melatonin receptor in the testis, Western blot analyses detected a strong 39 kDa
band, compatible with the MT1 molecular weight [46], and a smaller band of 32 kDa that could be
related to the receptor activation [7] along weaker bands of various molecular weights. These bands
may be as a result of the oligomerization of the MT1 melatonin receptor, which can form dimers with
itself, with MT2 receptors [47], or with other G protein–coupled receptors [48]. IHC also revealed that
MT1 receptors were present in spermatogonias, spermatocytes, and spermatids. This multiple cellular
location for MT1 could also explain the presence of those multiple bands detected in the Western blot,
as the dimers formed could differ in the diverse cell types. As shown by IHC, the MT2 location in
the testis is restricted to the neck of the newly-formed spermatozoa, which could also explain the low
signal detected by the Western blot analysis, as the concentration of the MT2 receptor protein would
be low relative to the total of the extracted testicular proteins. Our previous studies have also revealed
the presence of the melatonin-synthesizing enzymes, aralkylamine N-acetyltransferase (AANAT) and
N-Acetylserotonin O-methyltransferase (ASMT), in spermatocytes and spermatids in ram testes [34].
The presence of both melatonin synthesizing-enzymes and melatonin receptors in the same organ
suggests that the testicular melatonin could act as an autocrine or paracrine molecule [49] and the
locally-produced melatonin could protect the developing spermatozoa from free radical-mediated
damage [50], which could impair ram fertility [51]. Our IHC analyses also revealed the absence of
melatonin receptors in the Sertoli and Leydig cells of the ram testes. This result differs from those found
in other species. The melatonin receptor MT1 has been previously detected in isolated Leydig cells
from Syrian hamster testes [17], whereas both MT1 and MT2 receptors have been evidenced in isolated
bovine Sertoli cells [52]. However, these differences could be due to the dissimilar identification
methods for melatonin receptors.
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The Western blot analyses revealed a high protein expression of both melatonin receptors in the
epididymis, especially in the cauda epididymis, despite the low genic expression of these receptors
detected by q-PCR. The Western blot analyses also revealed differences in the band pattern between
the testis and caput, corpus, and cauda epididymis, and showed that the pattern observed in the cauda
epididymis was more similar to the positive control (ejaculated spermatozoa) than those found in
other portions of the epididymis or even in the testis. Moreover, the IHC analyses for MT2 revealed
that the melatonin receptors were not located in the cauda epididymis tissue, but in the spermatozoa
contained in its lumen.

In light of these results, we then investigated the location of both melatonin receptors on the
sperm membrane during sperm maturation. Our findings revealed the presence of a new immunotype
for MT2, (type N, with staining only in the neck), mainly confined to the testis, caput, and corpus
epididymis. This melatonin receptor location has not been previously described in ejaculated ram
spermatozoa [30,32]. However, this immunotype is the only one detected in ejaculated boar, bull, and
red deer spermatozoa [53]. Our study also revealed that many of the newly-formed spermatozoa do not
show melatonin receptors in their membranes when they are located in the testes, while both melatonin
receptors are present when the spermatozoa reach the corpus epididymis. Furthermore, the percentage
of the different immunotypes varied with the sperm passage through the epididymis. Therefore,
when they reach the cauda, the immunotypes found are very similar to those found in the ejaculated
semen [32]. These changes in the location of the melatonin receptors during epididymal transit might
be related with the sperm maturation and the acquisition of fertilizing ability. During epididymal
maturation, the sperm membrane undergoes changes in lipid and protein composition [54,55]. These
changes may explain the variations we found in both the percentages of the melatonin receptor
immunotypes and the Western blot band patterns between testis, caput, corpus, and cauda epididymis.
In the head of the epididymis, a large part of testicular sperm surface protein, which could be masking
these receptors, was lost [56]. This would explain the increase in the sperm rate showing melatonin
receptors from the testis to the corpus epididymis revealed by the IIF technique. Moreover, it is known
that melatonin receptors, and mainly MT2, can be desensitized by internalization [57], which could
also explain the differences in melatonin receptor distribution observed during epididymal sperm
transit, along with sperm heterogeneity.

On the other hand, both the ductus deferens and its secretory portion, the ampulla, showed high
levels of m-RNA for both melatonin receptors. Both methods, the Western blot analyses and IHC
staining, confirmed the presence of the receptors in these ram tissues. The presence of melatonin
receptors in the vas deferens had been hypothesized by the use of 2-[125I]iodomelatonin in rats [20],
and the results of the present study confirm the presence of both MT1 and MT2 receptors in the ram vas
deferens. In this organ, the MT1 and MT2 receptors are located at the nucleus of the pseudostratified
columnar epithelium cells, whereas MT2 is also located on the cytoplasm of the epithelial cells near the
lumen, so its presence could be related to the secretory capacities of the vas deferens [58]. Until now,
there are no reports on the presence and the possible effect of melatonin on the ampulla. In this work,
we have located the MT1 melatonin receptor in the apical border of the epithelial cells of this organ,
whereas the MT2 receptor is located in all the cytoplasm of the epithelial cells. The apical location
of melatonin receptors, in contact with the ampulla lumen, suggests that these receptors might be
stimulated by the melatonin secreted by the testis [34], which can reach this organ along with the
spermatozoa and testicular and epididymal fluids. However, the possible effect of the pineal or
testicular melatonin on the ampulla secretory activity needs to be assessed.

Finally, regarding the seminal vesicles, prostate, and bulbourethral glands, only the seminal
vesicles showed high levels of gene expression of both melatonin receptors. These results differ from
previous reports on the presence of melatonin receptors in human and rat prostate [19,59]. However,
only the disseminated part of the prostate is present in the ram. This species lacks the prostate body
where melatonin receptors are located in both rats and humans. In the seminal vesicles, IHC showed
a nuclear location for the MT1 melatonin receptor, while that for MT2 was found in the cytoplasm.
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Very recent studies have demonstrated that melatonin treatment during the non-reproductive season
reactivates the ram seminal vesicles [39] and increases their size in the Iberian ibex [40]. Therefore,
it is likely that both effects may be exerted through the melatonin receptors we have here identified.
Moreover, the seminal vesicle secretes a significant part of the seminal fluid that becomes semen.
The increased volumes of ejaculate detected in ram during the reproductive season [24,60] or after
exogenous melatonin treatment [26,61] could, therefore, be the result of pineal or exogenous melatonin,
acting on the seminal vesicles through its receptors.

4. Materials and Methods

4.1. RNA Isolation and Retrotranscription

Tissue samples from the testis, epididymis (head, or caput; body, or corpus; and tail, or cauda),
ampulla, prostate, seminal vesicle bulbourethral glands, and vas deferens, were collected from two
Rasa Aragonesa rams during the reproductive season, in accordance with the directive 2010/63/EU
of the European Parliament and of the Council of 22 September 2010 on the protection of animals
used for scientific purposes (published in the Official Journal of the European Union, 20.10.2010,
L 276/33), and immediately frozen in liquid nitrogen. Total RNA was extracted by the guanidine
thiocyanate/phenol extraction method [62] by homogenization in 1 mL of TRI reagent (Sigma-Aldrich,
St. Louis, MO, USA) per 100 mg of tissue. Traces of DNA were removed by DNAse treatment using a
TURBO DNA-free DNA removal kit (Ambion, Invitrogen, Thermo Fisher Scientific, Waltham, MA,
USA). RNA concentration was measured in a NanoDrop ND-100 Spectrophotometer (Thermo Fisher
Scientific), and the integrity of the RNA was also verified by agarose gel electrophoresis.

To obtain the c-DNA, 500 ng of total RNA from each tissue and ram were reverse-transcribed
using poly d(T)20 primers and the SuperScript First-Strand Synthesis System kit (Invitrogen, Thermo
Fisher Scientific), following the manufacturer’s instructions.

To verify the retrotranscription, PCR amplification of glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) was carried out on the reverse-transcribed c-DNA from the ram reproductive tract tissues.
A PCR mix composed by 2.5 µL of REDTaq DNA polymerase 0.05 U/µL (Sigma-Aldrich), 5 µL of 10×
REDTaq DNA polymerase buffer (100 mM Tris-HCl pH 8.3, 500 mM KCl, 11 mM MgCl2, and 0.1%
gelatin), 0.2 mM of each dNTP, (Invitrogen, Thermo Fisher Scientific) and 320 nM GAPDH primers,
designed using the primer-BLAST tool and checked by BLAST analysis (NCBI, National Center for
Biotechnology Information, U.S. National Library of Medicine, Bethesda, MD, USA) to verify gene
specificity (Table 1) was added to 2 µL of the previously-obtained cDNA in a total volume of 50 mL.
The cycling conditions consisted of 30 cycles of 30 s at 94 ◦C, 30 s at 58 ◦C, and 45 s at 72 ◦C. A 3 min
denaturation step at 95 ◦C preceded cycling; at the end, a final 5 min extension at 72 ◦C was performed.
PCR products were separated on 1% agarose gel in a Tris-borate-EDTA (TBE) buffer (Tris 0.9 M, boric
acid 0.9 M and EDTA 20 mM, pH 8) containing 0.5 µL/mL ethidium bromide (Sigma-Aldrich) and
were visualized under ultraviolet (UV) light. Molecular size was estimated by using 50 bp Dye Plus
DNA Ladder (Takara Korea Biomedical Inc., Seoul, South Korea). Each PCR assay included a water
control to rule out template contamination of PCR reagents.

Table 1. Sequences of the MT1, MT2, β-actin, and glyceraldehyde-3-phosphate dehydrogenase GAPDH
primers used in the real-time polymerase chain reaction (qPCR) study.

Gene Accession Number Forward Primer (5’-sequence-3’)
(Position)

Reverse Primer (5’-sequence-3’)
(Position)

MT1 NM_001009725.1 CTCCATCCTCATCTTCACCATC
(164–185)

GGCTCACCACAAACACATTC
(276–257)

MT2 NM_001130938.1 GCTGAGAGAATGGAGCGATATG
(1692–1713)

GTCCACAGTGAGAAGCCATC
(1772–1753)

β-actin NM_001009784 CTCTTCCAGCCTTCCTTCCT
(867–886)

GGGCAGTGATCTCTTTCTGC
(1044–1025)

GAPDH NM_001190390 CAAGGTCATCCATGACCACTTTG
(516–538)

GTCCACCACCCTGTTGCTGTAG
(1011–990)
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4.2. Quantitative Real-Time PCR (qPCR)

The primers for the melatonin receptors MT1 and MT2 for qPCR (Table 1), along with the primers
for housekeeping genes (β-actin and GAPDH), were designed using the primer-BLAST tool (NCBI,
National Center for Biotechnology Information, U.S. National Library of Medicine, Bethesda, MD,
USA), and Beacon Designer Free Edition software (Premier Biosoft International, Palo Alto, CA, USA)
to rule out primer-dimer formation. Primer specificity was checked by BLAST analysis (NCBI, National
Center for Biotechnology Information, U.S. National Library of Medicine, Bethesda, MD, USA).

To perform the real time PCR reaction, 2 µL of cDNA was used in a final volume of 20 µL
containing 1× iTaq Universal SYBR Green supermix (Bio-Rad Laboratories, Inc., Hercules, CA, USA)
and 200 nM for the MT1 and MT2 primers, or 300 nM for the β-actin and GAPDH primers. Real-time
PCR reactions were performed in a StepOnePlus Real-Time PCR System (Applied Biosystems, Foster
City, CA, USA). 40 PCR cycles were carried out. The cycling conditions consisted of a denaturation
step of 15 s at 95 ◦C and an annealing/extension and plate read step at 60 ◦C for 1 min. A 2 min
polymerase activation and DNA denaturation step at 95 ◦C preceded cycling. At the end, a melt-curve
analysis was performed from 65 to 95◦C, with 0.5 ◦C increments at 5 s/step. The ∆∆Ct method [63]
was used to determine the expression of MT1 and MT2 receptors relative to β-actin and GAPDH, used
as housekeeping genes. Tissues from each ram were analyzed twice, and cDNA from each tissue were
loaded in triplicate in each qPCRreaction.

c-DNA obtained from ovine granulosa cells was used as a MT1 receptor positive control [64]
whereas ovine retina was used as a MT2 receptor positive control [65].

4.3. Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) and Western Blotting

Proteins from the testis, epididymis and accessory gland of the ram reproductive tract were
extracted by adding 3 mL of extraction buffer composed of 125 mM Tris-HCl, 4% sodium dodecyl
sulfate (SDS), 10% β-mercaptoethanol, 20% glycerol, and 0.02% bromophenol blue to 300 mg of tissue,
followed by mechanical homogenization. After incubation at 100 ◦C in a sand bath for 4 min, the mix
was centrifuged 7500× g for 5 min at 4 ◦C. The supernatant was recovered and, after adding 10% of a
protease inhibitor cocktail (Sigma-Aldrich), was stored at −20 ◦C.

Proteins (10 µg) were loaded on 10% or 12% (w/v) acrylamide SDS-PAGE gels for the
MT1 and the MT2 receptors, respectively. Proteins were separated by standard SDS-PAGE and
transferred onto a PVDF membrane (Trans-Blot pack, Bio-Rad) using a transfer unit (Mini Trans
Blot Electrophoretic Transfer Cell Unit, Bio-Rad). After the blocking of non-specific sites with
5% bovine serum albumin (BSA) in phosphate-buffered saline (PBS, 137 mM NaCl, 2.7 mM KCl,
8.1 mM Na2HPO4, and 1.76 KH2PO4, pH 7.2) for 4 h, the proteins were detected by incubating
overnight at 4 ◦C with a rabbit primary antibody against the MT1 (GeneTex Inc, Irvine, CA, USA; Cat#
GTX100003, RRID:AB_1241048) or the MT2 receptor (Acris Antibodies GmbH, Herford, Germany;
Cat# AP01322PU-N, RRID:AB_1619198) diluted 1/1000 in 0.1% Tween-20 PBS containing 1% BSA.
After extensive washing, this was followed by incubation for 1 h and 15 min at room temperature with
a secondary donkey anti-rabbit IRDye 800-CW conjugated antibody (LI-COR Biosciences Lincoln, NE,
USA; Cat# 926-32213, RRID:AB_621848) diluted 1:30,000. Finally, after washing, the membranes were
scanned with the Odyssey Clx Infrared Imaging System (LI-COR Biosciences, Lincoln, NE, USA).

4.4. Immunohistochemistry

Tissue samples were fixed in Bouin solution for 90 min, dehydrated in a graded series of ethanol
and embedded in paraffin. Sections (7 µm thick) were cut on a Surgipath microtome. The sections were
exposed to immunohistochemical staining by an avidin-biotin complex technique (Vector Laboratories,
Burlingame, CA, USA). Endogenous peroxidase was inactivated with 1.7% hydrogen peroxide in 100%
ethanol for 30 min. The sections were then washed in PBS pH 7.4 and incubated in normal horse serum
as a blocking reagent for 40 min, followed by overnight incubation at 4 ◦C with the specific primary
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antibody (rabbit polyclonal antibody against the MT1 receptor (RRID:AB_1241048, GeneTex, Irvine, CA,
USA) and rabbit polyclonal antibody against the MT2 receptor (RRID:AB_1619198, Acris Antibodies
GmbH, Herford, Germany), both at a dilution of 1:50 in PBS. Subsequently, the slides were incubated
with biotinylated anti-rabbit antiserum (Vector Laboratories) for 30 min. An avidin-biotin-peroxidase
complex (Vector Laboratories) was then applied for 40 min. The binding sites of the primary antibodies
were visualized by diaminobenzidine (DAB) and peroxidase solution (0.12 g DAB in 240 mL of PBS
pH 7.4 containing 3% H2O2) for 7 min. The slides were stained with Carazzi hematoxylin and mounted
with 1,3-diethyl-8-phenylxanthine (DTX). As a negative control, samples were incubated with normal
horse serum instead of the primary antibody, with the remaining procedure being the same.

4.5. Indirect Immunofluorescence Assays

The immature spermatozoa were obtained by mechanical homogenization from the testis and
the caput, corpus, and cauda epididymis of five Rasa Aragonesa mature rams sacrificed in the
slaughterhouse during the reproductive season.

The cells were fixed with 3.7% formaldehyde (v/v) in PBS for 20 min at room temperature. They
were then centrifuged at 900× g for 5 min, and the pellet resuspended in PBS. After fixation, 40 µL of
cell suspension was smeared onto poly-L-lysine-coated slides, and maintained at room temperature
for 3 h to ensure good adhesion to the slide.

Samples were washed three times with PBS, and non-specific binding sites were blocked with
5% BSA (w/v) in PBS for 4 h at room temperature in a humidity chamber. After three washes in PBS,
the spermatozoa were incubated overnight at 4 ◦C with the primary antibody (MT1 mouse polyclonal
antibody (Abnova Corporation, Taipei City, Taiwan; Cat# H00004543-A01, RRID: AB_462681) for
the melatonin receptor MT1 and rabbit polyclonal antibody for the melatonin receptor MT2 (RRID:
AB_1619198, from Acris Antibodies GmbH, Herford, Germany), diluted 1 : 50 (v/v) in PBS containing
1% BSA (w/v). After three washes in PBS, the cells were incubated with the secondary antibody
Alexa Fluor 594 chicken anti-mouse (Thermo Fisher Scientific; Cat# A-21201, RRID:AB_2535787) for
the melatonin receptor MT1, and Alexa Fluor 488 chicken anti-rabbit (Thermo Fisher Scientific, Cat#
A-21441, RRID:AB_2535859) for the melatonin receptor MT2, both diluted 1:800 (v/v) in PBS containing
1% BSA w/v for 1.5 h at room temperature in a humidity chamber and in the dark. The slides were
then washed three times with PBS before the addition of 5 µL of 0.22 M triethylenediamine (DABCO)
in glycerol:PBS (9:1 v/v) to enhance and preserve cell fluorescence. Finally, the preparations were
covered with coverslips, sealed with colorless enamel and visualized using a Nikon Eclipse E-400
microscope (Kanagawa, Japan) under epifluorescent illumination. All samples were processed in
duplicate in a blinded manner and at least 150 spermatozoa were scored per slide.

4.6. Statistical Analyses

The gene expression of MT1 and MT2 in ram reproductive tissues was evaluated by the
Kolmogorov-Smirnov test to assess normal distribution. Differences between data were then analyzed
by means of the Kruskal-Wallis test, followed by the Dunn’s multiple comparison test. In the
gene expression analyses, granulosa cells and retina data was only used for positive control and
representative purposes, and was not included in the statistical analyses.

The differences in the distribution of the melatonin receptors during epididymal maturation
detected by IIF were analyzed by means of the Chi-square test.

All the statistical analysis was performed with SPSS software (v.15.0, IBM Software, Armonk,
NY, USA).

5. Conclusions

In conclusion, in this study we have demonstrated the presence of the melatonin receptors
MT1 and MT2 in all organs of the ram reproductive tract, with greater abundance in the testis,
ampulla, seminal vesicles, and ductus deferens, although their functionality remains unclear and
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it needs to be further studied. We have also revealed that the location of these receptors in ram
spermatozoa varies during their maturation and transit through the epididymis. These results open
up new, interesting perspectives for further studies on the molecular mechanism of melatonin and the
biological significance of its receptors.
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